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Abstract

Feature selection is an important component of many machine learning applica-
tions. Especially in many bioinformatics tasks, efficient and robust feature se-
lection methods are desired to extract meaningful features and eliminate noisy
ones. In this paper, we propose a new robust feature selection method with em-
phasizing joint `2,1-norm minimization on both loss function and regularization.
The `2,1-norm based loss function is robust to outliers in data points and the `2,1-
norm regularization selects features across all data points with joint sparsity. An
efficient algorithm is introduced with proved convergence. Our regression based
objective makes the feature selection process more efficient. Our method has been
applied into both genomic and proteomic biomarkers discovery. Extensive empir-
ical studies are performed on six data sets to demonstrate the performance of our
feature selection method.

1 Introduction

Feature selection, the process of selecting a subset of relevant features, is a key component in build-
ing robust machine learning models for classification, clustering, and other tasks. Feature section
has been playing an important role in many applications since it can speed up the learning process,
improve the mode generalization capability, and alleviate the effect of the curse of dimensional-
ity [15]. A large number of developments on feature selection have been made in the literature and
there are many recent reviews and workshops devoted to this topic, e.g., NIPS Conference [7].

In past ten years, feature selection has seen much activities primarily due to the advances in bioin-
formatics where a large amount of genomic and proteomic data are produced for biological and
biomedical studies. For example, in genomics, DNA microarray data measure the expression levels
of thousands of genes in a single experiment. Gene expression data usually contain a large number
of genes, but a small number of samples. A given disease or a biological function is usually asso-
ciated with a few genes [19]. Out of several thousands of genes to select a few of relevant genes
thus becomes a key problem in bioinformatics research [22]. In proteomics, high-throughput mass
spectrometry (MS) screening measures the molecular weights of individual biomolecules (such as
proteins and nucleic acids) and has potential to discover putative proteomic biomarkers. Each spec-
trum is composed of peak amplitude measurements at approximately 15,500 features represented
by a corresponding mass-to-charge value. The identification of meaningful proteomic features from
MS is crucial for disease diagnosis and protein-based biomarker profiling [22].
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In general, there are three models of feature selection methods in the literature: (1) filter meth-
ods [14] where the selection is independent of classifiers, (2) wrapper methods [12] where the pre-
diction method is used as a black box to score subsets of features, and (3) embedded methods where
the procedure of feature selection is embedded directly in the training process. In bioinformatics
applications, many feature selection methods from these categories have been proposed and applied.
Widely used filter-type feature selection methods include F -statistic [4], reliefF [11, 13], mRMR
[19], t-test, and information gain [21] which compute the sensitivity (correlation or relevance) of a
feature with respect to (w.r.t) the class label distribution of the data. These methods can be char-
acterized by using global statistical information. Wrapper-type feature selection methods is tightly
coupled with a specific classifier, such as correlation-based feature selection (CFS) [9], support vec-
tor machine recursive feature elimination (SVM-RFE) [8]. They often have good performance, but
their computational cost is very expensive.

Recently sparsity regularization in dimensionality reduction has been widely investigated and also
applied into feature selection studies. `1-SVM was proposed to perform feature selection using the
`1-norm regularization that tends to give sparse solution [3]. Because the number of selected features
using `1-SVM is upper bounded by the sample size, a Hybrid Huberized SVM (HHSVM) was
proposed combining both `1-norm and `2-norm to form a more structured regularization [26]. But
it was designed only for binary classification. In multi-task learning, in parallel works, Obozinsky
et. al. [18] and Argyriou et. al. [1] have developed a similar model for `2,1-norm regularization to
couple feature selection across tasks. Such regularization has close connections to group lasso [28].

In this paper, we propose a novel efficient and robust feature selection method to employ joint `2,1-
norm minimization on both loss function and regularization. Instead of using `2-norm based loss
function that is sensitive to outliers, a `2,1-norm based loss function is adopted in our work to remove
outliers. Motivated by previous research [1, 18], a `2,1-norm regularization is performed to select
features across all data points with joint sparsity, i.e. each feature (gene expression or mass-to-charge
value in MS) either has small scores for all data points or has large scores over all data points. To
solve this new robust feature selection objective, we propose an efficient algorithm to solve such joint
`2,1-norm minimization problem. We also provide the algorithm analysis and prove the convergence
of our algorithm. Extensive experiments have been performed on six bioinformatics data sets and
our method outperforms five other commonly used feature selection methods in statistical learning
and bioinformatics.

