
Supplementary Material

A Variational EM Basis of the Learning Algorithm

The parameter update rules for the MCA generative model were derived based on approximation
(6). Here we show that this approximation can be recovered as a form of a variational EM approach.
The derivation will be technically detailed but the final result, which includes a general procedure
to derive M-step equations, will be very compact (see Tab. A.1). It was used to derive the parameter
update rules Eqns. 9 to 14 for the MCA model. To study the result, the reader may directly be
referred to Sec. A.4. More details about the approximation method itself will be published in the
paper “Expectation Truncation and the Benefits of Preselection in Training Generative Models”,
Lücke and Eggert, Journal of Machine Learning Research, 2010, in press.

A.1 Variational Approximation for Data Classes

Let us consider a generative model with a set of hidden variables denoted by �s, a set of observed
variables denoted by �y, and a set of parameters denoted by Θ. Let us denote the prior distribution
of the model by the (not further specified) function p(�s |Θ), and the noise distribution by the (not
further specified) function p(�y |�s, Θ). To distinguish this generative model from models introduced
later, it will from now on be referred to as the original generative model.

Let K be a subset of the space of all possible values of �s. Given such a set, let us define two new
generative models by introducing two new prior distributions that are based on the original prior:

p(�s | c = 1,Θ) =

�
1
κ̃
p(�s |Θ) if �s ∈ K
0 if �s �∈ K

and p(�s | c = 0,Θ) =

�
0 if �s ∈ K

1
1−κ̃

p(�s |Θ) if �s �∈ K
(16)

where κ̃ =
�

�s∈K p(�s |Θ). We take the noise distribution of the new models to be identical to the
original noise distribution. We will refer to the new generative models as truncated models because
their prior distributions are truncated to be zero outside of specific subsets. Note that the generation
of data according to the truncated model with c = 1 corresponds to generating data according to
the original model while only accepting data points generated by �s ∈ K. Analogously, generating
data according to the truncated model with c = 0 is equivalent to generating data according to the
original model while accepting only data points generated by �s �∈ K.

Let us now mix these two truncated generative models by introducing c ∈ {0, 1} as additional
hidden variable and by drawing c = 1 with probability κ. The prior distribution of this mixed model
is thus given by:

p(c |κ) = κc (1− κ)1−c , (17)

p(�s | c,Θ) =
� c

κ̃
δ(�s ∈ K) +

1− c

1− κ̃
δ(�s �∈ K)

�
p(�s |Θ) . (18)

where we have introduced δ(�s ∈ K) = 1 if �s ∈ K and zero otherwise, and δ(�s �∈ K) = 1 if �s �∈ K
and zero otherwise. We will refer to this model as the mixed generative model. Note that the mixed
model is identical to the original generative model if we choose κ = κ̃ =

�
�s∈K p(�s |Θ) as mixing

proportion. The mixed model thus contains the original model as a special case.

Now, consider a set of N data points {�y (n)}n=1,...,N generated according to the original generative
model. Let us maximize the likelihood of the data under the mixed model (17) and (18). If we use
EM for optimization, we obtain the free-energy

F̃(q,Θ, κ) =
�

n

�

c

q(n)(c ; Θ�) log
�
p(�y (n) | c,Θ)

�

+ log(κ)
�

n

q(n)(c = 1;Θ�) + log(1− κ)
�

n

q(n)(c = 0;Θ�) +H(q) , (19)

whereH(q) is the entropy w.r.t. q(n)(c; Θ�) (summed over all n and c). The free-energy (19) can be
optimized iteratively by maximizing q in the E-step and (Θ, κ) in the M-step. For the E-step, choos-
ing the exact posterior, q(n)(c ; Θ�) = p(c | �y (n),Θ�), represents the optimal choice. Unfortunately,
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it is computationally intractable in general because

p(c = 1 | �y (n),Θ�) =

�
�s∈K p(�y (n), �s |Θ)
�

�s p(�y
(n), �s |Θ)

, (20)

requires a summation over the entire state space (similarly for c = 0). We thus choose a variational
approximation to the true posterior by setting q(n)(c |Θ�) to zero or one. This approximation reduces
the free-energy (19) to:

F̃(q,Θ) =

≈L1(Θ)
� �� ��

n∈M

log
�
p(�y (n) | c = 1,Θ)

�
+

≈L0(Θ)
� �� ��

n�∈M

log
�
p(�y (n) | c = 0,Θ)

�

+ log(κ)|M|+ log(1− κ)(N − |M|) +H(q) . (21)

where M = {n | q(n)(c = 1 ; Θ�) = 1}. Note that κ can be optimized independently of Θ because
the first two summands in (21) only depend on Θ. As we also know its final optimal value (κ = κ̃),
we will treat the mixing proportion as implicitly known. κ can thus be omitted as a parameter of the
free-energy (21) and will not play a role for our further considerations.

