A The Perturbative Approach on Continuous Attractor Neural Networks

A.1 Lowest Order Perturbative Analysison Static Bump Solutions

Without loss of generality, we let = 0. Substituting Egs. (5) and (6) into Eq. (1), we get

2> dug pJoul _ 2 \/5 _ 2 _ a2
Tg€ 4aZ —— = e 1a2 — —e 342 | —upe a2, A.1
dt V2 (1+V2rakpud) Poy3 0 (A1)

Using the projection in Eq. (7), we can approximat® (—22/3a?) ~ /6/7exp (—a%/4a?).
This reduces the equation to

dug pJoud \/Z
2 = 1—1/=po| - A2
T at V2 (1 + v 27rakpu%) 7P° (A-2)

Introducing the rescaled variabigsndk, we arrive at Eq. (8).

Similarly, substituting Egs. (5) and (6) into Eqg. (2), we get

_ =2 dpog =2 TaBud _ =2 _a2
Ti€ 2a? = —pp€ 202 f —mMM— (6 202 — € a2) . A3
d di Po 1+ v2ra kpu? bo (A.3)

Making use of the projectioexp (—22/a?) ~ /2/3 exp (—2?/2a*), the equation simplifies to

dpo Tdﬂu% \/5
— = —ppt+———————1—4/= . A.4
gt po 1+ V2makpud 370 (A4)

Introducing the rescaled variablgsk, and;3, we arrive at Eq. (9).

The steady state solution is obtained by setting the timeateres in Egs. (8) and (9) to zero,

yielding

_ 1w \/Z

= 5E <1 - ?P0> ) (A.5)

— 5

po = % (1 - gpo) ; (A.6)
whereB = 1 + ku?/8 is the divisive inhibition.
Dividing Eqg. (A.5) by (A.6), we eliminaté3,

7o L (L= (A.7)

V28 \1-/2/3p

We can eliminata from Eq. (A.6). This gives rise to an equation far

2 _ 2
% (1 - \/%M)) [1 - ( % + %) po] Po — (1 - %m) = 0. (A.8)

Rearranging the terms, we have

2
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Therefore, for each fixegy, we can plot a parabolic curve in the phase diagramersusk. As
shown in figure A.1, the dashed lines are parabolas for éiffevalues ofp,. The family of all
parabolas map out the region of existence of the steadysihatgons.
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Figure A.1: The region of existence of static bump solutiddalid line: the boundary of existence
of static bump solutions. Dashed lines: the parabolic afeedifferent constant values pf.
A.2 Stability of the Static Bump

To analyze the stability of the static bump, we consider iime tevolution ofe = u (t) — @* and
d = po (t) — ps, where(w*, pg) is the fixed point solution of Egs. (A.5) and (A.6). Then, weda
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The stability condition is determined by the eigenvalues thfe stability matrix,
(T +VT?—4D) /2, whereD andT are the determinant and the trace of the matrix respectively

The determinant is given by
1 V21 4 B#\/E
b= w{ 1?@@’@) (”? 3

2 25u° 2
222 <1 - @m) } | (A11)

Using Egs. (A.5) and (A.6), the determinant can be simplifted

1 2/4/Tpy  2-B (A12)
7-37-dB 1—\/4/7]?0 1—\/2/3]?0 ' .
The trace is given by
=2t %— T —1. (A.13)
Ts T4 (1 - \/2/3]90)
The static bump is stable only if
Re[(T +/T2 - 4D) /2} <0. (A.14)
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Figure A.2: The region of stable solutions of the static bdorp, /7, = 50. Solid line: the bound-
ary of stable static bumps. Dash line: the boundary separ#tie oscillating and non-oscillating
convergence. Dotted lines: the curves for different cartstalues ofpg.

The eigenvalues are real and negative whén> 4D. This corresponds to non-oscillating solutions.
After some algebra, we obtain the bound@i¥/= 4D given by

B_po(lx/mpo)QJrEpo(l\/mpo)Q Q_E\/ggpﬁ(lx/mpo)
4(“@190) Td4(1f\/mp0)2 Tl T 1—/2/3py

This boundary is shown in figure A.2. Below this boundary,gtability condition can be obtained

as
Do (1 - \/mpo)3
(1= v/2/3p0) (1~ 2v/47Tp0 + V/BT2173)

This upper bound is identical to the existence conditio®jAwhich is above the boundary of non-
oscillating solutions. This implies that all non-osciifeg solutions are stable.

