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1 Approximation of the M-step

Using the relation between θ and ξ given by the M-step, we propose to divide our cost function into
a term depending on α, another depending on (w, b) and a third one independent of θ. Taking the
part of our cost function that depends on α, and replacing α by its expression, we get the function
Jα:

Jα(ξ) =
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)

log
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where Am is the set of n such as ynm = 1. Similarly with (w, b), we get the function Jwb:

Jwb(ξ) = max
w∈RN×K ,b∈RK

1

N

N
∑
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ξn(w⊤xn + b) −
1

N

N
∑
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ϕ(w⊤xn + b) −
λ

2K
‖w‖2

F ,

where ϕ(u) = log(
∑K

k=1 exp(uk)) is the log-sum exp function and ξn is the n-th row of ξ. Finally
there is a third term independent of θ in F (ξ, θ):

JC(ξ) = −
1

N

N
∑

n=1

K
∑

k=1

ξnk log ξnk.

We call F (ξ) the sum of JC(ξ), Jwb(ξ) and Jα(ξ).

1.1 Expansion around symmetry

In this supplementary material, we show the second-order approximation of JC(ξ), Jwb(ξ) and
Jα(ξ) around the symmetric point where each observation has the same probability to be in each

cluster, i.e. p(zn = k|xn) = 1
K
, ξ0 = 1

K
1N1T

K .

Second-order Taylor expansion of JC(ξ). Using the little-o notation defined as a(x) = o(b(x)) if

and only if
a(x)
b(x) → 0 as x → 0, we obtain:

JC(ξ) = log(K) −
1

2
−

K

2N
tr(ξξT ) + O(‖ξ − ξ0‖

3
F ).
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Indeed (we omit the O(‖ξ − ξ0‖
3
F ) term):
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Second-order Taylor expansion of Jα(ξ). Denoting by Y ∈ R
N×M , the matrix containing the

ynm, we obtain the expression:
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since Y (Y T Y )−1Y T =
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Second-order Taylor expansion of Jwb(ξ). Solving a softmax regression problem is instable
because the constant term b can go to the infinity. A common way to avoid this problem is to add a
small regularization of b (in our case with a coefficient equals to 10−12).

We note that p(zn = k|xn) = 1
K

is equivalent to wT
k xn +bk = 0. Thus we expand the log-sum-exp,

ϕ around 0:

ϕ(x) = log(K) +
1

K
xT 1K +

1

2K
‖x‖2

F −
1

2K2
(xT 1K)2 + O(‖x‖3

F ),

and substituting in Jwb(ξ) yields:

Jwb(ξ) = − log(K) +
K

2N
tr(ξΠKξT )

−
1

2K
min
w,b

[ 1

N
‖(Kξ − Xw − b)ΠK‖3

F + λ‖w‖2
F + O(‖Xw + b‖3

F )
]

,

where ΠK = I − 1
K

1K1T
K and X = (x1, . . . , xN )⊤. Indeed:
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Jwb(ξ) = max
w∈RP×K ,b∈RK

1
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.

Due to the regularization in w and b, this cost function is Lipschitzian and the negligible terms
in (w, b) becomes negligible terms in ξ − ξ0. Therefore the minimization in respect to w and b
corresponds to a multi-label classification problem with a square-loss [?, ?, ?]. This problem can be
solve in a close form and leads to b∗ = 1

N
1N1T

N (Kξ − Xw)) and to:

Nλw + xT ΠNxwΠK = KxT ΠNξ,

and substituting in Jwb(ξ) yields:
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2
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where c(x) = tr
(
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)
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)
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Second-order Taylor expansion. Finally combining these three terms and dropping the constant in
ξ, we obtain:

F (ξ) =
K

2
tr
[

ξξT
( 1

N

(

Y (Y T Y )−1Y T −
1

N
1N1T

N

)

− A(x, λ)
)]

. (1)

General case reformulation

We consider the problem:

min 1
2 vT Qv s.t. v ∈ R

NK , v ≥ 0 and (IN ⊗ 1T
K)v = 1N . (2)

1.1.1 Problem reformulation

The set of completely positive matrices (CPN ) is defined by:

CPN = {M ∈ R
N×N |∃p ∈ N

∗, ∃U ∈ R
N×p, U ≥ 0, M = UUT }
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Denoting by T = yyT , the NK × NK matrix, we consider its block matrix decomposition into
N × N blocks of size K × K:

T =











T11 T12 . . . T1N

T21
. . .

