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Abstract

We propose an algorithm for simultaneously estimating state transitions among
neural states, the number of neural states, and nonstationary firing rates using a
switching state space model (SSSM). This algorithm enables us to detect state
transitions on the basis of not only the discontinuous changes of mean firing rates
but also discontinuous changes in temporal profiles of firing rates, e.g., temporal
correlation. We construct a variational Bayes algorithm for a non-Gaussian SSSM
whose non-Gaussian property is caused by binary spike events. Synthetic data
analysis reveals that our algorithm has the high performance for estimating state
transitions, the number of neural states, and nonstationary firing rates compared
to previous methods. We also analyze neural data that were recorded from the
medial temporal area. The statistically detected neural states probably coincide
with transient and sustained states that have been detected heuristically. Estimated
parameters suggest that our algorithm detects the state transition on the basis of
discontinuous changes in the temporal correlation of firing rates, which transi-
tions previous methods cannot detect. This result suggests that our algorithm is
advantageous in real-data analysis.

1 Introduction

Elucidating neural encoding is one of the most important issues in neuroscience. Recent studies have
suggested that cortical neuron activities transit among neural states in response to applied sensory
stimuli[1-3]. Abeleset al. detected state transitions among neural states using a hidden Markov
model whose output distribution is multivariate Poisson distribution (multivariate-Poisson hidden
Markov model(mPHMM))[1]. Kemereet al. indicated the correspondence relationship between
the time of the state transitions and the time when input properties change[2]. They also suggested
that the number of neural states corresponds to the number of input properties. Assessing neural
states and their transitions thus play a significant role in elucidating neural encoding. Firing rates
have state-dependent properties because mean and temporal correlations are significantly different
among all neural states[1]. We call the times of state transitions as change points. Change points
are those times when the time-series data statistics change significantly and cause nonstationarity
in time-series data. In this study, stationarity means that time-series data have temporally uniform
statistical properties. By this definition, data that do not have stationarity have nonstationarity.

Previous studies have detected change points on the basis of discontinuous changes in mean fir-
ing rates using an mPHMM. In this model, firing rates in each neural state take a constant value.
However, actually in motor cortex, average firing rates and preferred direction change dynamically
in motor planning and execution[4]. This makes it necessary to estimate state-dependent, instanta-
neous firing rates. On the other hand, when place cells burst within their place field[5], the inter-burst
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intervals correspond to theθ rhythm frequency. Medial temporal (MT) area neurons show oscilla-
tory firing rates when the target speed is modulated in the manner of a sinusoidal function[6]. These
results indicate that change points also need to be detected when the temporal profiles of firing rates
change discontinuously.

One solution is to simultaneously estimate both change points and instantaneous firing rates. A
switching state space model(SSSM)[7] can model nonstationary time-series data that include change
points. An SSSM defines two or more system models, one of which is modeled to generate observa-
tion data through an observation model. It can model nonstationary time-series data while switching
system models at change points. Each system model estimates stationary state variables in the region
that it handles. Recent studies have been focusing on constructing algorithms for estimating firing
rates using single-trial data to consider trial-by-trial variations in neural activities [8]. However,
these previous methods assume firing rate stationarity within a trial. They cannot estimate nonsta-
tionary firing rates that include change points. An SSSM may be used to estimate nonstationary
firing rates using single-trial data.

We propose an algorithm for simultaneously estimating state transitions among neural states and
nonstationary firing rates using an SSSM. We expect to be able to estimate change points when
not only mean firing rates but also temporal profiles of firing rates change discontinuously. Our
algorithm consists of a non-Gaussian SSSM, whose non-Gaussian property is caused by binary
spike events. Learning and estimation algorithms consist of variational Bayes[9,10] and local varia-
tional methods[11,12]. Automatic relevance determination (ARD) induced by the variational Bayes
method[13] enables us to estimate the number of neural states after pruning redundant ones. For
simplicity, we focus on analyzing single-neuron data. Although many studies have discussed state
transitions by analyzing multi-neuron data, some of them have suggested that single-neuron activ-
ities reflect state transitions in a recurrent neural network[14]. Note that we can easily extend our
algorithm to multi-neuron analysis using the often-used assumption that change points are common
among recorded neurons[1-3].

