
A Appendix

A.1 BLCP to LCP Reformulation

Here we generalize an observation from Júdice and Pires [19] to show that any BLCP can be con-
verted to an LCP of twice the original dimension. Recall that the BLCP seeks vectors w and z such
that w = q + Mz and each variable zi meets one of the following conditions:

zi = ui =⇒ wi ≤ 0

zi = li =⇒ wi ≥ 0

li < zi < ui =⇒ wi = 0

where the vectors l and u are lower and upper bounds respectively. An LCP must have nonnegative
variables, so the BLCP conversion begins by introducing a nonnegative slack variable z+ = z − l.
This slight change allows for writing the problem as w = (q + Ml) + Mz+ where:

z+
i = ui − li =⇒ wi ≤ 0

z+
i = 0 =⇒ wi ≥ 0

0 < z+
i < ui − li =⇒ wi = 0.

The next step is to deal with the fact that variable w can be negative. We do so by introducing
two sets of nonnegative variables such that w = w+ − w−. Now, the problem can be written
w+ = (q + Ml) + Mz+ + w− where:

z+
i = ui − li =⇒ w+

i = 0 & w−
i ≥ 0

z+
i = 0 =⇒ w+

i ≥ 0 & w−
i = 0

0 < z+
i < ui − li =⇒ w+

i = w−
i = 0.

At this point, the conditions can be expanded into an LCP with twice the original dimension. To
help in this conversion, we add another slack variable z− = u − z = u − l − z+. Now the problem
becomes:

[

w+

z−

]

=

[

q + Ml
u − l

]

+

[

M I
−I 0

] [

z+

w−

]

with variables w+, w−, z+, z− ≥ 0 and z+
i w+

i = z−i w−
i = 0,∀i. If matrixM is invertible then we

can pivot onM , yielding the following equivalent LCP:
[

z+

z−

]

=

[

−l − M−1q
u + M−1q

]

+

[

M−1 −M−1

−M−1 M−1

] [

w+

w−

]

with variables w+, w−, z+, z− ≥ 0 and z+
i w+

i = z−i w−
i = 0,∀i. Given the solution to this LCP,

the original solution to the BLCP can be computed via w = w+ − w− and z = z+ + l.

A.2 LCP formulation of the L1 Regularized Linear Fixed Point

Here, we derive an LCP formulation of the L1 reguarized fixed point directly. Some readers may
find this presentation more intuitive than the BLCP formulation.

Begin with the LARS-TD optimality conditions. Each coefficient wi must meet one of the following
conditions:

−β < ΦT
i (R − (Φ − γΦ′π)w) < β =⇒ wi = 0

ΦT
i (R − (Φ − γΦ′π)w) = β =⇒ wi ≥ 0

ΦT
i (R − (Φ − γΦ′π)w) = −β =⇒ wi ≤ 0

These can be rewritten as:
0 < β − ΦT

i (R − (Φ − γΦ′π)w) < 2β =⇒ wi = 0

β − ΦT
i (R − (Φ − γΦ′π)w) = 0 =⇒ wi ≥ 0

β − ΦT
i (R − (Φ − γΦ′π)w) = 2β =⇒ wi ≤ 0

10

Now define two vectors x+ and x− as:

x+ = β − ΦT (R − (Φ − γΦ′π)w)

x− = β + ΦT (R − (Φ − γΦ′π)w) = 2β − x+

Notice that both x+ and x− are in the range [0, 2β]. Furthermore, when an element x+
i = 0, it

must be that x−
i = 2β (and vice-versa). With these definitions in hand, we can write the optimality

conditions as:

0 < x+
i < 2β & 0 < x−

i < 2β =⇒ wi = 0

x+
i = 0 & x−

i = 2β =⇒ wi ≥ 0

x−
i = 0 & x+

i = 2β =⇒ wi ≤ 0

Now decompose the weight vector w into positive (w+) and negative (w−) portions such that:

w = w+ − w−

w+, w− ≥ 0

if wi ≥ 0, then w+
i ≥ 0 & w−

i = 0

if wi ≤ 0, then w−
i ≥ 0 & w+

i = 0

When we convert the optimality conditions to a linear complementarity problem (LCP), we will
show that a solution to the LCP must satisfy these constraints placed on w+ and w−. The optimality
conditions can now be written as:

