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1 Preliminaries

For ease of reference, we restate the key definitions andnasisuns from the main paper.

Definition 1 (Uniform Convergence)Loss function hase-uniform convergenc with probability
1-9

sup | Ep[L(0,z,y)] = Exg[L(0,x,y)]| < ¢(d,m)
6coO

where(x,y) ~ D™ ande(+, -) is an expression bounding the rate of convergence.

We write h to denote dabeling functionthat maps example¥ to labels). Also, for any labeling
functionh and unlabeled training sete X, we leth(x) € Y™ denote the vector of labels whose
ith component i$(z;).

We assume that the set of all possible examples= {Z;,...,Zx} is finite. Letpyx be anN-
length vector that represents unlabeled trainingeset a distribution o', whoseith component is
px (i) 2 Hi: Z:Ii}\_

Assumption 1 (co-Separability) For all labeled training set$x,y) and R € R(x,y) there exists
a collection of label set§Y; : & € X'} and real-valued functiod” such that

R(q) = x{supp(ai) C Yz} + F(a)

i=1
where the characteristic functiog{-} is 0 when its argument is true angb otherwise, and?(q) <
oo forall g € A™.

Assumption 2 (v-Stability). SupposeY is finite. For any labeling functioh™ and unlabeled train-
ing setsx, x’ such that||px — px’|., < 7 the following holds: For allR € R(x,h*(x)) there
existsR’ € R(x’,h*(x’)) such that

R(h(x)) < oo ifand only if R’ (h(x")) < oo
for all labeling functionsh.
Assumption 3(Reciprocity) For all labeled training set¢x,y) and R € R(x,y), if R(y’) < oo
thenR € R(x,y’).

Let A be a (possibly randomized) learning algorithm that take=t afsunlabeled training examples
x and a label regularization functioR as input, and outputs an estimated paraméteAIso, if
under distributiorD each example € X is associated with exactly one labgl(z) € Y, then we
write D = Dy - h*, where thedata distributionD y is the marginal distribution db on X'.



2 Theorems 1,2 and 3

Theorem 1. Suppose loss functiah hase-uniform convergence. (&, y) ~ D™ then with proba-
bility at leastl — § for all parametersd € © and label regularization functio® € R(x,y)

EplL(6,z,y)] < max (BgqlL(0,,y)] = R(q)) + B(Y) + (6, m).

Proof. We have
Ep[L(6,z,y)] =Ep[L(6,z,y)] — R(Y) + R(Y) < Exg[L(0,z,y)] — R(Y) + R(Y) + €(6,m)
< max (Exq[L(0,2,y)] — R(a)) + R(¥) + €(5,m)

qunL
where the first inequality follows from Definition 1. O

The proof of Theorem 2 is fairly complicated, but a similasuk can be proved quite easily if we
assume that the labeled training &ety) is fixed, rather than drawn from a distribution, and that the
learning algorithmA is deterministic. This allows us to argue completely deteistically, making

it easy to select a labeled training set that achieves thieedelswer bound. We call this simpler
result Theorem’2 and intend its proof to serve as a warm-up that conveys théion behind the
proof of Theorem 2.

Theorem 2 (Warm-up) Suppose Assumptions 1 and 3 hold for label regularizationtfan family
‘R. For all learning algorithmsA and unlabeled training sets there exist labels such that

. - 0 > N 0 _ i
Bxs[L(0.7.9)] > max (PxalL(6,7.3)] - R(@)) + min R(q)

for someR € R(x,y), where# is the parameter output hy.

