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Abstract

We combine random forest (RF) and conditional random field (CRF) into a new
computational framework, called random forest random field(RF)2. Inference
of (RF)2 uses the Swendsen-Wang cut algorithm, characterized by Metropolis-
Hastings jumps. A jump from one state to another depends on the ratio of the
proposal distributions, and on the ratio of the posterior distributions of the two
states. Prior work typically resorts to a parametric estimation of these four dis-
tributions, and then computes their ratio. Our key idea is toinstead directly es-
timate these ratios using RF. RF collects in leaf nodes of each decision tree the
class histograms of training examples. We use these class histograms for a non-
parametric estimation of the distribution ratios. We derive the theoretical error
bounds of a two-class(RF)2. (RF)2 is applied to a challenging task of multiclass
object recognition and segmentation over a random field of input image regions.
In our empirical evaluation, we use only the visual information provided by image
regions (e.g., color, texture, spatial layout), whereas the competing methods addi-
tionally use higher-level cues about the horizon location and 3D layout of surfaces
in the scene. Nevertheless,(RF)2 outperforms the state of the art on benchmark
datasets, in terms of accuracy and computation time.

1 Introduction

This paper presents a new computational framework, called random forest random field(RF)2,
which provides a principled way to jointly reason about multiple, statistically dependent random
variables and their attributes. We derive theoretical performance bounds of(RF)2, and demonstrate
its utility on a challenging task of conjoint object recognition and segmentation.

Identifying subimage ownership among occurrences of distinct object classes in an image is a fun-
damental, and one of the most actively pursued problem in computer vision, machine learning, and
artificial intelligence [1–11]. The goal is to assign the label of one of multiple semantic classes to
each image pixel. Our approach builds on the following common recognition strategies: (i) Labels
of neighboring image parts are likely to be correlated – one of the main principles of perceptual
organization; and (ii) Recognized objects dictate which other objects to expect in the scene, and
their scale and spatial configuration – one of the main principles of context-driven recognition that
“binds” all object detections in a coherent scene interpretation. We formalize perceptual grouping
and context by a graphical model aimed at capturing statistical dependencies among random vari-
ables (i.e., labels or attributes) associated with different pixel neighborhoods. Thus, we derive a
unified framework for combined object recognition and segmentation, as a graph-structured predic-
tion of all random variables in a single, consistent model ofthe scene.

The graphical model we use is Conditional Random Field (CRF)[12]—one of the most popular
models for structured inference over pixels [2, 3], patches[4, 5], or image regions [6–8], for object
recognition and segmentation. CRF defines a posterior distribution of hidden random variablesY
(labels), given observed image featuresX, in a factored form:p(Y |X; θ)= 1

Z(θ)

∏

c ψc(Yc,X; θ).

1



Each potentialψc is a function over a subsetYc⊆Y , conditioned onX, and parameterized byθ.
The potentials are often defined as linear functions of parameters,ψc(Yc,X; θ)=θ

T
Ψc, whereΨc

is the output of some detectors over observablesX [2–4]. This means thatp(Y |X; θ) is modeled
as a log-linear function, which is not adequate when the detector outputs do not provide a linear
separability of the classes. Learningθ is hard, because computation of the partition functionZ(θ)
is intractable for most graphs (except for chains and trees). Inference is typically posed as the joint
MAP assignment that minimizes the energy

∑

c ψc(Yc,X; θ), which is also intractable for general
graphs. The intractability of CRF learning and inference often motivates prior work to resort to
approximatealgorithms, e.g., graph-cuts, and loopy belief propagation (LBP). The effect of these
approximations on the original semantics of CRF is poorly understood. For example, an approximate
inference stuck in a local maximum may not represent the intended consistent scene interpretation.

Motivation: Some of the aforementioned shortcomings can be addressed when CRF inference is
conducted using the Metropolis-Hastings (MH) algorithm. MH draws samplesY (t) from the CRF’s
posterior,p(Y |X), and thus generates a Markov chain in which stateY

(t+1) depends only on the
previous stateY (t). The jumps between the states are reversible, and governed by a proposal density
q(Y (t) → Y

(t+1)). The proposal is accepted if the acceptance rate,α, drawn fromU(0, 1), satisfies

α<min{1, q(Y (t+1)→Y
(t))

q(Y (t)→Y (t+1))
p(Y (t+1)|X)
p(Y (t)|X)

}. MH provides strong theoretical guarantees of convergence
to the globally optimal state. As can be seen, the entire inference process is regulated byratios of
the proposal and posterior distributions. Consequently, the bottleneck of every CRF learning and
inference — namely, computing the partition functionZ — is eliminated in MH.