2 Definitions of Probabilistic Model

2.1 Likelihood Function

Observation timeT consists ofK time bins of widths∆ (ms), and each bin includes at most one
spike (∆ ¿ 1). The spike timings aret = {t1, ..., tS} whereS is the total number of observed
spikes. We defineηk such thatηk = +1 if the kth bin includes a spike andηk = −1 otherwise
(k = 1, ...,K). The likelihood function is defined by the Bernoulli distribution

p(t|λ) =
∏K

k=1(λk∆)
1+ηk

2 (1 − λk∆)
1−ηk

2 , (1)

whereλ = {λ1, ..., λK} andλk is the firing rate at thekth bin. The product of firing rates and bin
width corresponds to the spike-occurrence probability andλk∆ ∈ [0, 1) since∆ ¿ 1. The logit
transformation ofexp(2xk) = λk∆

1−λk∆ (xk ∈ (−∞, ∞)) lets us consider the nonnegativity of firing
rates in detail[11]. Hereinafter, we callx = {x1, ..., xK} the “firing rates”.

SinceK is a large because∆ ¿ 1, the computational cost and memory accumulation do matter.
We thus use coarse graining[15]. Observation timeT consists ofM coarse bins of widthsr = C∆
(ms). A coarse bin includes many spikes and the firing rate in each bin is constant. The likelihood
function which is obtained by applying the logit transformation and the coarse graining to eq. (1) is

p(t|x) =
∏M

m=1[exp(η̂mxm − C log 2 cosh xm)], (2)

whereη̂m =
∑C

u=1 η(m−1)C+u.

2.2 Switching State Space Model
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Figure 1: Graphical model rep-
resentation of SSSM.

An SSSM consists ofN system models; for each model, we de-
fine a prior distribution. We define label variableszn

m such that
zn
m = 1 if the nth system model generates an observation in the

mth bin andzn
m = 0 otherwise (n = 1, ..., N,m = 1, ...,M ).
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We callN the number of labels and thenth system model thenth
label. The joint distribution is defined by

p(t, x, z|θ′) = p(t|x,z)p(z|π, a)p(x|µ, β), (3)

where x = {x1, ...,xN}, xn = {xn
1 , ..., xn

M}, z = {z1
1 , .., z1

M , ..., zN
1 , ..., zN

M}, and θ′ =
{π, a, µ, β} are parameters. The likelihood function, including label variables, is given by

p(t|x,z) =
∏N

n=1

∏M
m=1[exp(η̂mxn

m − C log 2 cosh xn
m)]z

n
m . (4)

We define the prior distributions of label variables as

p(z1|π) =
∏N

n=1(π
n)zn

1 δ(
∑N

n=1 πn − 1), (5)

p(zm+1|zm, a) =
∏N

n=1

∏N
k=1(a

nk)zn
mzk

m+1δ(
∑N

k=1 ank − 1), (6)

whereπn andank are the probabilities that thenth label is selected at the initial time and that the
nth label switches to thekth one, respectively. The prior distributions of firing rates are Gaussian

p(x) =
∏N

n=1 p(xn|βn, µn) =
∏N

n=1

√
|βnΛ|
(2π)M exp(−βn

2 (xn − µn)T Λ(xn − µn)), (7)

whereβn,µn respectively mean the temporal correlation and the mean values of thenth-label firing
rates (n = 1, ..., N ). Here for simplicity, we introducedΛ, which is the structure of the temporal
correlation satisfyingp(xn|βn, µn) ∝

∏
m exp(−βn

2 ((xm − µm) − (xm−1 − µm−1))2). Figure 1
depicts a graphical model representation of an SSSM.

Ghahramani & Hinton (2000) did not introducea priori knowledge about the label switching fre-
quencies. However, in many cases, the time scale of state transitions is probably slower than that of
the temporal variation of firing rates. We define prior distributions ofπ anda to introducea priori
knowledge about label switching frequencies using Dirichlet distributions

p(π|γn) = C(γn)
∏N

n=1(π
n)γn−1δ(

∑N
n=1 πn − 1), (8)

p(a|γnk) =
∏N

n=1

[
C(γnk)

∏N
k=1(a

nk)γnk−1δ(
∑N

k=1 ank − 1)
]
, (9)

whereC(γn) = Γ(
PN

n=1 γn)

Γ(γ1)...Γ(γN )
, C(γnk) = Γ(

PN
k=1 γnk)

Γ(γn1)...Γ(γnN )
. C(γn) andC(γnk) correspond to the

normalization constants ofp(π|γn) andp(a|γnk), respectively.Γ(u) is the gamma function defined
by Γ(u) =

∫ ∞
0

dttu−1 exp(−t). γn, γnk are hyperparameters to control the probability that thenth
label is selected at the initial time and that thenth label switches to thekth. We define the prior
distributions ofµn andβn using non-informative priors. Since we do not havea priori knowledge
about neural states,µ andβ, which characterize each neural state, should be estimated from scratch.