For the data set M note that the best choice for q(n)(c ; Θ�) under the constraint q(n)(c ; Θ�) ∈
{0, 1} is given by the assignment q(n)(c = 1 ; Θ�) = 1 if �y (n) was generated by class c = 1 (and
zero otherwise). This would amount to settingM to

Mopt = {n | �y (n) generated by class c = 1} . (22)

Note that in general this best choice can not be computed exactly. Later in Sec. A.3 we will see,
however, that tractable approximations toMopt can be derived.

A.2 Necessary Conditions for Global Likelihood Maxima

In the previous section we have seen that F̃(q,Θ) in (21) is a lower bound of the data likelihood
L(Θ). If the used variational distributions q(n)(c ; Θ) are good approximations to the exact pos-

teriors p(c | �y (n),Θ) in (20), then L(Θ) ≈ F̃(q,Θ) after each E-step. Because of the variational

approximation in Sec. A.1 the equality F̃(q,Θ) = L(Θ) holds if M is equal to Mopt (22) and if
the true posterior values in (20) are equal to zero or one for all n. Although the latter condition
is fulfilled only in boundary cases, we will, in the following, assume the equality to hold (while
keeping in mind that it is almost always an approximation). If the equality holds, F̃(q,Θ) in (21) is
in its global maximum equal to the likelihood L(Θ).

Let us assume that there exist parameters Θ∗ such that the original generative model reproduces the
underlying distribution of the data points, p(�y) = p(�y |Θ∗). From Sec. A.1 we then know that the
mixed model with prior (17) and (18) and κ = κ̃ also reproduces the original distribution for these
parameters. Using the mixed model, the data points {�y (n)}n=1,...,N can thus be taken to have been
generated by the truncated generative models. That is, the data set can be subdivided into the two
disjoint sets {�y (n)}n∈Mopt and {�y (n)}n�∈Mopt (compare Fig. A.1). If p(�y |Θ∗) is the underlying
distribution of the whole data set, then p(�y | c = 1,Θ∗) and p(�y | c = 0,Θ∗) are the underlying
distributions of the two disjoint parts.

We can approximately recover the distribution p(�y |Θ∗) by (globally) maximizing the data like-
lihood under the mixed generative model on {�y (n)}n=1,...,N . Furthermore, we can recover the
distributions p(�y | c = 1,Θ∗) and p(�y | c = 0,Θ∗) by (globally) maximizing the data likelihoods of
the truncated generative models on {�y (n)}n∈Mopt and {�y (n)}n�∈Mopt , respectively. Let us denote
the parameters recovered by maximizing L(Θ) byΘ†, and the parameters recovered by maximizing
L1(Θ) and L0(Θ) by Θ†1 and Θ†0, respectively. In general, Θ†, Θ†1, and Θ†0 are different. If the
variational approximation M = Mopt is exact, we know, however, that in the limit of infinitely
many data points (and by still assuming p(�y) = p(�y |Θ∗)) applies:

p(�y |Θ∗) = p(�y |Θ†), p(�y | c=1,Θ∗) = p(�y | c=1,Θ†1), p(�y | c=0,Θ∗) = p(�y | c=0,Θ†0). (23)

The equalities hold because for N → ∞ and p(�y) = p(�y |Θ∗) it follows from L(Θ∗) = L(Θ†)
that DKL(p(�y |Θ

∗), p(�y |Θ†)) = 0. As the Kullback-Leibler divergence between two distributions
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Figure A.1: Recovery of the generating distributions through the original and the truncated gener-
ative models. The original distributions can be recovered from the data sets if the corresponding
likelihoods are maximized.

q and p is zero if and only if the distributions are identical, (23) has to hold. Note, however, that the
recovered parameters can still be different fromΘ∗. For instance, if there exist transformations T of
Θ∗ that do not change the distribution, then any Θ obtained from Θ∗ through such a transformation,
Θ = T (Θ∗), is a likelihood maximum as well. Such multiple global maxima are the norm rather
than the exception. Global maxima of models such as Sparse Coding [1] or Independent Compo-
nent Analysis [e.g. 2] remain global maxima under the exchange of any two basis functions or the
negation of any of them.