Our key idea is to directly estimate the ratios of the proposal and posterior distributions, instead
of computing each individual distribution for conducting MH jumps. Previous work on MH for
CRFs usually commits to linear forms of the potential functions, and spends computational re-
sources on estimating the four distributions:q(Y (t+1)→Y

(t)), q(Y (t)→Y
(t+1)), p(Y (t+1)|X)

andp(Y (t)|X). In contrast, our goal is to directly estimate the two ratios, q(Y (t+1)→Y
(t))

q(Y (t)→Y (t+1))
and

p(Y (t+1)|X)
p(Y (t)|X)

, in a non-parametric manner, since the acceptance rate of MHjumps depends only on
these ratios. To this end, we use the random forests (RF) [13]. Given a training set of labeled ex-
amples, RF grows many decision trees. We view the trees as a way of discriminatively structuring
evidence about the class distributions in the training set.In particular, each leaf of each tree in RF
stores a histogram of the number of training examples from each class that reached that leaf. When
a new example is encountered, it is “dropped” down each of thetrees in the forest, until it reaches a
leaf in every tree. The class histograms stored in all these leaves can then be used as a robust esti-
mate of the ratio of that example’s posterior distributions. This is related to recent work on Hough
forests for object detection and localization [14], where leaves collect information on locations and
sizes of bounding boxes of objects in training images. However, they use this evidence to predict
a spatial distribution of bounding boxes in a test image, whereas we use the evidence stored in tree
leaves to predict the distributionratios. Evidence trees are also used in [15], but only as a first stage
of a stacked-classifier architecture which replaces the standard majority voting of RF.

RF is difficult to analyze [13, 16]. Regarding consistency ofRF, it is known that their rate of con-
vergence to the optimal Bayes’ rule depends only on the number of informative variables. It is also
shown that RF that cuts down to pure leaves uses a weighted, layered, nearest neighbor rule [16].
We are not aware of any theoretical analysis of RF as an estimator of ratios of posterior distributions.

Contributions: We combine RF and CRF into a new, principled and elegant computational frame-
work (RF)2. Learning is efficiently conducted by RF which collects the class histograms of training
examples in leaf nodes of each decision tree. This evidence is then used for the non-parametric
estimation of the ratios of the proposal and posterior distributions, required by MH-based inference
of (RF)2. We derive the theoretical error bounds of estimating distribution ratios by a two-class RF,
which is then used to derive the theoretical performance bounds of a two-class(RF)2.

Paper Organization: Sections 2–4 specify the CRF model, its MH-based inference,and RF-based
learning. Sections 5–6 present our experimental evaluation, and theoretical analysis of(RF)2.

2



2 CRF Model

We formulate multiclass object recognition and segmentation as the MAP inference of a CRF, de-
fined over a set of multiscale image regions. Regions are usedas image features, because they are
dimensionally matched with 2D object occurrences in the image, and thus facilitate modeling of var-
ious perceptual-organization and contextual cues (e.g., continuation, smoothness, containment, and
adjacency) that are often used in recognition [6–11]. Access to regions is provided by the state-of-
the-art, multiscale segmentation algorithm of [17], whichdetects and closes object (and object-part)
boundaries using the domain knowledge. Since the right scale at which objects occur is unknown,
we use all regions from all scales.

The extracted regions are organized in a graph,G = (V,E), with V andE are sets of nodes and
edges. The nodesi=1, . . . , N correspond to multiscale segments, and edges(i, j) ∈ E capture
their spatial relations. Each nodei is characterized by a descriptor vector,xi, whose elements
describe photometric and geometric properties of the corresponding region (e.g., color, shape, filter
responses). A pair of regions can have one of the following relationships: (1) ascendent/descendent,
(2) touching, and (3) far. Since the segmentation algorithmof [17] is strictly hierarchical, region
i is descendent of regionj, if i is fully embedded as subregion within ancestorj. Two regionsi
andj touch if they share a boundary part. Finally, ifi andj are not in the hierarchical and touch
relationships then they are declared as far. Edges connect all node pairsE = V × V , |E| = N2.
Each edge(i, j) is associated with a tag,eij , indicating the relationship type betweeni andj.

