
Appendix A: More Details on the Changepoint Detection Algorithm

This appendix provides more detail on the changepoint detection algorithm discussed in sections 2.3 and 3.
This algorithm is based on a Hidden Markov Model, which is shown in Figure 7. The model qt at each time
t is hidden, but produces observable data yt. Transitions occur when the model changes, either to a new
model or the same model with different parameters. The transition from model qi to qj occurs with probability
g(j− i−1)p(qj), while the emission probability for observed data yi, ..., yj−1 is P (i, j, qi)(1−G(j− i−1)).
These probabilities are considered for all times i < j and models qi, qj ∈ Q.

qi qj

yi yi+1 yjyj-1...

i < j, q

P(i, j, qi)(1 - G(j - i - 1))

g(j - i - 1)p(qj)

Figure 7: The Hidden Markov Model modeling changepoint detection.

Using this model, Fearnhead and Liu [8] use a Viterbi algorithm to compute the MAP changepoint positions
and selected models, by processing each sample on the trajectory as it is experienced and thus without having
to store the trajectory. Psuedo-code for this algorithm is given in Figure 8.

When using Fearnhead and Liu’s changepoint detection algorithm in a reinforcement learning setting and using
the models we have selected in Section 3, we must compute sufficient statistics for a regression over R (return)
without storing the trajectory sample, even though we only receive r (reward) at each step. The sufficient
statistics required to compute P (j, t, q) are A, b and (

Pt
i=j RiΦ(xi)). An update rule that incrementally

computes these sufficient statistics without storing the trajectory is given in Figure 9.

Appendix B: Acquiring Skills from Human Demonstration on the uBot:
Implementation Details

The uBot was given six abstractions, each corresponding to the pairing of one of two types of motor abstraction
with one of three colored markers. When a marker was paired with the arm endpoint, the abstraction’s state
variables consisted of real-valued difference between the endpoint and the marker centroid in 3 dimensions.
Actions were real-valued vectors moving the endpoint in 3 dimensions. When a marker was paired with the
robot’s torso, the abstraction’s state variables consisted of two real values representing the distance and angle
to the marker centroid. Actions were real-valued vectors controlling the speed and direction of the robot torso
using differential drive.

Particles were generated according to the currently executing motor abstraction, and a switch in motor ab-
straction always caused a changepoint.3 The parameters used for performing CST on the uBot were k = 50,
M = 60 and N = 120, using a 1st order Fourier basis.

When performing policy regression, we used ridge regression over a 5th order Fourier basis to directly map to
continuous actions. We set the regularization parameter λ by 10-fold cross-validation, using a test set sampled
from the same trajectories as those used to perform the fit. For testing, we varied the starting point of the robot
by hand and used hard-coded stopping conditions that corresponded to the subsequent skill’s initiation set.

3Informal experiments with removing this restriction did not seem to change the number or type of skills
found but in some cases changed their starting and stopping positions by a few timesteps.

10

particles = ∅1

Process each incoming data point2
for t = 1:T do3

Compute fit probabilities for all particles4
for p ∈ particles do5

p tjq = (1 - G(t - p.pos - 1)) × p.fit prob() × model prior(p.model) × p.prev MAP6
p.MAP = p tjq × g(t - p.pos) / (1 - G(t - p.pos - 1))7

Filter if necessary8
if |particles| >= N then9

particles = particle filter(particles, particles.MAP, M)10

Determine the Viterbi path11
if t == 1 then12

max path = []13
max MAP = 1/|Q|14

else15
max particle = maxp p.MAP16
max path = max particle.path ∪ max particle17
max MAP = max particle.MAP18

Create new particles for a changepoint at time t19
for q ∈ Q do20

new p = create particle(model = q, pos = t, prev MAP = max MAP, path = max path)21
particles = particles ∪ new p22

Update all particles23
for p ∈ particles do24

p.update particle(xt, yt)25

Return the most likely path to the final point.26
return max path27

Figure 8: Fearnhead and Liu’s online MAP changepoint detection algorithm.

input : xt, the current state; rt, the current reward

Initialization1
if t == 0 then2

Aq = zero matrix(q.m, q.m)3
bq , zq = zero vector(q.m)4
sum rq , tr 1q , tr 2q = 0;5

Compute the basis function vector for the current state6
Φt = Φq(xt)7

Update sufficient statistics8

Aq = Aq + ΦtΦT
t9

zq = γzq + Φt10
bq = bq + rtzq11

tr 1q = 1 + γ2 tr 1q12

sum rq = sum rq + r2t tr 1q + 2γrt tr 2q13
tr 2q = γ tr 2q + rttr 1q14

Figure 9: Incrementally updating the changepoint detection sufficient statistics for model q.

11