Let all transformations T that map the global maxima of L(Θ) onto itself define a set that we will
refer to as the transformation set. We say that the set of global maxima is invariant under the
transformation set. For any two global maxima Θ∗ and Θ† of L(Θ), there now exists a member
T of the transformation set such that Θ∗ = T (Θ†). Let us now demand that all global maxima
of L1(Θ) and L0(Θ) are also invariant under the transformation set. Although this will usually be
the case, e.g., for the exchange of any two basis functions, it is important to state this requirement
explicitly as it is not fulfilled in general. If this property is fulfilled, however, we can infer (under
the made assumptions):

Θ† is maximum likelihood solution on L(Θ)

⇒ There exists T such that Θ† = T (Θ∗) with Θ∗ being the generating parameters.

⇒ p(�y | c = 1,Θ∗) is the actual generating distribution of {�y (n)}n∈Mopt

⇒ Θ∗ is maximum likelihood solution of L1(Θ)

⇒ p(�y | c = 1,Θ∗) = p(�y | c = 1, T (Θ∗)) = p(�y | c = 1,Θ†)

⇒ Θ† is maximum likelihood solution of L1(Θ) (24)

Analogously, Θ† is also a maximum likelihood solution of L0(Θ) if it is a maximum likelihood
solution of L(Θ). For the free-energy (21) this means that at a global maximum of L(Θ) both
L1(Θ) and L0(Θ) also have a global maximum (under the made assumptions). A global maximum,
e.g., in L1(Θ) is thus a necessary condition for a global maximum in L(Θ). We have not shown that
a maximum in L1(Θ) is a sufficient condition for a maximum in L(Θ). Theoretically, L1(Θ)might,
for instance, not depend on all parameters, or it might have additional global maxima. Finally,
note again that the necessary condition only holds under the introduced assumptions. While, e.g.,
the assumption on invariance under transformations T can exactly be fulfilled (depending on the
generative model), the assumptions that the true data distribution can exactly be matched or that
the variational approximation in Sec. A.1 is exact are in practice almost never fulfilled. The same
applies for the assumption of infinitely many data points. All these assumptions can, however, be
fulfilled approximately. By (globally) maximizing L1(Θ) we can thus expect to recover parameters
that maximize L(Θ) approximately.

Note that, intuitively, it makes sense that the maximization of the likelihood L1(Θ) also approxi-
mately maximizes L(Θ). To see this consider the example of Fig. A.2 of a generative model with
bar-like basis functions (or generative fields). If sufficiently many data points are available, likeli-
hood maximization under the truncated generative model on {�y (n)}n∈M will recover basis functions
that are also approximately the basis functions of the original model. Thus, also the likelihood of the
original model based on the entire data set {�y (n)}n=1,...,N will be maximized approximately. Note
that this example also demonstrates that a given input vector only has to be evaluated by a more
limited number of possible states. The truncated model in Fig. A.2 only requires the evaluation of
56 instead of 210 = 1024 potential interpretations.
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p̃(�s | c = 1, π) =

�
1
κ̃
p(�s |π) if �s ∈ K
0 if �s �∈ K

p(�y |�s, W ) = N (�y; W�s, σ21)

p(�s |π) =
�

h Bernoulli(sh; π)

Truncated data

{�y (n)}n=1,...,N {�y (n)}n∈M

generates

Figure A.2: Illustration of Expectation Truncation (without preselection) for a concrete generative
model. The model generates data by linearly superimposing basis functions in the form of hori-
zontal and vertical bars. Data generated by the original model contains up to ten bars chosen with
a Bernoulli prior (example data points are shown on the left-hand-side). Data generated by the
truncated generative model contains data with up to two bars (we set K = {�s |

�
j sj ≤ γ} with

γ = 2). If we train the truncated generative model on data from which data points with
�

j sj > 2
were removed (see truncated data), we can expect to approximately recover the true generating basis
functions of the original model.