CRF is defined as the graphical model overG. LetY = {yi} denote all random variables associated
with the nodes, indicating the class label of the corresponding region,yi ∈ {0, 1, . . . ,K}, where
K denotes the total number of object classes, and label 0 is reserved for the background class. Let
pi = p(yi|xi) andpij = p(yi, yj|xi, xj , eij) denote the posterior distributions over nodes and pairs
of nodes. Then, we define CRF as

p(Y |G) =
∏

i∈V p(yi|xi)
∏

(i,j)∈E p(yi, yj |xi, xj , eij) =
∏

i∈V pi

∏

(i,j)∈E pij . (1)

Multi-coloring of CRF is defined as the joint MAP assignmentY
∗ = argmaxY p(Y |G). In the

following section, we explain how to conduct this inference.

3 CRF Inference

For CRF inference, we use the Swendsen-Wang cut algorithm (SW-cut), presented in [18]. SW-
cut iterates the Metropolis-Hastings (MH) reversible jumps through the following two steps. (1)
Graph clustering: SW-cut probabilistically samples connected components,CC ’s, where each
CC represents a subset of nodes with the same color. This is doneby probabilistically cutting
edges between all graph nodes that have the same color based on their posterior distributions
pij = p(yi, yj |xi, xj , eij). (2) Graph relabeling: SW-cut randomly selects one of theCC ’s ob-
tained in step (1), and randomly flips the color of all nodes inthatCC, and cuts their edges with the
rest of the graph nodes having that same color. In each iteration, SW-cut probabilistically decides
whether to accept the new coloring of the selectedCC, or to keep the previous state. Unlike other
MCMC methods that consider one node at a time (e.g., Gibbs sampler), SW-cut operates on a num-
ber of nodes at once. Consequently, SW-cut converges fasterand enables inference on relatively
large graphs. Below, we review steps (1) and (2) of SW-cut, for completeness.

In step (1), edges ofG are probabilistically sampled. This re-connects all nodesinto new connected
componentsCC. If two nodesi andj have different labels, they cannot be in the sameCC, so
their edge remains intact. Ifi andj have the same label, their edge is probabilistically sampled
according to posterior distributionpij . If in the latter case edge(i, j) is not sampled, we say that
it has been probabilistically “cut”. Step (1) results in a stateA. In step (2), we choose at random
a connected componentCC from step (1), and randomly reassign a new color to all nodes in that
CC. To separate the re-coloredCC from the rest of the graph, we cut existing edges that connect
CC to the rest of the graph nodes with that same color. Step (2) results in a new stateB. SW-cut
accepts stateB if the acceptance rate is sufficiently large via a random thresholding. Letq(A→ B)
be the proposal probability for moving from stateA toB, and letq(B → A) denote the converse.
The acceptance rate,α(A→B), of the move fromA toB is defined as

α(A→ B) = min

(

1,
q(B → A)p(Y = B|G)

q(A → B)p(Y = A|G)

)

. (2)
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The computation complexity of each move is relatively low. The ratioq(B→A)
q(A→B) in (2) involves only

those edges that are “cut” aroundCC in statesA andB – not all edges. Also, the ratiop(Y =B|G)
p(Y =A|G)

accounts only for the recolored nodes inCC – not the entire graphG, since all other probabilities
have not changed from stateA to stateB. Thus, from Eq. (1), the ratios of the proposal and posterior
distributions characterizing statesA andB can be specified as

q(B→A)

q(A→B)
=

∏

(i,j)∈CutB
(1−pB

ij)
∏

(i,j)∈CutA
(1−pA

ij)
, and

p(Y = B|G)

p(Y = A|G)
=

∏

i∈CC

pB
i

pA
i

·
∏

j∈N (i)

pB
ij

pA
ij

. (3)

where CutA and CutB denote the sets of “cut” edges in statesA andB, andN (i) is the set of
neighbors of nodei, N (i) = {j : j ∈ V, (i, j) ∈ E}.

As shown in [18], SW-cut is relatively insensitive to different initializations. In our experiments, we
initialize all nodes in the CRF with label 0. Next, we show howto compute the ratios in Eq. (3).

4 Learning

RF can be used for estimating the ratios of the proposal and posterior distributions, given by Eq. (3),
since RF provides near Bayesian optimal decisions, as theoretically shown by Breiman [13]. In the
following, we describe how to build RF, and use it for computing the ratios in Eq. (3).

Our training data represent a set ofM labeled regions. If regioni falls within the bounding box of
an object in classy ∈ {1, 2, . . . ,K}, it receives labely. If i covers a number of bounding boxes
of different classes theni is added to the training set multiple times to account for alldistinct class
labels it covers. Each regioni is characterized by a d-dimensional descriptor vector,xi ∈ R

d,
which encodes the photometric and geometric properties ofi. The training dataset{(xi, yi) : i =
1, . . . ,M} is used to learn an ensemble ofT decision trees representing RF.