Proof. Choose any labelg’ and anyR € R(%,y’), and letd be the parameter output by algorithm
A when givenx and R as input. If we let

y =arg max Fiy[L é,x,,
y gy:R(y)<oo yIL( y)]

then by Assumption 3 we havé € R(x,y). So if (x,y) is the labeled training set we can force
algorithm A to output paramete?. Thus

ExylL(@z,y)] = max (Exy (8, , y)]) — in R(q) + min R(q)

> max (BealL(0,2.)] - R(@) + min R(q)

qgeEA™ qeEA™
where the inequality follows from Assumption 1. O

Theorem 2was proved by selecting a worst-case labefnfpr the fixed training sek. Selecting
such alabeling is not so straightforward in the case whisrdrawn from a distribution, because dif-
ferent values fok may require different (and inconsistent) labelings. As@seguence, Theorem 2
requires a significantly extended analysis that leveragssidption 2; this assumption ensures that
a single worst-case labeling exists with high-probabiltyenever the number of training examples
is sufficiently large. Further, when the learning algoritdns randomized, it can avoid suffering an
arbitrarily large loss simply by guessing the label of evexgmple; the existence of this strategy is
the reason for an extra constant factor in the lower bounchieofem 2 versus the lower bound in
Theorem 2

Theorem 2. Suppose Assumptions 1, 2 and 3 hold for label regularizdtioction familyR, the

loss function is 0-1 loss, and the set of all possible examplés finite. For all learning algorithms
A and data distribution®y there exists a labeling functiol* such that if(x,y) ~ D™ (where

D =Dy - h*)andm > O(Vi2 log %) then with probability at least — 26

BolL(0,2,)) 2 mas (FealL(0,2,5)] - R(@) + min, Rla) — e(5,m)

for someR € R(%,¥), wheref is the parameter output by, and~ is the constant from Assumption
2.



Proof. Noting thatX = {&,...,Zn}, let p be anN-length vector whoséth component is the
probability assigned by data distributidn, to examplez;. A straightforward calculation using

the Chernoff bound shows thatif ~ D} andm > 0(712 log ‘f—') then|px — pll, < 7 with
probability1 — §

Sincel — § > 0, there must exist € A™ such that|px — p| ., < 7. Now choose any labelg’
andRx € R(X,y’), and let

y = ar max Fx|L(0,x,

y=arg max yIL(0,2,y)]
where we let) = A(X, Rx). By Assumption 1 and linearity; assigns identical labels to identical
examples irx. Thus we can select a labeling functibh such thath*(X) = y. This is the labeling
function asked for by the statement of the theorem, with theat that we will need to modiffy*
later in the proof.

We are now ready to define the behavior of the labeler, i.e.clivéce of R € R(%,y) for each
labeled training sefx, y) (wherey = h*(x)). Say thatx is y-closeif | px — px||,, < 7. For every
~-closex, Assumption 2 permits us to fix allx € R(x,h*(x)) such thatR«(h(x)) < oo if and
only if Rx(h(X)) < oo for all labeling functionsh. So if the training sexk is v-close, we demand
that the labeler retur®®; to the learning algorithrmal. The labeler’'s behavior when the training set
x is not-close can be arbitrary.

Let X7 C X be the set of all examples € X such thatt appears in at least oneclosex. For
any R, such thatx is y-close (where waf, defined above), consider the collection of label sets
{Yz : & € X} satisfying the guarantee in Assumption 1. Note that, by Agsion 2, asingle
collection of label sets satisfies the guaranteeafbry-closex. Let{Y. : & € X7} be one such
collection. Now consideany labeling functionh satisfyingh(z) € Y; forall 2 € X7. If x

is v-close, then by Assumption 3 we ha¥ € R(x,h(x)). We will use this fact below when
modifying h*.

We are now ready to modifi* in a way that forces the learning algorithito suffer large loss.
Let 8(A, x, R) denote the parameter returned by learning algorithion training set and label
regularization functior?, which is a random variable due to the possible randomizati@lgorithm
A. Now partition X" into two disjoint sets: X! = {7 € X7 : |V)'| = 1} and X"?T = {7 €

7 |Y7| > 1}. For eachi € X7 we modify 2*(z) as follows: IfZ € X! then set*(z) = 7,
whereY, = {g}. Otherwise, ift € X7** then set.* (&) = §, wherej satisfies

N 5 . 1
Pra s~ [ho(ax ke (&) # 7 | xis~-closd > 3 1)

wherePr x~py [-] denotes probability with respect to the randomization afréng algorithmA

and the choice ok ~ D%. Note that such a labgl must exist, becausg’| > 1. Importantly, by
the fact given above, th|s modification bf does not affect the previously defined behavior of the
labeler, because we still havg, € R(x,h*(x)) for all v-closex.