3 Estimation and Learning of non-Gaussian SSSM

It is generally computationally difficult to calculate the marginal posterior distribution in an
SSSM[6]. We thus use the variational Bayes method to calculate approximated posterior distri-
butionsq(w) andq(θ) that minimize the variational free energy

F [q] =
∫ ∫

dwdθq(w)q(θ) log q(w)q(θ)
p(t,w,θ) = U [q] − S[q] (10)

wherew = {z, x} are hidden variables,θ = {π, a} are parameters,
U [q] = −

∫ ∫
dwdθq(w)q(θ) log p(t, w, θ) andS[q] = −

∫ ∫
dwdθq(w)q(θ) log

(
q(w)q(θ)

)
.

We denoteq(w) andq(θ) as test distributions. The variational free energy satisfies

log p(t) = −F [q] + KL(q(w)q(θ)‖p(w, θ|t)), (11)

whereKL(q(w)q(θ)‖p(w,θ|t)) is the Kullback-Leibler divergence between test distributions and
a posterior distributionp(w, θ|t) defined byKL(q(y)‖p(y|t)) =

∫
dyq(y) log q(y)

p(y|t) . Since the
marginal likelihoodlog p(t) takes a constant value, the minimization of variational free energy in-
directly minimizes Kullback-Leibler divergence. The variational Bayes method requires conjugacy
between the likelihood function (eq. (4)) and the prior distribution (eq. (7)). However, eqs. (4) and
(7) are not conjugate to each other because of the binary spike events. The local variational method
enables us to construct a variational Bayes algorithm for a non-Gaussian SSSM.
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3.1 Local Variational Method

The local variational method, which was proposed by Jaakola & Jordan[11], approximately trans-
forms a non-Gaussian distribution into a quadratic-form distribution by introducing variational pa-
rameters. Watanabeet al. have proven the effectiveness of this method in estimating stationary
firing rates[12]. The exponential function in eq. (4) includesf(xn

m) = log 2 cosh xn
m, which is a

concave function ofy = (xn
m)2. The concavity can be confirmed by showing the negativity of the

second-order derivative off(xn
m) with respect to(xn

m)2 for all xn
m. Considering the tangent line of

f(xn
m) with respect to(xn

m)2 at (xn
m)2 = (ξn

m)2, we get a lower bound for eq. (4)

pξ(t|x, z) =
∏N

n=1

∏M
m=1[exp(η̂mxn

m − C
tanh ξn

m

2ξn
m

((xn
m)2 − (ξn

m)2)) − C log 2 cosh ξn
m)]z

n
m , (12)

whereξn
m is a variational parameter. Equation (12) satisfies the inequalitypξ(t|x, z) ≤ p(t|x, z).

We use eq. (12) as the likelihood function instead of eq. (4). The conjugacy between eqs. (12)
and (7) enables us to construct the variational Bayes algorithm. Using eq. (12), we find that the
variational free energy

Fξ[q] =
∫ ∫

dwdθq(w)q(θ) log q(w)q(θ)
pξ(t,w,θ) = Uξ[q] − S[q] (13)

satisfies the inequalityFξ[q] ≥ F [q], whereUξ[q] = −
∫ ∫

dwdθqξ(w)qξ(θ) log pξ(s, w, θ).
Since the inequalitylog p(t, x, z) ≥ −F [q] ≥ −Fξ[q] is satisfied, the test distributions that mini-
mizeFξ[q] can indirectly minimizeF [q] which is analytically intractable. Using the EM algorithm
to estimate variational parameters improves the approximation accuracy ofFξ[q][16].