2 Notations and Definitions

We summarize the notations and the definition of norms used in this paper. Matrices are written as
boldface uppercase letters. Vectors are written as boldface lowercase letters. For matrix M = (mij),
its i-th row, j-th column are denoted by mi, mj respectively.

The `p-norm of the vector v ∈ Rn is defined as ‖v‖p =
(

n∑
i=1

|vi|p
) 1

p

. The `0-norm of the vector

v ∈ Rn is defined as ‖v‖0 =
n∑

i=1

|vi|0. The Frobenius norm of the matrix M ∈ Rn×m is defined as

‖M‖F =

√√√√
n∑

i=1

m∑

j=1

m2
ij =

√√√√
n∑

i=1

‖mi‖22. (1)

The `2,1-norm of a matrix was first introduced in [5] as rotational invariant `1 norm and also used
for multi-task learning [1, 18] and tensor factorization [10]. It is defined as

‖M‖2,1 =
n∑

i=1

√√√√
m∑

j=1

m2
ij =

n∑

i=1

∥∥mi
∥∥

2
, (2)
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which is rotational invariant for rows: ‖MR‖2,1 = ‖M‖2,1 for any rotational matrix R. The
`2,1-norm can be generalized to `r,p-norm

‖M‖r,p =




n∑

i=1




m∑

j=1

|mij |r



p
r




1
p

=

(
n∑

i=1

∥∥mi
∥∥p

r

) 1
p

. (3)

Note that `r,p-norm is a valid norm because it satisfies the three norm conditions, including the
triangle inequality ‖A‖r,p + ‖B‖r,p ≥ ‖A + B‖r,p. This can be proved as follows. Starting from
the triangle inequality (

∑
i |ui|p)

1
p + (

∑
i |vi|p)

1
p ≥ (

∑
i |ui + vi|p)

1
p and setting ui = ‖ai‖r and

vi = ‖bi‖r, we obtain
(∑

i

‖ai‖p
r

) 1
p

+

(∑

i

‖bi‖p
r

) 1
p

≥
(∑

i

| ‖ai‖r + ‖bi‖r|p
) 1

p

≥
(∑

i

| ‖ai + bi‖r|p
) 1

p

, (4)

where the second inequality follows the triangle inequality for `r norm: ‖ai‖r+‖bi‖r ≥ ‖ai+bi‖r.
Eq. (4) is just ‖A‖r,p + ‖B‖r,p ≥ ‖A + B‖r,p.

However, the `0-norm is not a valid norm because it does not satisfy the positive scalability:
‖αv‖0 = |α|‖v‖0 for scalar α. The term “norm” here is for convenience.

3 Robust Feature Selection Based on `2,1-Norms

Least square regression is one of the popular methods for classification. Given training data
{x1,x2, · · · ,xn} ∈ Rd and the associated class labels {y1,y2, · · · ,yn} ∈ Rc, traditional
least square regression solves the following optimization problem to obtain the projection matrix
W ∈ Rd×c and the bias b ∈ Rc:

min
W,b

n∑

i=1

∥∥WT xi + b− yi

∥∥2

2
. (5)

For simplicity, the bias b can be absorbed into W when the constant value 1 is added as an additional
dimension for each data xi(1 ≤ i ≤ n). Thus the problem becomes:

min
W

n∑

i=1

∥∥WT xi − yi

∥∥2

2
. (6)

In this paper, we use the robust loss function:

min
W

n∑

i=1

∥∥WT xi − yi

∥∥
2
, (7)

where the residual ‖WT xi − yi‖ is not squared and thus outliers have less importance than the
squared residual ‖WT xi − yi‖2. This loss function has a rotational invariant property while the
pure `1-norm loss function does not has such desirable property [5].