In particular, each training sample is passed through everydecision tree from the ensemble until it
reaches a leaf node. Each leafl records a class histogram,Φl = {φl(y) : y = 1, . . . ,K}, where
φl(y) counts the number of training examples belonging to classy that reachedl. The total number
of training examples inl is then‖Φl‖. Also, for each pair of leaves(l, l′), we record a two-class
histogram,Ψll′ = {ψll′(y, y

′, e) : y, y′ = 1, . . . ,K; e = 1, 2, 3}, whereψll′(y, y
′, e) counts the

number of pairs of training examples belonging to classesy andy′ that reached leavesl andl′, and
also have the relationship typee – namely, ascendent/descendent, touching, or far relationship.

GivenΦl andΨll′ , we in a position to estimate the ratios of the proposal and posterior distributions,
defined in (3), which control the Metropolis-Hastings jumpsin the SW-cut. Suppose two regions,
represented by their descriptorsxi andxj , are labeled asyA

i andyA
j in state A, andyB

i andyB
j in

stateB of one iteration of the SW-cut. Also, after passingxi andxj throughT decision trees of the
learned RF, suppose they reached leaveslti andltj in each treet = 1, . . . , T . Then, we compute

pB
i

pA
i

=

∑T

t=1 φlti
(yB

i )
∑T

t=1 φlti
(yA

i )
,

pB
ij

pA
ij

=

∑T
t=1 ψltiltj

(yB
i , y

B
j , eij)

∑T

t=1 ψltiltj
(yA

i , y
A
j , eij)

, for estimating
p(Y = B|G)

p(Y = A|G)
. (4)

To estimate the ratio of the proposal distributions,q(B→A)
q(A→B) , it is necessary to compute each individ-

ual probabilitypij , since the nominator and denominator ofq(B→A)
q(A→B) do not contain the same set of

“cut” edges, CutA 6= CutB, as specified in (3). Thus, we compute

pij =

∑T
t=1 ψltiltj

(yi, yj , eij)
∑T

t=1 ‖Φlti
‖‖Φltj

‖
for estimating

q(B→A)

q(A→B)
. (5)

In the following, we first present our empirical evaluation of (RF)2, and then derive the theoretical
performance bounds of a simple, two-class(RF)2.

5 Results

(RF)2 is evaluated on the task of object recognition and segmentation on two benchmark datasets.
First, the MSRC dataset consists of 591 images showing objects from 21 categories [3]. We use the
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standard split of MSRC into training and test images [3]. Second, the Street-Scene dataset consists
of 3547 images of urban environments, and has manually annotated regions [6, 19]. As in [6], one
fifth of the Street-Scene images are used for testing, and therest, for training. Both datasets provide
labels of bounding boxes around object occurrences as ground truth.

Images are segmented using the multiscale segmentation algorithm of [17], which uses the per-
ceptual significance of a region boundary,Pb ∈ [0, 100], as an input parameter. We varyPb =
30:10:150, and thus obtain a hierarchy of regions for each image. A region is characterized by a
descriptor vector consisting of the following properties:(i) 30-bin color histogram in the CIELAB
space; (ii) 250-dimensional histogram of filter responses of the MR8 filter bank, and the Laplacian of
Gaussian filters computed at each pixel, and mapped to 250 codewords whose dictionary is obtained
by K-means over all training images; (iii) 128-dimensionalregion boundary descriptor measuring
oriented contour energy along 8 orientations of each cell ofa 4 × 4 grid overlaid over the region’s
bounding box; (iv) coordinates of the region’s centroid normalized to the image size. Regions ex-
tracted from training images are used for learning RF. A region that falls within a bounding box is
assigned the label of that box. If a region covers a number of bounding boxes of different classes,
it is added to the training set multiple times to account for each distinct label. We use the standard
random splits of training data to train 100 decision trees ofRF, constructed in the top-down way.
The growth of each tree is constrained so its depth is less than 30, and its every leaf node contains at
least 20 training examples. To recognize and segment objects in a new test image, we first extract a
hierarchy of regions from the image by the segmentation algorithm of [17]. Then, we build the fully
connected CRF graph from the extracted regions (Sec. 2), andrun the SW-cut inference (Sec. 4).