A.3 Preselection as Variational Approximation

To maximize L(Θ) we use the necessary condition (24) and maximize L1(Θ) instead. However, we
do not maximize L1(Θ) directly but optimize the lower bound F1(q,Θ) given by:

F1(q,Θ)=

Q1(q,Θ)
� �� �
�

n∈M

�

�s∈K

q(n)(�s ; Θ�) log
�
p(�y (n) |�s,Θ)

1

κ̃
p(�s |Θ)

�
+H(q) , (25)

with
�

�s∈K q(n)(�s ; Θ�) = 1. F1(q,Θ) is derived by a variational approximation, this time w.r.t. the
hidden variables �s. The free-energy equals the likelihood L1(Θ) after each E-step if the distributions
q(n)(�s ; Θ�) are given by:

q(n)(�s ; Θ�) = p(�s | �y (n), c = 1,Θ�) =
p(�s | �y (n),Θ�)

�
�s �∈K p(�s � | �y (n),Θ�)

δ(�s ∈ K). (26)

M-step rules can be derived by setting the derivatives of F1(q,Θ) w.r.t. all parameters to zero. As
the entropy term in (25) is independent of Θ if q is held fixed, we obtain

d

dΘ
F1(q,Θ) =

d

dΘ
Q1(q,Θ) = 0 (27)

as necessary condition. The derivative d
dΘ hereby stands for derivatives w.r.t. all the individual

parameters.

Based on condition (27) we can now introduce candidate preselection as a variational approximation.
As briefly described in Sec. 2, preselection amounts to selecting, for a given �y (n), a subsetKn of the
state space. For MCA we use K = {�s |

�
j sj ≤ γ} and Kn given by Eqn. 7 (note that Kn ⊆ K).

For MCA the setKn is constructed using the selection function (8). More generally, we require from
the sets Kn that for all data points generated by �s ∈ K, they finally contain most of the posterior
mass in K. If this applies, we obtain an approximation to the posterior q(n) in (26) given by:

q̃(n)(�s ; Θ�) =
p(�s | �y (n),Θ�)

�
�s∈Kn

p(�s | �y (n),Θ�)
δ(�s ∈ Kn) =

p(�s, �y (n) |Θ�)
�

�s∈Kn
p(�s, �y (n) |Θ�)

δ(�s ∈ Kn) (28)

Note that q̃(n)(�s ; Θ�) sums to one in K as Kn ⊆ K and thus fulfils the condition on q(n) re-
quired for (25). If preselection finds, at least finally, appropriate sets Kn, we obtain with (28):
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d
dΘQ1(q̃,Θ) ≈ d

dΘQ1(q1,Θ) ≈ 0. Parameter update rules derived from condition d
dΘQ1(q̃,Θ) = 0

can therefore be expected to (at least approximately) optimize the free-energy (21) and thus L1(Θ).
The update rules derived will contain expectation values (the sufficient statistics) of the form
�g(�s)�q̃(n) . If we use (28) for these expectations we obtain:

�g(�s)�q̃(n) =
�

�s

q̃(n)(�s ; Θ�) g(�s) =

�

�s∈Kn

p(�s, �y (n) |Θ�) g(�s)

�

∼

�s ∈Kn

p(
∼

�s , �y (n) |Θ�)
, (29)

i.e., precisely expression (6). The approximation is thus equivalent to a variational approximation.
Importantly, this approximation is tractable if Kn is small. The computational gain of preselection
compared to an approximation without preselection is reflected by the reduced size ofKn compared
to K. This large reduction of hidden states that have to be evaluated is the crucial property that can
be exploited for large-scale applications.

The remaining intractability of the approximation scheme is the intractability in computing the best
data point set M for the free-energy (21). As stated earlier, the best choice for M would be to
chooseM equal toMopt in Eqn. 22. Without ground-truth information,Mopt can not be computed
exactly. We can, however, try to approximate Mopt. To do so, first note that we can compute an
expectation value for the size of Mopt. It is given by N(K) = N

�
�s∈K p(�s |Θ). We can now find

an approximation to Mopt by computing the values q(n)(c = 1 ; Θ�) for all data points, sort them,
and take the data points with the N(K) highest values. This would represent a good approximation
to Mopt but it seems that we have gained very little, since we still have to compute the intractable
posteriors q(n)(c = 1 ; Θ�) for all n. Note, however, that with this procedure, the absolute values
of q(n)(c = 1 ; Θ�) are not used for the approximation anymore. All that is required is a pairwise
comparison of the data points based on the their values q(n)(c = 1 ; Θ�).