3.2 Variational Bayes Method

We assume the test distributions that satisfy the constraintsq(w) =
∏N

n=1(q(x
n|µn,βn))q(z)

and q(θ) = q(π)q(a), where µ = {µ1, ...,µN},β = {β1, ..., βN}. Under constraints∫
dxq(x|µ, β) = 1,

∑
z q(z) = 1,

∫
dπq(π) = 1 and

∫
daq(a) = 1, we can obtain the test

distributions of hidden variablesxn, z that minimize eq. (13) as follows:

q(xn|µn, βn) =
√

|W n|
(2π)M exp(− 1

2 (xn − µ̂n)T W n(xn − µ̂n)), (14)

q(z) ∝
∏N

n=1 exp(π̂n)zn
1

∏N
n=1

∏M
m=1 exp(b̂n

m)zn
m

∏M−1
m=1

∏N
n=1

∏N
k=1 exp(ânk

m )zn
mzk

m+1 , (15)

whereW n = CLn + βnΛ, µ̂n = (W n)−1(wn + βnΛµn), π̂n = 〈log πn〉, b̂n
m = η̂m〈xn

m〉 −
C tanh ξn

m

2ξn
m

(〈(xn
m)2〉 − (ξn

m)2) − C log 2 cosh ξn
m, ânk = 〈log ank〉, Ln is the diagonal matrix whose

(m, m) component is〈zn
m〉 tanh ξn

m

ξn
m

, wn is the vector whose(1,m) component is〈zn
m〉η̂m. 〈·〉 means

the average obtained using a test distributionq(·). The computational cost of calculating the inverse
of eachW is O(M) becauseΛ is defined by a tridiagonal andLn is a diagonal matrix.

In the calculation ofq(xn), 〈zn
m〉 controls the effective variance of the likelihood function. A higher

〈zn
m〉 means the data are reliable for thenth label in themth bin and lower〈zn

m〉 means the data are
unreliable. Under the constraint

∑N
n=1〈zn

m〉 = 1, all labels estimate their firing rates on the basis
of divide-and-conquer principle of data reliability. Using the equality(ξn

m)2 = 〈(xn
m)2〉 that will be

developed in the next section, we obtainb̂n
m = η̂m〈xn

m〉 − C log 2 cosh〈xn
m〉 − C

2 log 2 cosh
(
1 +

(W n)−1
(m,m)/〈x

n
m〉2

)
in eq. (15). When themth bin includes many (few) spikes, thenth label tends

to be selected if it estimates the highest (lowest) firing rate among the labels. But the variance of the
nth label(W n)−1

(m,m) penalizes that label’s selection probability.

We can also obtain the test distribution of parametersπ, a as

q(π) = C(γ̂n)
∏N

n=1(π
n)γ̂n−1δ(

∑N
n=1 πn − 1), (16)

q(a) =
∏N

n=1

[
C(γ̂nk)

∏N
k=1(a

nk)γ̂nk−1δ(
∑N

k=1 ank − 1)
]
, (17)

whereC(γ̂n) = Γ(
PN

n=1 γ̂n)

Γ(γ̂1)...Γ(γ̂N )
, C(γ̂nk) = Γ(

PN
k=1 γ̂nk)

Γ(γ̂n1)...Γ(γ̂nN )
. C(γ̂n) andC(γ̂nk) correspond to the

normalization constants ofq(π) andq(a), andγ̂n = 〈zn
1 〉 + γ1, γ̂nk =

∑M−1
m=1 〈zn

mzk
m+1〉 + γnk.
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We can seeγn in γ̂n controls the probability that thenth label is selected at the initial time, and
γnk in γ̂nk biases the probability of the transition from thenth label to thekth label. A forward-
backward algorithm enables us to calculate the first- and second-order statistics ofq(z). Since an
SSSM involves many local solutions, we search for a global one using deterministic annealing,
which is proven to be effective for estimating and learning in an SSSM [7].

3.3 EM algorithm

The EM algorithm enables us to estimate variational parametersξ and parametersµ andβ. In the
EM algorithm, the calculation of the Q function is computationally difficult because it requires us to
calculate averages using the true posterior distribution. We thus calculate the Q function using test
distributions instead of the true posterior distributions as follows:

Q̃(µ, β, ξ‖µ(t′), β(t′), ξ(t′)) =
∫

dxq(x|µ(t′), β(t′))q(z)q(π)q(a) log pξ(t, x, z, π, a|µ,β). (18)

SinceQ̃(µ,β, ξ‖µ(t′), β(t′), ξ(t′)) = −U [q]ξ, maximizing the Q function with respect toµ,β, ξ is
equivalent to minimizing the variational free energy (eq. (10) ). The update rules

(ξn
m)2 = 〈(xn

m)2〉, µn
m = 〈xn

m〉, and βn = M
Tr[Λ((Wn)−1+(〈xn〉−µn)(〈xn〉−µn)T )]

(19)

maximize the Q function. The following table summarizes our algorithm.