We examine the following three variants of(RF)2: (RF)2-1 — The spatial relationships of regions,
eij , are not accounted for when computingpij in Eq. (4) and Eq. (5);(RF)2-2 — The region rela-
tionships touching and far are considered, while the ascendent/descendent relationship is not cap-
tured; and(RF)2-3 — All three types of region layout and structural relationships are modeled. In
this paper, we consider(RF)2-3 as our default variant, and explicitly state when the other two are
used instead. Note that considering region layouts and structure changes only the class histograms
recorded by leaf nodes of the learned decision trees, but it does not increase complexity.

For quantitative evaluation, we compute the pixel-wise classification accuracy averaged across all
test images, and object classes. This metric is suitable, because it does not favor object classes that
occur in images more frequently. Tab. 1 and Tab. 2 show our pixel-wise classification accuracy
on MSRC and Street-Scene images. Table. 2 also compares the three variants of(RF)2 on MSRC
and Street-Scene images. The additional consideration of the region relationships touching and far
increases performance relative to that of(RF)2-1, as expected. Our performance is the best when all
three types of region relationships are modeled. The tablesalso present the pixel-wise classification
accuracy of the state of the art CRF models [3,6,20,21]. Notethat the methods of [6,21] additionally
use higher-level cues about the horizon location and 3D scene layout in their object recognition and
segmentation. As can be seen,(RF)2 outperforms the latest CRF models on both datasets.

Our segmentation results on example MSRC and Street-Scene images are shown in Fig. 5. Labels
of the finest-scale regions are depicted using distinct colors, since pixels get labels of the finest-scale
regions. As can be seen,(RF)2 correctly identifies groups of regions that belong to the same class.

Since the depth of each decision tree in RF is less than 30, thecomplexity of dropping an instance
through one tree isO(1), and through RF withT trees isO(T ). Our C-implementation of the RF-
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[10] 88 91 34 49 54 93 30 82 56 74 68 54 77 90 71 31 64 82 84 69 58
[22] 82 72 24 18 66 93 49 74 75 51 97 35 87 74 88 78 97 36 78 79 54
[23] 83 79 30 27 67 80 69 70 68 45 78 52 84 47 96 78 80 61 95 87 67
[20] 100 98 11 63 55 78 73 88 11 80 74 43 72 72 96 76 90 92 50 76 61
[3] 60 75 19 7 62 92 62 63 54 15 58 19 74 63 97 86 50 35 83 86 53

Ours 100 99 42 69 68 95 74 88 77 80 99 61 91 93 99 78 99 93 96 90 68

Table 1: The average pixel-wise classification accuracy on the MSRC dataset.(RF)2 yields the best
performance for all object classes except one.
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Figure 1: Our object recognition and segmentation results on example images from the MSRC
dataset (top two rows), and the Street-Scene dataset (bottom two rows). The figure depicts bound-
aries of the finest-scale regions found by the multiscale algorithm of [17], and the color-coded labels
of these regions inferred by(RF)2. The results are good despite the presence of partial occlusion,
and changes in illumination and scale. (best viewed in color)

Method MSRC StreetScene Test time

(RF)2-1 69.5%±13.7% 78.2%±0.5% 45s
(RF)2-2 80.2%±14.4% 86.7%±0.5% 31s
(RF)2-3 82.9%±15.8% 89.8%±0.6% 31s

[20] 70.0% N/A N/A
[21] 76.4% 83.0% N/A
[6] N/A 84.2% N/A
[3] 70.0% N/A 10-30s

Table 2: The average pixel-wise classification accuracy and
average computation times on the MSRC and Street-Scene
datasets of the three variants of our approach with those of
the state-of-the-art CRF-based methods.
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Figure 2: The probability of classi-
fication error of(RF)2,P (ǫ), given
by Eq. (6) and Theorem 1 as a
function of the margin,γ, of RF.

guided SW-cut inference of CRF takes 10s–30s on a 2.40GHz PC with 3.48GB RAM for MSRC
and Street-Scene images. Table 2 shows that our average running times are comparable to those of
the other CRF methods that use approximate inference [3,6,20,21].

6 Theoretical Analysis

We are interested in a theoretical explanation of the good performance of(RF)2 presented in the
previous section. In particular, we derive the theoreticalperformance bounds of a two-class(RF)2,
for simplicity. As explained in Sec. 3, we use the SW-cut for(RF)2 inference. The SW-cut iterates
the Metropolis-Hastings (MH) reversible jumps, and thus explores the state-space of solutions. An
MH jump between statesA andB is controlled by the acceptance rateα(A→B) which depends on
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the ratios of the proposal and posterior distributions,q(B→A)p(Y =B|G)
q(A→B)p(Y =A|G) . Below, we show that the

error made by the two-class RF in estimating these ratios is bounded. Our derivation of the error
bounds of RF is based on the theoretical analysis of evidencetrees, presented in [15].