We now add a regularization term R(W) with parameter γ. The problem becomes:

min
W

n∑

i=1

∥∥WT xi − yi

∥∥
2

+ γR(W). (8)

Several regularizations are possible:

R1(W) = ‖W‖2, R2(W) =
c∑

j=1

‖wj‖1, R3(W) =
d∑

i=1

∥∥wi
∥∥0

2
, R4(W) =

d∑

i=1

∥∥wi
∥∥

2
. (9)

R1(W) is the ridge regularization. R2(W) is the LASSO regularization. R3(W) and R4(W)
penalizes all c regression coefficients corresponding to a single feature as a whole. This has the
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effects of feature selection. Although the `0-norm of R3(W) is the most desirable [16], in this
paper, we use R4(W) instead. The reasons are: (A) the `1-norm of R4(W) is convex and can be
easily optimized (the main contribution of this paper); (B) it was shown that results of `0-norm is
identical or approximately identical to the `1-norm results under practical conditions.

Denote data matrix X = [x1,x2, · · · ,xn] ∈ Rd×n and label matrix Y = [y1,y2, · · · ,yn]T ∈
Rn×c. In this paper, we optimize

min
W

J(W) =
n∑

i=1

∥∥WT xi − yi

∥∥
2

+ γR4(W) =
∥∥XT W −Y

∥∥
2,1

+ γ ‖W‖2,1 . (10)

It seems that solving this joint `2,1-norm problem is difficult as both of the terms are non-smooth.
Surprisingly, we will show in the next section that the problem can be solved using a simple yet
efficient algorithm.

4 An Efficient Algorithm

4.1 Reformulation as A Constrained Problem

First, the problem in Eq. (10) is equivalent to

min
W

1
γ

∥∥XT W −Y
∥∥

2,1
+ ‖W‖2,1 , (11)

which is further equivalent to

min
W,E

‖E‖2,1 + ‖W‖2,1 s.t. XT W + γE = Y. (12)

Rewriting the above problem as

min
W,E

∥∥∥∥
[

W
E

]∥∥∥∥
2,1

s.t.
[

XT γI
] [

W
E

]
= Y, (13)

where I ∈ Rn×n is an identity matrix. Denote m = n + d. Let A =
[

XT γI
] ∈ Rn×m and

U =
[

W
E

]
∈ Rm×c, then the problem in Eq. (13) can be written as:

min
U
‖U‖2,1 s.t. AU = Y (14)

This optimization problem Eq. (14) has been widely used in the Multiple Measurement Vector
(MMV) model in signal processing community. It was generally felt that the `2,1-norm minimization
problem is much more difficult to solve than the `1-norm minimization problem. Existing algorithms
usually reformulate it as a second-order cone programming (SOCP) or semidefinite programming
(SDP) problem, which can be solved by interior point method or the bundle method. However, solv-
ing SOCP or SDP is computationally very expensive, which limits their use in practice. Recently,
an efficient algorithm was proposed to solve the specific problem Eq. (14) by complicatedly refor-
mulating the problem as a min-max problem and then applying the proximal method to solve it [25].
The reported results show that the algorithm is more efficient than existing algorithms. However, the
algorithm is a gradient descent type method and converges very slow. Moreover, the algorithm is de-
rived to solve the specific problem, and can not be applied directly to solve other general `2,1-norm
minimization problem.

In the next subsection, we will propose a very simple but at the same time much more efficient
method to solve this problem. Theoretical analysis guarantees that the proposed method will con-
verge to the global optimum. More importantly, this method is very easy to implement and can be
readily used to solve other general `2,1-norm minimization problem.

4.2 An Efficient Algorithm to Solve the Constrained Problem

The Lagrangian function of the problem in Eq. (14) is

L(U) = ‖U‖2,1 − Tr(ΛT (AU−Y)). (15)
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Taking the derivative of L(U) w.r.t U, and setting the derivative to zero, we have:
∂L(U)

∂U
= 2DU−AT Λ = 0, (16)

where D is a diagonal matrix with the i-th diagonal element as1

dii =
1

2 ‖ui‖2
. (17)

Left multiplying the two sides of Eq. (16) by AD−1, and using the constraint AU = Y, we have:

2AU−AD−1AT Λ = 0
⇒ 2Y −AD−1AT Λ = 0
⇒ Λ = 2(AD−1AT )−1Y (18)

Substitute Eq. (18) into Eq. (16), we arrive at:

U = D−1AT (AD−1AT )−1Y. (19)

Since the problem in Eq. (14) is a convex problem, U is a global optimum solution to the problem
if and only if the Eq. (19) is satisfied. Note that D is dependent to U and thus is also a unknown
variable. We propose an iterative algorithm in this paper to obtain the solution U such that Eq. (19)
is satisfied, and prove in the next subsection that the proposed iterative algorithm will converge to
the global optimum.