Summary of our algorithm¶ ³
Setγ1 andγnk. t′ ← 1 Initialize parameters of model.
Perform the following VB and EM algorithm untilFξ[q] converges.

ξ(t′), µ(t′), β(t′) ← ξ,µ,β

Variational Bayes algorithm Perform the VB-E and VB-M step untilF
ξ(t′) [q] converges.

VB-E step: Computeq(x|µ(t′), β(t′)) andq(z) using eq. (14) and eq. (15).
VB-M step: Computeq(π) andq(a) using eq. (16) and eq. (17).

EM algorithm Computeξ, µ, β using eq. (19).

t′ ← t′ + 1µ ´
4 Results

The estimated firing rate in themth bin is defined bỹxm = 〈xñm
m 〉, whereñm satisfiesñm =

arg maxn〈zn
m〉. The estimated change points̃mr = m̃C∆ satisfies〈zn

m̃〉 > 〈zk
m̃〉 (∀k 6= n)

and 〈zn
m̃+1〉 < 〈zk

m̃+1〉 (∃k 6= n). The estimated number of labels̃N is given by Ñ =
N − (the number of pruned labels), where we assume that thenth label is pruned out if〈zn

m〉 <
10−5(∀m). We call our algorithm “the variational Bayes switching state space model” (VB-SSSM).

4.1 Synthetic data analysis and Comparison with previous methods

We artificially generate spike trains from arbitrarily set firing rates with an inhomogeneous gamma
process. Throughout this study, we setκ which means the spike irregularity to 2.4 in generating
spike trains. We additionally confirmed that the following results are invariant if we generate spikes
using inhomogeneous Poisson or inverse Gaussian process.

In this section, we set parameters toN = 5, T = 4000, ∆ = 0.001, r = 0.04, γn = 1, γnk =
100(n = k) or 2.5(n 6= k). The hyperparametersγnk represent thea priori knowledge where the
time scale of transitions among labels is sufficiently slower than that of firing-rate variations.

4.1.1 Accuracy of change-point detections

This section discusses the comparative results between the VB-SSSM and mPHMM regarding the
accuracy of change-point detections and number-of-labels estimation. We used the EM algorithm to

5



270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

(a)

m
P

H
M

M

0

< z >
1

V
B

-S
S

S
M

0
4
0

8
0

1
2
0

F
ir

in
g

 r
at

e 
(H

z)

True firing rate

1000 2000 30000 4000
Time (ms)

0

< z >
1

1000 2000 30000 4000

(c)

(b) (d)

True firing rate

0
4
0

8
0

1
2
0

F
ir

in
g

 r
at

e 
(H

z)
m

P
H

M
M

V
B

-S
S

S
M

Time (ms)

Figure 2: Comparative results of change-point detections for the VB-SSSM and the mPHMM. (a)
and (c): Arbitrary set firing rates for validating the accuracy of change-point detections when firing
rates include discontinuous changes in mean value (fig. (a)) or temporal correlation (fig. (c)). (b)
and (d): Comparative results that correspond to firing rates in (a) ((b)) and (c) ((d)). The stronger
the white color becomes, the more dominant the label is in the bin.

estimate the label variables in the mPHMM[1-3]. Since the mPHMM is useful in analyzing multi-
trial data, in the estimation of mPHMM we used ten spike trains under the assumption that change
points were common among ten spike trains. On the other hand, VB-SSSM uses single-trial data.
Fig. 2(a) displays arbitrarily set firing rates to verify the change point detection accuracy when
mean firing rates changed discontinuously. The firing rate at timet(ms) was set toλt = 0.0

(
t ∈

[0, 1000), t ∈ [2000, 3000)
)
, λt = 110.0

(
t ∈ [1000, 2000)

)
, andλt = 60.0

(
t ∈ [3000, 4000]

)
.