LetI C [m]. Define the random variablg; = ﬁ > icr Hhoax,r, (i) # h*(x;)}. We have
Eax~pm [Z1 | xis~-close andy; € X2 foralli € I]

=17 ZPrA xD [ho(ax ro (1) # h*(z;) | x isy-close andy; € X2 forall i € I]
el

1
> @

which follows from Eq. (1).
For any random variabl@ € [0, 1] we know thatE'[Z] < Pr[Z > a] + a for all @ > 0. Combining

this inequality fora = 1 with the bound in Eq. (2) yields the following: ¥is v-close and:; € XQJr
foralli € I then

3

e

] Zl{he(AxR y(@) # h*(z)} >

i€l
with probability at least;.



Recall that the training sétis drawn fromD’ and tha) = 6(A, %, Ry ). Assume thak is v-close;
this occurs with probabilitg — 4. Let = {i € [m] : Z; € X2} be the indices of examples i
that are inX>*. We have

m

FeglL0,2,9)] = > 1{hy(80) # h° (32}
i=1

_ L

 m |

S Uhg(e) £ WG+ - S Uhgli) # B ()}

iel i€[m]\I

1T > Uhp(@i) #h (@)} @

ie[m]\1
Y Lhg(di) # 1" ()} (5)
i ie[m]\I

=—= max [L(B, &, y)] + % Z max [L(0, 2;,y)] (6)

max (E;{’y[L(O, T, y)}) ) @)

By Eq. (3), Eq. (4) holds with probabilityk. Eg. (5) holds because, wheh is 0-1 loss,
max,cy[L(0,z,y)] = 1 whenever]Y| > 1. Eqg. (6) holds because, for all € X!, we set
h*(z) = gy, whereY, = {y}. Eq. (7) follows from Assumption 1.

Continuing, we have

Ep[L(8,2,y)] > Pxy[L(0,,y)] - €(5,m) ®)
1 o . .
> 3 max  (Bxy[L0.2.9)]) — min Re(a) + min Rx(a) —c(6,m) ()
1 - .
= 7 Dax, (Ef«,q[L(H, z,y)] - Rﬁ(‘l)) + min Re(q) —e(d,m) (10)

where Eg. (8) holds with probability — § by Defintion 1, Eq. (9) follows from Eqg. (7) and Eqg. (10)
follows from Assumption 1.

Taking the union bound over all events that were conditiameth the preceding argument, we find
that Eq. (10) holds with probabilit§ — 24, and this proves the theorem. O

Theorem 3. Suppose the loss functidnis 0-1 loss. There exists a label regularization function
family R that satisfies Assumptions 1 and 2, but not Assumption 3, &atring algorithmA such
that for all distributionsD if (x,y) ~ D™ then with probability at least — §

Ep(L(B.,y)] < max (E;(,q[L(H, 2,y)] R(q)) + min R(q) +e(am) ~ 1

for someR € R(x,y), whered is the parameter output hy.

Proof. Consider a one-to-one correspondefice)™ — )™ such that ify’ = f(y) theny’(i) #
y(¢) for all i € [m]. In other words f maps each labeling to a labelingy’ that assigns a different
label to every example. Clearly, as long|&%$ > 1 such anf can always be chosen.

Now suppose eacR(x,y) contains a single label regularization functirsuch thatk(q) = 0 if
q = f(y) andR(q) = oo otherwise. Note that this violates Assumption 3.