...
...

. . .
...

TN1 . . . . . . TNN











.

A NK×NK matrix T can be written as T = yyT if and only if it verifies the following conditions:

− T ∈ CPNK , (3)

− ∀ n,m ∈ {1, . . . , N}, 1T
KTnm1K = 1, (4)

− ∀ n, i, j ∈ {1, . . . , N}, Tni1K = Tnj1K , (5)

− rank(T ) = 1. (6)

Therefore the optimization problem (2) is equivalent to minimizing 1
2 tr (TQ) over this set of con-

straints. However, these constraints do not define a convex set. In the next section we propose a
convex relaxation based on the same idea as the simple case and a lowrank reformulation.

1.1.2 Relaxation

Dropping the rank condition leads to a matrix U such as T = UUT with ∀(i, j), Uij ≥ 0 and with
at most a rank R (with R > 1). We note Ur the r-th column of U , Un

r the n-th K-vector such as
Ur = (U1

r , . . . , UN
r )T and Un = (Un

1 , . . . , Un
R).

Since Tnm =
∑R

r=1 Un
r (Um

r )T , conditions (4) and (5) can be replaced by conditions on U .

Condition (5) becomes for all m,
∑R

r=1 1T Um
r Un

r =
∑R

r=1 1T Un
r Un

r . Since, there are N such

equalities for each Un, this implies that for all m, 1T Um
r = 1T Un

r . Adding U ≥ 0, we have the
new condition:

∀(n,m) ≤ N, ‖Um
r ‖1U

n
r = ‖Un

r ‖1U
n
r .

this condition means ∀m ≤ N, ‖Um
r ‖1 = ‖Un

r ‖1, and therefore (4) can be reformulated:

∀n ≤ N,

R
∑

r=1

(‖Un
r ‖1)

2 = 1.

As in the simple case, we drop this condition by using a scale invariant cost function.
Finally, defining by C1, the set of constraints:

C1 = {Ur ∈ R
NK | Ur ≥ 0, ∀n,m, ‖Un

r ‖1 = ‖Um
r ‖1},

leads to a new formulation:

min 1
2 tr(UD−1UT Q) s.t. U ∈ R

NK×R and ∀r, Ur ∈ C1. (7)

where D = diag((IN ⊗1K)T UUT (IN ⊗1K)) and diag(A) is the diagonal matrix with the diagonal
of A.

1.2 Notes on the projection on C1

Remark on the projection. There is a linear function between the λn and a [?], whch yields that,
for a given active set, L(a) is a quadratic function of a. Since L(a) is also continuous, L(a) is
piecewise quadratic. It means that for each segment there is we can evaluate the best a in close
form. However, there are KN different segments.
Complexity. For the binary search, the bottleneck of this projection is to sort the coefficients of each
Zn at the beginning. The overall complexity is therefore O(NK log(K)).
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Figure 1: Running time as a function of N , K, and R.

2 Results

2.1 Running time

Empirically, we have verified this complexity on a toy example. Results are shown Fig. 1. We
experiment the running time of our algorithm on 50 random matrices Q obtained with a uniform
distribution over [0, 1] for increasing values of N , K, and R.

2.2 Application to classification

Figure 2 shows all the results on the five binary classification tasks on 20 Newsgroups dataset1.
Since each document has 13312 entries, we set our degree of freedom at df = 500 and deduce from
it the value of our regularization parameter λ. We use 50 random initializations for our algorithm.
We compare our method with classifiers such as the linear SVM and the supervised Latent Dirichlet
Allocation (sLDA) classifier of Blei et al. [?]. We also compare our results to those obtained by an
SVM using on the features obtained with rank reducing methods such as the LDA of Blei et al. [?]
and the PCA. For these models, we select their parameters with 5-fold cross-validation.

1http://people.csail.mit.edu/jrennie/
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Figure 2: Classification rate for several binary classification tasks (from to bottom) and for different
number of class K (or topics) (from left to right). (Same legend as in the paper).
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