To derive a tractable approximation of the pairwise comparison, consider two data points that are
neighbors after a sorting according to q(n)(c = 1 ; Θ�). For arbitrarily many data points and for
non-zero noise, the differences between the two data points become arbitrarily small. In particular, it
applies for neighboring data points that the difference between the denominators of q(n)(c = 1 ; Θ�)

become arbitrarily small:
�

�s p(�y
(n), �s |Θ) ≈

�
�s p(�y

(n�), �s |Θ). The same applies for differences
between the numerators. However, as the numerators contain just small sums over �s, their values
for neighboring data points can be expected to vary more strongly than those of the denominators.
We can thus replace the comparison between q(n)(c = 1 ; Θ�) by a comparison of their numerators�

�s∈K p(�y (n), �s |Θ). This is an approximation to the pairwise comparison required for exact sorting.
In the limit of infinitely many data points this procedure can be expected to result in sets M that
represent good approximations toMopt.

If we now take preselection into account, the comparison for sorting can be reduced further. For

this note that the posterior in (20) is approximated by q(n)(c = 1 ; Θ�) ≈
�

�s∈Kn
p(�y (n),�s |Θ)

�
�s
p(�y (n),�s |Θ)

.

Following the same arguments as above, an approximation of the sorting by comparing the values
q(n)(c = 1 ; Θ�) is given by sorting based on the values

�
�s∈Kn

p(�y (n), �s |Θ) for all n. This shows

that the selection of N cut data points (compare Eqn. 12) corresponds to defining the set M as an
approximation to Mopt. Choosing M is, on the other hand, equivalent to choosing a q(n)(c ; Θ�)
with binary function values (as an approximation to Eqn. 20). The selection of N cut data points is
thus equivalent to a variational E-step. Combined with preselection, this E-step is tractable if Kn is
sufficiently small.

A.4 Summary and Application to the MCA Model

Independent of a specific form of the generative model, we have seen that approximation (6) can
be derived as a variational EM approach. This approach consists of two variational approxima-
tion steps: First, an approximation that assigns the data points to two classes (Sec. A.1). Second, a
variational step that approximates the true posterior (26) by an approximate posterior (28) defined
through preselection (Sec. A.3). Although the derivation of the approximation as a variational ap-
proach requires in parts rather technical steps, the final result is intuitive (Fig. A.2) and can be stated
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Tab. A.1: Expectation Truncation

Preselection: select a state space volume Kn for each data point �y (n)

Data classification: find a data setM that approximates Mopt in Eqn. 22

E-step: compute q̃(n)(�s ; Θ�) =
p(�s, �y (n) |Θ�)

�
�s∈Kn

p(�s, �y (n) |Θ�)
for all �y (n) and �s ∈ Kn

M-step: find parameters Θ such that
d

dΘ

�

n∈M

�

�s∈Kn

q̃(n)(�s ; Θ�) log
�
p(�y (n) |�s,Θ)

p(�s |Θ)
�

�s �∈K p(�s � |Θ)

�
= 0

very compactly. Tab. A.1 summarizes all required steps of the approximation scheme. Note that
also with preselection, the approximation still requires a summation overK, namely

�
�s∈K p(�s |Θ).

This sum has to be computed to determineN cut,N cut = N
�

�s∈K p(�s |Θ), and it appears in the M-
step equation (Tab. A.1). Because of symmetries in the usual priors for generative models (e.g., for
the prior used in MCA), this sum can, however, be computed without summing over all �s explicitly
(compare Eqn. 12).

The update equations for MCA are derived based on Tab. A.1 using K = {�s |
�

j sj ≤ γ} and
Kn as given in (7). The derivation for W follows the same lines as the derivation in [19]. Note,
however, that the sum over all data points is replaced by a restricted sum overM. Furthermore, our
derivation includes a general γ and the same truncation of numerator and denominator in (6). Also
the derivation of the update rule for σ is relatively straight-forward because the prior distribution is
independent of σ (as well as ofW ). The formula for the M-step in Tab. A.1 thus reduces to the usual
form (except for the summation overM). To derive the update rule for π, the prior and its marginal
over K have to be taken into account. Using

d

dπ
log(A(π)) =

B(π)

π (1− π)A(π)
−

H

1− π
, (30)

with A(π) =
�

�s∈K p(�s |Θ) and B(π) as in Eqn. 14. We obtain by taking the derivative w.r.t. π in

the M-step of Tab. A.1:

π =
A(π)π

B(π)

1

|M|

�

n∈M

�|�s|�qn with |�s| =

H�

h=1

sh . (31)

Applying this equation in the fix-point sense (compare Eqn. 13), results in a convergence to values
π that represent solutions of Eqn. 31. Note that (31) reduces to the exact update rule if K and Kn

are chosen to contain all data points.
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B Upper Bound Property of the Selection Function

Note first that the natural starting point to estimate candidate hidden variables for a data point �y (n)

is the evaluation of probabilities p(sh = 1 | �y (n),Θ) = p(sh=1,�y (n) |Θ)
p(�y (n) |Θ)

. Here we will show that

Sh(�y
(n))

p(�y (n) |Θ)
(with Sh(�y

(n)) given in Eqn. 8) is an upper bound of p(sh = 1 | �y (n),Θ). This implies

that p(sh = 1 | �y (n),Θ) is small if the upper bound is small. As p(�y (n) |Θ) is independent of h,
selecting candidates based on this upper bound is equivalent to selecting candidates based on the
function Sh(�y

(n)).