6.1 An Upper Error Bound of (RF)2

An error occurs along MH jumps when abalancedreversible jump is encountered, i.e., when there
is no preference between jumping from stateA to stateB and reverse,q(B→A)

q(A→B)=1, and RFwrongly

predicts that the posterior distribution of stateB is larger than that ofA, p(Y =B|G)
p(Y =A|G)≥1. In this

case,α(A→B)=1, and the SW-cut will erroneously visit stateB. We are interested in finding the
probability of this error, specified as

P (ǫ) = P

(

p(Y = B|G)

p(Y = A|G)
≥ 1

)

= P





∏

i∈CC

pB
i

pA
i

·
∏

j∈N (i)

pB
ij

pA
ij

≥ 1



 . (6)

From Eq. (6),P (ǫ) can be computed using the probability density function of a product of ran-
dom variablesZi = pB

i /p
A
i ∈ [0,∞), andWij = pB

ij/p
A
ij ∈ [0,∞), within a specific con-

nected componentCC, where|CC|=n, i = 1, . . . , n, andj ∈ N (i). As we will prove in the
sequel, all random variablesZi have the same exponential distributionfZi

(z)=λ1 exp(−λ1z).
Also, we will prove that all random variablesWij have the same exponential distribution
fWij

(w)=λ2 exp(−λ2w). Then, it follows that the productZ=
∏n

i=1 Zi=(Zi)
n has the distribution

fZ(z)=λ1

n
z

1−n
n exp(−λ1z

1
n ). Also, the productW=

∏n
i=1

∏

j∈N (i)Wij=(Wij)
nk≈(Wij)

n has

the distributionfW (w)=λ2

n
w

1−n
n exp(−λ2w

1
n ), where we approximate that the number of edges

within CC is the same as the number of nodes inCC, as a result of the probabilistic “cutting” of
graph edges by the SW-cut algorithm. GivenfZ(z) andfW (w), from Eq. (6), we analytically de-
rive the probability that(RF)2 makes a wrong prediction,P (ǫ) = P (Z ·W ≥ 1), as stated in the
following theorem.

Theorem 1.The probability that(RF)2 makes a wrong prediction isP (ǫ)=P (Z ·W ≥ 1)=λK1(λ),
whereZ∈[0,∞) andW∈[0,∞) are random variables characterized by the probability density func-
tions fZ(z)=λ1

n
z

1−n
n exp(−λ1z

1
n ) and fW (w)=λ2

n
w

1−n
n exp(−λ2w

1
n ), with parametersλ1 and

λ2, and whereK1 is the modified Bessel function of the second kind, andλ = 2
√
λ1λ2.

Proof. DefineH = Z · W . Then,fH(h)=
∫ ∞

0
1
z
fZ(z)fW (h

z
)dz = λ2

2n
h

1−n
n K0(λh

1
2n ), where

K0 is the modified Bessel function of the second kind. It followsthat P (ǫ) = P (H≥1) =

1−
∫ 1

0 fH(h)dh = λK1(λ).�

As we will show in the following section, the parameterλ is directly proportional to a measure
of accuracy of RF predictions, referred to as probabilisticmargin. SinceK1(λ) is a decreasing
function, it follows that the probability that(RF)2 makes a wrong prediction is upper bounded, and
decreases as the probabilistic margin of RF increases.

6.2 A Mathematical Model of RF Performance

In this section, we derive that the RF estimates of the ratiosof posteriorsZi andWij have the
exponential distribution. We consider a binary classification problem, for simplicity, where training
and test instances may have positive and negative labels. Weassume that the two classes are balanced
P (y=+1) = P (y=−1) = 1/2. We defineπ to be a fraction of pairs of instances that have certain
relationship, corresponding to a particular spatial or structural relationship between pairs of regions,
defined in Sec. 2. The learning algorithm that creates RF is not modeled. Instead, we assume that
the learned decision trees have the following properties. Each leaf node of a decision tree: (i) stores
a total ofC training instances that reach the leaf; and (ii) has a probabilistic marginγ ∈ [0, 1/2).
By margin, we mean that in every leaf reached byC training instances a fraction of1/2 + γ of the
training instances will belong to one class (e.g., positive), and fraction1/2 − γ of them will belong
to the other class (e.g., negative). We say that a leaf is positive if a majority of the training instances
collected by the leaf is positive, or otherwise, we say that the leaf is negative. It is straightforward
to show that when a positive instance is dropped through one of the decision trees in RF, it will
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reach a positive leaf with probability1/2 + γ, and a negative leaf with probability1/2 − γ [15].
Similarly holds for negative instances. A new test instanceis classified by dropping it throughT
decision trees, and taking a majority vote of the labels of all C · T training instances stored in the
leaves reached by the test instance. We refer to this classification procedure as evidence voting [15],
as opposed to decision voting over the leaf labels in the standard RF [13]. The following proposition
states that the probability that evidence voting misclassifies an instance,P (ǫ1), is upper bounded.