The upper graph in fig. 2(b) indicates the label variables estimated with the VB-SSSM and the
lower indicates those estimated with the mPHMM. In the VB-SSSM, ARD estimated the number
of labels to be three after pruning redundant labels. As a result of ten-trial data analysis, the VB-
SSSM estimated the number of labels to be three in nine over ten spike trains. The estimated change
points were 1000±0.0, 2000±0.0, and 2990±16.9ms. The true change points were 1000, 2000, and
3000ms.

Fig. 2(c) plots the arbitrarily set firing rates for verifying the change point detection accuracy when
temporal correlation changes discontinuously. The firing rate at timet(ms) was set toλt = λt−1 +
2.0zt

(
t ∈ [0, 2000)

)
, λt = λt−1 + 20.0zt

(
t ∈ [2000, 4000]

)
, wherezt is a standard normal

random variable that satisfies〈zt〉 = 0, 〈ztzt′〉 = δtt′ (δtt′ = 0(t 6= t′), 1(t = t′)). Fig. 2(d)
shows the comparative results between the VB-SSSM and mPHMM. ARD estimates the number of
labels to be two after pruning redundant labels. As a result of ten-trial data analysis, our algorithm
estimated the number of labels to be two in nine over ten spike trains. The estimated change points
was 1933±315.1ms and the true change point was 2000ms.

4.1.2 Accuracy of firing-rate estimation

This section discusses the nonstationary firing rate estimation accuracy. The comparative methods
include kernel smoothing (KS), kernel band optimization (KBO)[17], adaptive kernel smoothing
(KSA)[18], Bayesian adaptive regression splines (BARS)[19], and Bayesian binning (BB)[20]. We
used a Gaussian kernel in KS, KBO, and KSA. The kernel widthsσ were set toσ = 30 (ms) (KS30),
σ = 50 (ms) (KS50) andσ = 100 (ms) (KS100) in KS. In KSA, we used the bin widths estimated
using KBO. Cunninghamet al. have reviewed all of these compared methods [8].

A firing rate at timet(ms) was set toλt = 5.0
(
t ∈ [0, 480), t ∈ [3600, 4000]

)
, λt = 90.0 ×

exp(−11 (t−480)
4000 )

(
t ∈ [480, 2400)

)
, λt = 80.0 × exp(−0.5(t − 2400)/4000))

(
t ∈ [2400, 3600)

)
and we resetλt to 5.0 if λt < 5.0. We set these firing rates assuming an experiment in which tran-
sient and persistent inputs are applied to an observed neuron in a series. Note that input information,
such as timings, properties, and sequences is entirely unknown.
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Figure 3: Results of firing-rate estimation. (a): Estimated firing rates. Vertical bars above abscissa
axes are spikes used for estimates. (b): Averaged label variables〈zn

m〉. (c): Estimated firing rates
using each label. (d): Mean absolute error± standard deviation when applying our algorithm and
other methods to estimate firing rates plotted in (a). * indicates p<0.01 and ** indicates p<0.005.

Fig. 3(a) plots the estimated firing rates (red line). Fig. 3(b) plots the estimated label variables and
fig. 3(c) plots the estimated firing rates when all labels other than the pruned ones were used. ARD
estimates the number of labels to be three after pruning redundant labels. As a result of ten spike
trains analysis, the VB-SSSM estimated the number of labels to be three in eight over ten spike
trains. The change points were estimated at 420±82.8, 2385±20.7, and 3605±14.1ms. The true
change points were 480, 2400, and 3600ms.

The mean-absolute-error (MAE) is defined byMAE = 1
K

∑K
k=1 |λk − λ̂k|, whereλk andλ̂k are

the true and estimated firing rates in thekth bin. All the methods estimate the firing rates at ten
times. Fig. 3(d) shows the mean MAE values averaged across ten trials and the standard deviations.
We investigated the significant differences in firing-rate estimation among all the methods using
Wilcoxon signed rank test. Both the VB-SSSM and BB show the high performance. Note that the
VB-SSSM can estimate not only firing rates but change points and the number of neural states.