0 < x+
i < 2β & 0 < x−

i < 2β =⇒ w+
i = w−

i = 0

x+
i = 0 & x−

i = 2β =⇒ w+
i ≥ 0 & w−

i = 0

x−
i = 0 & x+

i = 2β =⇒ w−
i ≥ 0 & w+

i = 0

Now it is easy to show these optimality conditions define a LCP. To help see this, note that (1)
all the variables (x+, x−, w+, w−) must be nonnegative and (2) the only way a weight w+

i (or
w−

j) can be positive is if the corresponding variable x+
i (or x−

j) equals zero. Using the notation
A = ΦT (Φ − γΦ′π) and b = ΦT R, the LCP is written:

[

x+

x−

]

=

(

β −

[

b
−b

])

+

[

A −A
−A A

] [

w+

w−

]

[

x+

x−

]

,

[

w+

w−

]

≥ 0

x+
i w+

i = 0 ∀i

x−
i w−

i = 0 ∀i

Notice that a solution to the LCP must meet the constraints we placed on w+ and w−. To see this,
assume w+

i > 0. If this is true, then x+
i must equal 0 (by complementarity) and x−

i = 2β (by
definition) which in turn implies w−

i = 0 (by complementarity). The same logic applies if w−
i > 0.

Finally, note that the solution above is equivalent to performing the transformation in section A.1 to
the BLCP formulation of the L1 regularized fixed point.

A.3 The LARQ algorithm

The LARQ algorithm (Figure 2) modifies LARS-TD to identify policy change points in addition to
feature change points. These policy change points, much like the feature addition/removal points
of LARS-TD, can be found analytically. Policy changes can be made at a step size given by the
equation

α = min
a,i

−
Φ′a

i w − Φ′π
i w

Φ′a
i ∆w − Φ′π

i ∆w
, (6)

where∆w is the vector along which the coefficients are currently constrained to move according to
the LARS-TD invariants.

11

Algorithm LARQ ({si, ai, ri, s′
i}, γ, {ϕj}, β)

parameters:
{si, ai, ri, s′

i}: state, action, reward, and nextstate samples
γ : discount factor
{ϕj} : basis functions
β : regularization parameter

initialization:
w ← 0

π : π(s′
i) ← 1

Φ : Φij ← ϕj(si, ai)
c ← Φ

T R
{β̄, i} ← maxj |cj |
I ← {i}

while β̄ > β:
Get features for next states following policy π:

Φ
′π : Φ′π

ij ← ϕj(si, π(si))

Find update direction:
∆wI ← (ΦT

I ΦI − γΦ
T
I Φ

′π
I)−1 sgn(cI)

Find step size for adding a feature to the active set:
d ← (ΦT (ΦI − γΦ

′π
I)∆wI

{α1, i1} ← min+

j /∈I

cj−β̄

dj−1
,

cj+β̄

dj+1

ff

Find step size for removing a feature from the active set:
{α2, i2} ← min+,0

j∈I

n

−
wj

∆wj

o

Find step size to first of {add a feature, remove a feature, terminate at fixed point}:
α ← min{α1, α2, β̄ − β}

// This next section is omitted in LARS-TD
Find step size for greedy policy update

Q′π ← Φ
′π
IwI

∆Q′π ← Φ
′π
I∆wI

foreach action a
Q′a : Q′a

i ← Φ(s′
i, a)IwI

∆Q′a : ∆Q′a
i ← Φ(s′

i, a)I∆wI

{αa
3 , ia

3} ← mini

−
Q′a

i −Q′π
i

∆Q′a
i −∆Q′π

i
such that ∆Q′a

i > ∆Q′π
i

ff

{α3, π′
3} ← mina{αa

3}

i3 ← i
π′
3

3
α ← min{α, α3}

// End of LARQ-only section

Update weights, β̄, and correlation vector:
wI ← wI + α∆wI

β̄ ← β̄ − α
c ← c − αd

Update active set or policy:
if (α = α1), I ← I

S

{i1}
else if (α = α2), I ← I − {i2}
else if (α = α3), π(i3) ← π′

3

end while
returnw.

Figure 2: The LARQ algorithm.

To satisfy the greedy invariant of LARQ, however, we must also ensure that the new policy we
switch to will be better than the old policy as we move towards the new fixed point. In general,
all that is necessary to satisfy this requirement is that the gradient of the new policy, Φ′π′

i ∆w with
respect to the direction of travel is greater than the gradient of the old policy.

12

A.4 LCP Solver

In our experiments, we used a modified complementary pivoting algorithm to solve for the L1TD
fixed point using the LCP formulation as shown at the end of appendix section A.1. We adapted a
Matlab LCP solver due to P. Fackler and M. Miranda that allows for warm starts. The file lemke.m
can be found in the CompEcon toolbox at http://www4.ncsu.edu/˜pfackler. The code was
adapted so that the full matrix ΦT (Φ− γΦ′π), which can be very large depending on the size of the
feature set, was never explicitly formed. The full matrix is not needed to determine which element
should be pivoted in and out of the active set at any iteration of the algorithm. We only formed
the principal submatrix associated with the active elements. As a further optimization, rather than
forming the principal submatrix itself, it is possible to update and downdate the inverse of this
principal submatrix incrementally to solve the necessary linear system of equations.