Proposition 1. The probability that RF withT trees, where every leaf storesC training instances,
incorrectly classifies an instance is upper bounded,P (ǫ1)≤ exp(−8CTγ4).

Proof. Evidence voting for labeling an instance can be formalized as drawing a total ofC·T inde-
pendent Bernoulli random variables, with the success ratep1, whose outcomes are{−1,+1}, where
+1 is received for correct, and−1 for incorrect labeling of the instance. LetS1 denote a sum of
these Bernoulli random variables. Thus, a positive instance is incorrectly labeled ifS1≤0, and a neg-
ative instance is misclassified ifS1>0. Since the two classes are balanced, by applying the standard
Chernoff bound, we obtainP (ǫ1)=P (S1≤0)≤ exp

[

−2CT (p1−1/2)2
]

. The success ratep1 can be
derived as follows. When a positive (negative) instance is dropped through a decision tree, it will fall
in a positive (negative) leaf with probability1/2 + γ, where it will be labeled as positive (negative)
with probability1/2+γ; else, the positive (negative) instance will be routed to a negative (positive)
leaf with probability1/2−γ, where it will be labeled as positive (negative) with probability 1/2−γ.
Consequently, the probability that an instance is correctly labeled, i.e., the success rate of the asso-
ciated Bernoulli random variable, isp1=(1/2+γ)(1/2+γ)+(1/2−γ)(1/2−γ)=1/2 + 2γ2.�

Evidence voting is also used for labeling pairs of instances. The probability that evidence voting
misclassifies a pair of test instances,P (ǫ2), is upper bounded, as stated in Proposition 2.

Proposition 2. Given RF as in Proposition 1, the probability that RF incorrectly labels a pair of
instances having a certain relationship is upper bounded,P (ǫ2) ≤ exp(−8C2Tπ4γ8).

Proof. Evidence voting for labeling a pair of instances can be formalized as drawing a total of
C2T independent Bernoulli random variables, with success ratep2, whose outcomes are{−1,+1},
where+1 is received for correct, and−1 for incorrect labeling of the instance pair. LetS2 denote
a sum of these Bernoulli random variables. Then,P (ǫ2)=P (S2≤0)≤ exp

[

−2C2T (p2−1/2)2
]

.
Similar to the proof of Proposition 1, by considering three possible cases of correct labeling of a
pair of instances when dropping the pair through a decision tree, the success ratep2 can be derived
asp2=π(1/2+γ2)(1/2+πγ2)+π(1/2−γ2)(1/2−πγ2)+(1−π)(1/2) = 1/2+2π2γ4, whereπ is a
fraction of pairs of instances that have the same type of relationship.�

From Proposition 1, it follows that the probability that RF makes a wrong prediction about the pos-
terior ratio of an instance is upper bounded,P (Zi ≥ 1) = P (ǫ1) = exp(−8CTγ4), ∀i ∈ CC. This
gives the probability density functionfZi

(z) = λ1 exp(−λ1z), whereλ1 = 8CTγ4. In addition,
From Proposition 2, it follows that the probability that RF makes a wrong prediction about the pos-
terior ratio of a pair of instances is upper bounded,P (Wij ≥ 1) = P (ǫ2) = exp(−8C2Tπ4γ8),
∀i ∈ CC andj ∈ N (i). This gives the probability density functionfWij

(w) = λ2 exp(−λ2w),
whereλ2 = 8C2Tπ4γ8. By plugging these results in Theorem 1, we complete the derivation of the
upper error bound of(RF)2. From Theorem 1,P (ǫ) decreases when any of the following parameters
increases:C, T , γ, andπ. Fig. 2 shows the influence ofγ onP (ǫ), when the other parameters are
fixed to their typical values:C = 20, T = 100, andπ = 0.1.