We show that p(sh = 1, �y (n) |Θ) is bounded by Sh(�y
(n)) from above. Let us first define

W d(�s,W ) = maxh{shWdh}. Now, consider the set δh := {d ∈ {1, . . . , D} | y
(n)
d < Wdh}

and note that if y
(n)
d < Wdh and sh = 1 then p(y

(n)
d |Wdh) < p(y

(n)
d |W d(�s,W )). This is be-

cause W d(�s,W ) can only be larger than Wdh and therefore the mono-modal Gaussian distribution

p(y
(n)
d |W d(�s,W )) is further away from the maximum value. p(y

(n)
d |w) with w = y

(n)
d is on the

other hand larger or equal to p(y
(n)
d |w�) for any other value w�. It follows:

p(sh = 1, �y (n) |Θ) =
�

�s
sh = 1

p(�y (n) |�s,Θ) p(�s |π)

=
�

�s
sh = 1

� D�

d=1

p(y
(n)
d |W d(�s,W ), σ)

�
p(�s |π)

=
�

�s
sh = 1

� �

d∈δh

p(y
(n)
d |W d(�s,W ), σ)

�� �

d�∈δh

p(y
(n)
d |W d(�s,W ), σ)

�
p(�s |π)

≤
� �

d∈δh

p(y
(n)
d |Wdh, σ)

�� �

d�∈δh

p(y
(n)
d | y

(n)
d , σ)

� �

�s
sh = 1

p(�s |π)

=
� �

d∈δh

p(y
(n)
d |W eff

dh , σ)
�� �

d�∈δh

p(y
(n)
d |W eff

dh , σ)
�
π

= π p(�y (n) | �W eff
h , σ) =: Sh(�y

(n)) ,

whereW eff
dh = max{y

(n)
d ,Wdh} as in Eqn. 8.
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C Details of Numerical Experiments

We briefly describe some technical details and additional results about the application of the algo-
rithm to natural image patches.

C.1 DoG Preprocessing

The algorithm is applied to natural image patches that were DoG preprocessed. Before comparing
the obtained generative fields with receptive fields measured in vivo, the preprocessing has to be
taken into account. In the case of DoG preprocessing, the measured receptive fields should (as a
first order approximation) be compared to generative fields convoluted with the same DoG filter
(see [27] for details). The type of preprocessing can influence the obtained generative fields. For
the experiments in this work, the distributions of spatial frequencies of the convoluted generative
fields follow the bandwidth property of the used DoG filter. The distribution of convoluted fields in
nx/ny-space can be expected to be influenced just very weakly if the mean bandwidth frequency of
the DoG filter is changed. This is because the learned σx and σy can be expected to change in the
same way as the fitted spatial period length T (note that nx ∼ σx

T
, similar ny). Indirect effects might

be possible, however.

C.2 Additional Results on Image Patches

Fig. C.1 shows all generative fields obtained from the run displayed in Fig. 4. Note the relatively high
percentage of globular fields (compare [33]) which is not observed for standard linear approaches.
In linear approaches with continuous hidden variables, globular fields can be obtained by linearly
superimposing two orthogonal Gabor functions (compare Fig. 1). This can explain why globular
fields are not or only rarely obtained by linear approaches such as sparse coding or ICA.

Figure C.1: Complete set of H = 400 basis functions obtained after learning (same run as in
Fig. 4). For visualization purposes, the common DC component of all fields was subtracted before
the positive and negative parts were combined (the same applies to all basis function visualizations
in this work). The DC component accounts for less than 10% of the fields’ total amplitude.
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Figure C.2: nx/ny distribution if the basis functions of the run in Fig. 4 are directly matched by
Gabors (without convoluting them before).

Figure C.3: nx/ny distribution of the (convoluted) basis functions for a run with H = 200. All
other parameters were set to the same values as described in Sec. 3.
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