In section 2.3, we stated that the LCP formulation is twice as large as the BLCP formulation. We
used the LCP formulation here because the code was readily available and appeared robust. How-
ever, any suitable solver could be used instead.

A.5 Robustness of LARS-TD

When the A matrix is a P-matrix, LC-TD and LARS-TD are guaranteed to produce solutions that
achieve the L1TD optimality conditions. When the P-matrix property does not hold, both algorithms
have the potential to violate the optimality conditions. In practice, we found LARS-TD to be much
more susceptible to this problem. We discuss here a possible rationale explaining this behavior.

There are two ways that LARS-TD can violate the invariants: (1) the sign of the correlation may
disagree with the sign of the weights for features in the active set, and (2) once a feature is removed
from the active set, the absolute value of its correlation may in fact increase compared to the corre-
lation of features in the active set. Both of these problems are of course detectable while running the
algorithm. Instead of terminating prematurely when one of these two problems arises (in which case
the algorithm would not return a set of coefficients for the desired value of the regularization param-
eter β), our LARS-TD implementation simply ignores the deviations and continues. This decision
was made for practical reasons. We found it better for LARS-TD to return a set of coefficients at
the requested value of β than to terminate early and return coefficients at a larger value of β. How-
ever, these LARS-TD violations did impact performance. For example, for one setting of β in our
mountain car experiments, we found that the final policy learned using LC-TD reached the goal in
19 out of 20 trials, taking 136 ± 22 steps on average. The policies learned using LARS-TD reached
the goal in 17 of 20 trials, taking 161 ± 41 steps on average.

The fact that LARS-TD produced solutions violating the L1TD optimality conditions explains the
empirical behavior shown in Figure 1. In those plots, notice that policy iteration converged after
six rounds when using LC-TD whereas it did not converge at all when using LARS-TD. Recall that
convergence is obtained when the coefficients w do not change significantly from one round to the
next. Since LARS-TD was frequently violating the optimality conditions, it was not reaching an
L1TD fixed point whereas LC-TD was doing so. Thus, LC-TD was able to produce the same set
of coefficients in two subsequent rounds of policy iteration. LARS-TD would violate the optimality
conditions in different ways in subsequent rounds of policy iteration and therefore never stabilized
on one set of coefficients.

We offer the following explanation as to why a homotopy method like LARS-TDmay be more prone
to violating the optimality conditions in comparison to an LCP solver. Consider the behavior of both
LARS-TD and LC-TD for a fixed Φ, Φ′π , R, and γ but a varying β. For a particular non-P-matrix
ΦT (Φ − γΦ′π), there will exist at least one R such that there is not a unique solution achieving
the L1TD optimality conditions. As demonstrated by Kolter and Ng [1] (Figure 2b), changes in
the number of solutions as β varies can correspond to discontinuities in the homotopy path. If
LARS-TD encounters such a point, then it will fail to preserve the invariants when it crosses the
discontinuity and it is unlikely to re-establish them. This is because the algorithm does not make the
sort of discontinuous changes needed to jump onto a different homotopy path. In contrast, LC-TD
directly solves the problem for a particular β (or perhaps a finite set of β values). Discontinuities in
the homotopy path have no direct impact on the LCP solver’s ability to find a solution. Moreover, if
solutions are desired at a set of β values, a failure to find a solution for any particular value will not
taint the solver’s search for a valid solution at other values, even if using warm starts. In summary, a

13

0 10 20 30 40 50 6050

100

150

200

250

β
St

ep
s

to
 G

oa
l

Figure 3: Average performance of final policy produced by LC-MPI for the mountain car MDP at
different values of the regularization parameter β.

negative aspect of a homotopy method is that it can be derailed if a problem occurs at any point along
the continuous homotopy path, while a direct method that searches for a solution at a particular value
of the regularization parameter is influenced only by the properties of the solution at that particular
value.

A.6 Use of Cross-Validation

Lastly, to show how one may use the results of LC-MPI, Figure 3 shows the average performance
of the 11 greedy policies for mountain car. The graph shows the number of steps to reach the goal
up to a maximum of 350 steps per trial. The large error bars for large values of β are due to poor
policies resulting in tests that do not reach the goal within 350 steps. Notice the classic “bathtub”
shape in which under- and over-regularized solutions perform poorly.

14