7 Conclusion

We have presented(RF)2 – a framework that uses the random forest (RF) for the MCMC-based
inference of a conditional random field (CRF). Our key idea isto employ RF to directly compute
the ratios of the proposal and posterior distributions of states visited along the Metropolis-Hastings
reversible jumps, instead of estimating each individual distribution, and thus improve the conver-
gence rate and accuracy of the CRF inference. Such a non-parametric formulation of CRF and its
inference has been demonstrated to outperform, in terms of computation time and accuracy, existing
parametric CRF models on the task of multiclass object recognition and segmentation. We have also
derived the upper error bounds of the two-class RF and(RF)2, and showed that the classification
error of(RF)2 decreases as any of the following RF parameters increases: the number of decision
trees, the number of training examples stored in every leaf node, and the probabilistic margin.

8



References

[1] L.-J. Li, R. Socher, and L. Fei-Fei, “Towards total sceneunderstanding: Classification, annotation and
segmentation in an automatic framework,” inCVPR, 2009.

[2] X. He, R. S. Zemel, and M. A. Carreira-Perpinan, “Multiscale Conditional Random Fields for image
labeling,” inCVPR, 2004, pp. 695–702.

[3] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textonboost: Joint appearance, shape and context
modeling for multi-class object recognition and segmentation,” in ECCV, 2006, pp. 1–15.

[4] J. Verbeek and B. Triggs, “Scene segmentation with CRFs learned from partially labeled images,” in
NIPS, 2007.

[5] A. Torralba, K. P. Murphy, and W. T. Freeman, “Contextualmodels for object detection using boosted
random fields,” inNIPS, 2004.

[6] S. Gould, T. Gao, and D. Koller, “Region-based segmentation and object detection,” inNIPS, 2009.

[7] A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and S. Belongie, “Objects in context,” inICCV,
2007.

[8] N. Payet and S. Todorovic, “From a set of shapes to object discovery,” inECCV, 2010.

[9] S. Todorovic and N. Ahuja, “Unsupervised category modeling, recognition, and segmentation in images,”
IEEE TPAMI, vol. 30, no. 12, pp. 1–17, 2008.

[10] J. J. Lim, P. Arbelaez, C. Gu, and J. Malik, “Context by region ancestry,” inICCV, 2009.

[11] J. Sivic, B. C. Russell, A. Zisserman, W. T. Freeman, andA. A. Efros, “Unsupervised discovery of visual
object class hierarchies,” inCVPR, 2008.

[12] J. Lafferty, A. McCallum, and F. Pereira, “Conditionalrandom fields: Probabilistic models for segmenting
and labeling sequence data,” inICML, 2001, pp. 282–289.

[13] L. Breiman, “Random forests,”Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001.

[14] J. Gall and V. Lempitsky, “Class-specific hough forestsfor object detection,” inCVPR, 2009.

[15] G. Martinez-Munoz, N. Larios, E. Mortensen, W. Zhang, A. Yamamuro, R. Paasch, N. Payet, D. Lytle,
L. Shapiro, S. Todorovic, A. Moldenke, and T. Dietterich, “Dictionary-free categorization of very similar
objects via stacked evidence trees,” inCVPR, 2009.

[16] Y. Lin and Y. Jeon, “Random forests and adaptive nearestneighbors,”Journal of the American Statistical
Association, pp. 101–474, 2006.

[17] C. F. P. Arbelaez, M. Maire and J. Malik, “From contours to regions: An empirical evaluation,” inCVPR,
2009.

[18] A. Barbu and S.-C. Zhu, “Graph partition by Swendsen-Wang cuts,” inICCV, 2003, p. 320.

[19] S. Bileschi and L. Wolf, “A unified system for object detection, texture recognition, and context analysis
based on the standard model feature set,” inBMVC, 2005.

[20] C. Galleguillos, B. McFee, S. Belongie, and G. R. G. Lanckriet, “Multi-class object localization by com-
bining local contextual interactions,” inCVPR, 2010.

[21] S. Gould, R. Fulton, and D. Koller, “Decomposing a sceneinto geometric and semantically consistent
regions,” inICCV, 2009.

[22] J. Shotton, M. Johnson, and R. Cipolla, “Semantic texton forests for image categorization and segmenta-
tion,” in CVPR, 2008.

[23] Z. Tu and X. Bai, “Auto-context and its application to high-level vision tasks and 3D brain image seg-
mentation,”IEEE TPAMI, vol. 99, 2009.

9