(A.15)

B <

(A.16)

Above the boundary (A.15), the convergence to the steatlylséomes oscillating, and the stability
condition reduces t@' < 0, yielding Eq. (10). This condition narrows the region oftistdoump
considerably, as shown in figure A.2.

A.3 Lowest Order Perturbative Analysis of Moving Bump Solution

We substitute Eqgs. (11) can (12) into Egs. (1) and (2). Eq.b&bomes an equation contain-
ing exp [— (z — vt)? /4a2} andexp [— (z — vt)? /4a2} (z — vt) /a after we have made use of the

projections
(z—vt)? 6 (z—vt)?
e~ mar \/;e (A.17)
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Equating the coefficients afkp {— (z — vt)? /4a2} andexp [— (z — vt)? /4a2| (z — vt) /a, and
rescaling the variables, we arrive at

du u? 4
TSE = 755 <1 — \/;p0> -, (A.19)
3
VT u (2\?2
_2; = 3 <?> p1. (A.20)

Similarly, making use of the projections

z—vt)? 2 z—vt)?
om \/je() (A.21)
3
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we find that Eq. (2) gives rise to
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Real solution exists only if Eq. (13) is satisfied.

The solution enables us to plot the contours of congtanthe space of andf3. Using the definition

of &, we can write

E:%_E(E)QBQ (A29)
& &\B ’ '

where the quandratic coefficient can be readily obtaineoh fim. (A.26). Figure A.3 shows the

family of these cures with constagt The lowest curve saturates the inequality in Eq. (13), and

yields the boundary between the static and metastatic omgeggions in Fig. 3.

A.4 Stability of the Moving Bump

To study the stability of the moving bump, we consider flutitues arround the moving bump solu-
tion. Suppose

_ (z—wt—s1)?

u(x,t) = (uj+ui)e w0 (A.30)

—_ t —_ x—vt—sq 2
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Figure A.3: The family of curves with constant values¢oat 7,/7s = 50. Dashed line: phase
boundary of the static bump.

These expressions are substituted into the dynamicalieqsafhe result is

du, V2 \/Z _ EQ\/§ _
it S LY (Y Y e — T, A.32
T B2 < 7p0> gy reeT " (A-32)
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Ern B2 \3

We first revisit the stability of the static bump. By settingndp, to 0, and considering the asym-
metric fluctuations; ande; in Egs. (A.33) and (A.35), we have

3
Todsy 2w (22
@ = 503) e (A-39)
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ds; 2\ 2 Tqpo dey
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3 3
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Hence the static bump remains stable when
3 3
2u (2\ 2 Ts 2\ 2
— (= - — |1 = < 0. A.39
3(7) po— +(3) 5]_ (A39)

Using Egs. (A.25) and (A.26) to eliminatg andw/ B, we recover the condition in Eq. (13). This
shows that the bump becomes a moving one as soon as the stajicdiecomes unstable against
asymmetric fluctuations, as described in the main text.
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Figure A.4: The stable branches of the family of the curveh wontant values of at /75 = 50.
The dashed line is the phase boundary of the static bump.

Now we consider the stability of the moving bump. Eliminatifs; /dt and summarizing the equa-
tions in matrix form,

_ 2 _w /2 —
d Uq B 1 B 77 0 Ul
Tg— €0 = 2poTs VTsP1 VTsP1 BT, _ UTs €0 . (A40)
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For the moving bump to be stable, the real parts of the eideesaf the stability matrix should
be non-positive. The stable branches of the family of cuaresshown in figure A.4. The results
show that the boundary of stability of the moving bumps is@thindistinguishable from te enve-
lope of the family of curves. Higher order perturbationsduree phase boundaries that have better
agreement with simulation results, as shown in Fig. 3. Thizvaliion will be reported elsewhere.