4.2 Real Data Analysis

In area MT, neurons preferentially respond to the movement directions of visual inputs[21]. We ana-
lyzed the neural data recorded from area MT of a rhesus monkey when random dots were presented.
These neural data are available from the Neural Signal Archive (http://www.neuralsignal.org.), and
detailed experimental setups are described by Brittenet al. [22]. The input onsets correspond to
t = 0(ms), and the end of the recording corresponds tot = 2000(ms). This section discusses our
analysis of the neural data included in nsa2004.1 j001 T2. These data were recorded from the same
neuron of the same subject. Parameters were set as follows:T = 2000, ∆ = 0.001, N = 5, r =
0.02, γn = 1(n = 1, ..., 5), γnk = 100(n = k) or 2.5(n 6= k).

Fig. 4 shows the analysis results when random dots have 3.2% coherence. Fig. 4 (a) plots the
estimated firing rates (red line) and a Kolmogorov-Smirnov plot (K-S plot) (inset)[23]. Since the
true firing rates for the real data are entirely unknown, we evaluated the reliability of estimated
values from the confidence intervals. The black and gray lines in the inset denote the K-S plot and
95 % confidence intervals. The K-S plot supported the reliability of the estimated firing rates since
it fits into the 95% confidence intervals. Fig. 4(b) depicts the estimated label variables, and fig.
4(c) shows the estimated firing rates using all labels other than the pruned ones. The VB-SSSM
estimates the number of labels to be two. We call the label appearing on the right after the input
onset “the 1st neural state” and that appearing after the 1st neural state “the 2nd neural state”. The
1st and 2nd neural states in fig. 4 might corresponded to transient and sustained states[6] that have
been heuristically detected, e.g. assuming the sustained state lasts for a constant time[24].

We analyzed all 105 spike trains recorded under presentations of random dots with 3.2%, 6.4%,
12.8%, and 99.9% coherence, precluding the neural data in which the total spike count was less than
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Figure 4: Estimated results when applying the VB-SSSM to area MT neural data. (a): Estimated
firing rates. Vertical bars above abscissa axes are spikes used for estimates. Inset is result of
Kolmogorov-Smirnov goodness-of-fit. Solid and gray lines correspond to K-S plot and 95% confi-
dence interval. (b): Averaged label variables using test distribution. (c): Estimated firing rates using
each label. (d) and (e): Estimated parameters in the 1st and the 2nd neural states.

20. The VB-SSSM estimated the number of labels to be two in 25 over 30 spike trains (3.2%), 19
over 30 spike trains (6.4%), 26 over 30 spike trains (12.8%), and 16 over 16 spike trains (99.9%). In
summary, the number of labels is estimated to be two in 85 over 101 spike trains.

Figs. 4(d) and (e) show the estimated parameters from 19 spike trains whose estimated number
of labels was two (6.4% coherence). The horizontal axis denotes the arranged number of trials
in ascending order. Figs. 4 (d) and (e) correspond to the estimated temporal correlationβ and
the time average ofµ, which is defined by〈µn〉 = 1

Tn

∑Tn

t=1 µn
t , whereTn denotes the sojourn

time in thenth label or the total observation timeT . The estimated temporal correlation differed
significantly between the 1st and 2nd neural states (Wilcoxon signed rank test, p<0.00005). On the
other hand, the estimated mean firing rates did not differ significantly between these neural states
(Wilcoxon signed rank test, p>0.1). Our algorithm thus detected the change points on the basis of
discontinuous changes in temporal correlations. We could see the similar tendencies for all random-
dot coherence conditions (data not shown). We confirmed that the mPHMM could not detect these
change points (data not shown), which we were able to deduce from the results shown in fig. 2(d).
These results suggest that our algorithm is effective in real data analysis.

5 Discussion

We proposed an algorithm for simultaneously estimating state transitions, the number of neural
states, and nonstationary firing rates using single-trial data.

There are ways of extending our research to analyze multi-neuron data. The simplest one assumes
that the time of state transitions is common among all recorded neurons[1-3]. Since this assumption
can partially include the effect of inter-neuron interactions, we can define prior distributions that are
independent between neurons. Because there are no loops in the statistical dependencies of firing
rates under these conditions, the variational Bayes method can be applied directly.

One important topic for future study is optimization of coarse bin widthsr = C∆. A bin width
that is too wide obscures both the time of change points and temporal profile of nonstationary firing
rates. A bin width that is too narrow, on the other hand, increases computational costs and worsens
estimation accuracy. Watanabeet al. proposed an algorithm for estimating the optimal bin width by
maximization the marginal likelihood [15], which is probably applicable to our algorithm.
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