The algorithm is described in Algorithm 1. In each iteration, U is calculated with the current D,
and then D is updated based on the current calculated U. The iteration procedure is repeated until
the algorithm converges.

Data: A ∈ Rn×m, Y ∈ Rn×c

Result: U ∈ Rm×c

Set t = 0. Initialize Dt ∈ Rm×m as an identity matrix
repeat

Calculate Ut+1 = D−1
t AT (AD−1

t AT )−1Y.
Calculate the diagonal matrix Dt+1, where the i-th diagonal element is 1

2‖ui
t+1‖2

.

t = t + 1.
until Converges

Algorithm 1: An efficient iterative algorithm to solve the optimization problem in Eq. (14).

4.3 Algorithm Analysis

The Algorithm 1 monotonically decreases the objective of the problem in Eq. (14) in each iteration.
To prove it, we need the following lemma:
Lemma 1. For any nonzero vectors u,ut ∈ Rc, the following inequality holds:

‖u‖2 −
‖u‖22

2 ‖ut‖2
≤ ‖ut‖2 −

‖ut‖22
2 ‖ut‖2

. (20)

Proof. Beginning with an obvious inequality (
√

v −√vt)2 ≥ 0, we have

(
√

v −√vt)
2 ≥ 0 ⇒ v − 2

√
vvt + vt ≥ 0 ⇒ √

v − v

2
√

vt
≤
√

vt

2
⇒ √

v − v

2
√

vt
≤ √

vt − vt

2
√

vt
(21)

Substitute the v and vt in Eq. (21) by ‖u‖22 and ‖ut‖22 respectively, we arrive at the Eq. (20).
1When ui = 0, then dii = 0 is a subgradient of ‖U‖2,1 w.r.t. ui. However, we can not set dii = 0 when

ui = 0, otherwise the derived algorithm can not be guaranteed to converge. Two methods can be used to solve
this problem. First, we will see from Eq.(19) that we only need to calculate D−1, so we can let the i-th element
of D−1 as 2

∥∥ui
∥∥

2
. Second, we can regularize dii as dii = 1

2
√

(ui)T ui+ς
, and the derived algorithm can be

proved to minimize the regularized `2,1-norms of U (defined as
n∑

i=1

√
(ui)T ui + ς) instead of the `2,1-norms

of U. It is easy to see that the regularized `2,1-norms of U approximates the `2,1-norms of U when ς → 0.
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The convergence of the Algorithm 1 is summarized in the following theorem:
Theorem 1. The Algorithm 1 will monotonically decrease the objective of the problem in Eq. (14)
in each iteration, and converge to the global optimum of the problem.

Proof. It can easily verified that Eq. (19) is the solution to the following problem:
min
U

Tr(UT DU) s.t. AU = Y (22)

Thus in the t iteration,
Ut+1 = arg

U
min

AU=Y
TrUT DtU, (23)

which indicates that
Tr(UT

t+1DtUt+1) ≤ Tr(UT
t DtUt). (24)

That is to say,
m∑

i=1

∥∥ui
t+1

∥∥2

2

2
∥∥ui

t

∥∥
2

≤
m∑

i=1

∥∥ui
t

∥∥2

2

2
∥∥ui

t

∥∥
2

, (25)

where vectors ui
t and ui

t+1 denote the i-th row of matrices Ut and Ut+1, respectively.

On the other hand, according to Lemma 1, for each i we have

∥∥ui
t+1

∥∥
2
−

∥∥ui
t+1

∥∥2

2

2
∥∥ui

t

∥∥
2

≤ ∥∥ui
t

∥∥
2
−

∥∥ui
t

∥∥2

2

2
∥∥ui

t

∥∥
2

. (26)

Thus the following inequality holds:
m∑

i=1

(
∥∥ui

t+1

∥∥
2
−

∥∥ui
t+1

∥∥2

2

2
∥∥ui

t

∥∥
2

)
≤

m∑

i=1

(
∥∥ui

t

∥∥
2
−

∥∥ui
t

∥∥2

2

2
∥∥ui

t

∥∥
2

)
. (27)

Combining Eq. (25) and Eq. (27), we arrive at
m∑

i=1

∥∥ui
t+1

∥∥
2
≤

m∑

i=1

∥∥ui
t

∥∥
2
. (28)

That is to say,
‖Ut+1‖2,1 ≤ ‖Ut‖2,1 . (29)

Thus the Algorithm 1 will monotonically decrease the objective of the problem in Eq. (14) in each
iteration t. In the convergence, Ut and Dt will satisfy the Eq. (19). As the problem in Eq. (14)
is a convex problem, satisfying the Eq. (19) indicates that U is a global optimum solution to the
problem in Eq. (14). Therefore, the Algorithm 1 will converge to the global optimum of the problem
(14).