Now consider a learning algorithM that does the following: Givelix, R), algorithm A finds
the (unique) labeling/’ that minimizesR, then recovers the correct labeliggby settingy =



f~'(y"), and then find®) that minimizesE;, 4[L(8,z,y)]. Note that since the functiofi was
chosen arbitrarily, finding” will be computationally infeasible in general. Now we have

ED[L(éa z, y)] SEﬁ,y[L(éa z, y)} + 6(63 m) < Ef(,f(y) [L(éa z, y)] + 6(57 Tn) -1
— max (E,@Q[L(é, z,y)] — R(q)) + min R(q) +(d,m) ~1

qun?,

where the first inequality follows from Definition 1, the sadaoinequality follows from the choice
of f, and the last equality follows from the choice ®f O

3 Analysis of Algorithm 1

Algorithm 1 GAME: Game for Adversarially Missing Evidence
1: Given: Constants, e; > 0.
2: Find q such thaiming F'(0,q) > maxqea= ming F'(0,q) — €;
3: Find @ such thatF'(8, q) < ming F(6,q) + €2
4: Return: Parameter estimat®

Recall that the goal of Algorithm 1 is to find a parameérthat realizes the minimum

min max (Bxq[L(0,2,9)] — R(@) +a [0 (11)
qum,

Before we can analyze Algorithm 1, we need a definition.
Definition 2. A functionf : S — R is k-strongly convexf for all =,y € S and\ € [0, 1]

FO -+ (1= 0)g) < AF@) + (1= N () — 5hAM1 =Nz~ gl

So ax-strongly convex function is one that is “curved” everywderhere the amount of curvature
is given byk. It is easy to show thak' (0, q) is ana-strongly convex function o, for any fixed

q. This is because the loss functidnis convex in@, and the addition of the term ||6||*> makes
it a-strongly convex. The next lemma proves that all approx@mainimizers of a strongly convex
function must be near each other.

Lemma 1. If f is k-strongly convex and* = arg min,, f(z) and f(z) < f(z*) + e then

2
[ = 2| <4/ —e
K

Proof. Choose any € [0, 1). We have
f@®) <fQAz™ + (1= M)2)
SAF@) + (1= Nf @) — iA1= A a” — 7
<F@)+ (1= Ne = 5rA0 - ) fl* — 7]
where we used the definitions of, k-strongly convex functions, and in that order.

Some algebra yieldgz* — z|| < |/-2-€ where we were able to cance{ a— \) factor from both
sides becausk < 1. Now taking the limit of this upper bound as— 1 proves the lemma. [

We now prove that Algorithm 1 produces a good estimai@“othe minimum of the objective (11).
Theorem 4. The paramete@ output by Algorithm 1 satisfies

~ 8
10 — 07| < 5(61 +€2).



Proof. F'(6,q) is convex inf and concave iRy, and A™ is convex and compact. Therefore, by
Sion’s minimax theorem [1] we have

. o . A%
min max F(0,q) = max min F(6,q) =v (12)

where we defined* to be the common value of both sides of the equation. Also thaed™ =
arg ming maxqeam F'(6, q), by definition.

We will show that bott9 and@* are approximate minimizers of the functiéi{@, q). We have
F(0,q) > meinF(B, q) >0 —e (13)

where we used, in order: minimization ou&rthe definition of Algorithm 1 and Eq. (12). We also
have
F(0,q) < meinF(O, Q) +e <v'+e (14)

where we used, in order: Algorithm 1; maximization oveand Eq. (12). Putting these together,
we obtain ~
v —€ —ea < F(0,q) — e < mginF(&(]) < F(0%,q) <v*

where we used, in order: Eq. (13); Eq. (14); minimizationro®gmaximization overq and the
definition of0* and Eq. (12).

The last line implies that botB and@* are (¢; + e;)-approximate minimizers of'(,q). And
since F'(0, q) is a-strongly convex inf, Lemma 1 and the triangle inequality together imply the
theorem. 0
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