
A The Perturbative Approach on Continuous Attractor Neural Networks

A.1 Lowest Order Perturbative Analysis on Static Bump Solutions

Without loss of generality, we letz = 0. Substituting Eqs. (5) and (6) into Eq. (1), we get
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Using the projection in Eq. (7), we can approximateexp
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Introducing the rescaled variablesu andk, we arrive at Eq. (8).

Similarly, substituting Eqs. (5) and (6) into Eq. (2), we get
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Making use of the projectionexp
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Introducing the rescaled variablesu, k, andβ, we arrive at Eq. (9).

The steady state solution is obtained by setting the time derivatives in Eqs. (8) and (9) to zero,
yielding
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whereB ≡ 1 + ku2/8 is the divisive inhibition.

Dividing Eq. (A.5) by (A.6), we eliminateB,
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We can eliminateu from Eq. (A.6). This gives rise to an equation forp0
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Rearranging the terms, we have
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Therefore, for each fixedp0, we can plot a parabolic curve in the phase diagramβ versusk. As
shown in figure A.1, the dashed lines are parabolas for different values ofp0. The family of all
parabolas map out the region of existence of the steady statesolutions.

1



0 0.5 1
k

0

0.05

0.1

0.15

0.2

β

Figure A.1: The region of existence of static bump solutions. Solid line: the boundary of existence
of static bump solutions. Dashed lines: the parabolic curves for different constant values ofp0.

A.2 Stability of the Static Bump

To analyze the stability of the static bump, we consider the time evolution ofǫ = u (t) − u∗ and
δ = p0 (t)− p∗0, where(u∗, p∗0) is the fixed point solution of Eqs. (A.5) and (A.6). Then, we have
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The stability condition is determined by the eigenvalues ofthe stability matrix,
(
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/2, whereD andT are the determinant and the trace of the matrix respectively.
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Using Eqs. (A.5) and (A.6), the determinant can be simplifiedto
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The trace is given by
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The static bump is stable only if
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√
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< 0. (A.14)
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Figure A.2: The region of stable solutions of the static bumpfor τd/τs = 50. Solid line: the bound-
ary of stable static bumps. Dash line: the boundary separating the oscillating and non-oscillating
convergence. Dotted lines: the curves for different constant values ofp0.

The eigenvalues are real and negative whenT 2 ≥ 4D. This corresponds to non-oscillating solutions.
After some algebra, we obtain the boundaryT 2 = 4D given by
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This boundary is shown in figure A.2. Below this boundary, thestability condition can be obtained
as
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This upper bound is identical to the existence condition (A.9), which is above the boundary of non-
oscillating solutions. This implies that all non-oscillating solutions are stable.

Above the boundary (A.15), the convergence to the steady state becomes oscillating, and the stability
condition reduces toT ≤ 0, yielding Eq. (10). This condition narrows the region of static bump
considerably, as shown in figure A.2.

A.3 Lowest Order Perturbative Analysis of Moving Bump Solution

We substitute Eqs. (11) can (12) into Eqs. (1) and (2). Eq. (1)becomes an equation contain-
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Equating the coefficients ofexp
[

− (x− vt)
2
/4a2

]

andexp
[

− (x− vt)
2
/4a2

]

(x− vt) /a, and

rescaling the variables, we arrive at

τs
du

dt
=

u2

√
2B

(

1−
√

4

7
p0

)

− u, (A.19)

vτ0
2a

=
u

B

(

2

7

)
3
2

p1. (A.20)

Similarly, making use of the projections

e−
(x−vt)2

a2 ≈
√

2

3
e−

(x−vt)2

2a2 , (A.21)

e−
(x−vt)2

a2

(

x− vt

a

)

≈

(

√

2

3

)3

e−
(x−vt)2

2a2

(

x− vt

a

)

, (A.22)

we find that Eq. (2) gives rise to
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After some algebra, the solution can be parametrized byξ ≡ βu2/B,
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Real solution exists only if Eq. (13) is satisfied.

The solution enables us to plot the contours of constantξ in the space ofk andβ. Using the definition
of ξ, we can write

k =
8

ξ
β −

8

ξ2

(

u

B

)2

β
2

, (A.29)

where the quandratic coefficient can be readily obtained from Eq. (A.26). Figure A.3 shows the
family of these cures with constantξ. The lowest curve saturates the inequality in Eq. (13), and
yields the boundary between the static and metastatic or moving regions in Fig. 3.

A.4 Stability of the Moving Bump

To study the stability of the moving bump, we consider fluctuations arround the moving bump solu-
tion. Suppose

u (x, t) = (u∗
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Figure A.3: The family of curves with constant values ofξ at τd/τs = 50. Dashed line: phase
boundary of the static bump.

These expressions are substituted into the dynamical equations. The result is
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We first revisit the stability of the static bump. By settingv andp1 to 0, and considering the asym-
metric fluctuationss1 andǫ1 in Eqs. (A.33) and (A.35), we have
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Eliminatings1,
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Hence the static bump remains stable when
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Using Eqs. (A.25) and (A.26) to eliminatep0 andu/B, we recover the condition in Eq. (13). This
shows that the bump becomes a moving one as soon as the static bump becomes unstable against
asymmetric fluctuations, as described in the main text.
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Figure A.4: The stable branches of the family of the curves with contant values ofξ at τd/τs = 50.
The dashed line is the phase boundary of the static bump.

Now we consider the stability of the moving bump. Eliminating ds1/dt and summarizing the equa-
tions in matrix form,
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For the moving bump to be stable, the real parts of the eigenvalues of the stability matrix should
be non-positive. The stable branches of the family of curvesare shown in figure A.4. The results
show that the boundary of stability of the moving bumps is almost indistinguishable from te enve-
lope of the family of curves. Higher order perturbations produce phase boundaries that have better
agreement with simulation results, as shown in Fig. 3. The derivation will be reported elsewhere.
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