Note that in each iteration, the Eq. (19) can be solved efficiently. First, D is a diagonal matrix and
thus D−1 is also diagonal with the i-th diagonal element as d−1

ii = 2
∥∥ui

∥∥
2
. Second, the term

Z = (AD−1AT )−1Y in Eq. (19) can be efficiently obtained by solving the linear equation:
(AD−1AT )Z = Y. (30)

Empirical results show that the convergence is fast and only a few iterations are needed to converge.
Therefore, the proposed method can be applied to large scale problem in practice.

It is worth to point out that the proposed method can be easily extended to solve other `2,1-norm
minimization problem. For example, considering a general `2,1-norm minimization problem as
follows:

min
U

f(U) +
∑

k

‖AkU + Bk‖2,1 s.t. U ∈ C (31)

The problem can be solved by solve the following problem iteratively:

min
U

f(U) +
∑

k

Tr((AkU + Bk)T Dk(AkU + Bk)) s.t. U ∈ C (32)

where Dk is a diagonal matrix with the i-th diagonal element as 1
2‖(AkU+Bk)i‖2 . Similar theoretical

analysis can be used to prove that the iterative method will converge to a local minimum. If the
problem Eq. (31) is a convex problem, i.e., f(U) is a convex function and C is a convex set, then the
iterative method will converge to the global minimum.
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(c) LUNG
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(d) Carcinomas
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(e) PROSTATE-GE
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(f) PROSTATE-MS

Figure 1: Classification accuracy comparisons of six feature selection algorithms on 6 data sets.
SVM with 5-fold cross validation is used for classification. RFS is our method.

5 Experimental Results

In order to validate the performance of our feature selection method, we applied our method into two
bioinformatics applications, gene expression and mass spectrometry classifications. In our experi-
ments, we used five publicly available microarray data sets and one Mass Spectrometry (MS) data
sets: ALLAML data set [6], the malignant glioma (GLIOMA) data set [17], the human lung carcino-
mas (LUNG) data set [2], Human Carcinomas (Carcinomas) data set [24, 27], Prostate Cancer gene
expression (Prostate-GE) data set [23] for microarray data; and Prostate Cancer (Prostate-MS) [20]
for MS data. The Support Vector Machine (SVM) classifier is employed to these data sets, using
5-fold cross-validation.

5.1 Data Sets Descriptions

We give a brief description on all data sets used in our experiments as follows.

ALLAML data set contains in total 72 samples in two classes, ALL and AML, which contain 47
and 25 samples, respectively. Every sample contains 7,129 gene expression values.

GLIOMA data set contains in total 50 samples in four classes, cancer glioblastomas (CG), non-
cancer glioblastomas (NG), cancer oligodendrogliomas (CO) and non-cancer oligodendrogliomas
(NO), which have 14, 14, 7,15 samples, respectively. Each sample has 12625 genes. Genes with
minimal variations across the samples were removed. For this data set, intensity thresholds were
set at 20 and 16,000 units. Genes whose expression levels varied < 100 units between samples, or
varied < 3 fold between any two samples, were excluded. After preprocessing, we obtained a data
set with 50 samples and 4433 genes.

LUNG data set contains in total 203 samples in five classes, which have 139, 21, 20, 6,17 samples,
respectively. Each sample has 12600 genes. The genes with standard deviations smaller than 50
expression units were removed and we obtained a data set with 203 samples and 3312 genes.

Carcinomas data set composed of total 174 samples in eleven classes, prostate, bladder/ureter,
breast, colorectal, gastroesophagus, kidney, liver, ovary, pancreas, lung adenocarcinomas, and lung
squamous cell carcinoma, which have 26, 8, 26, 23, 12, 11, 7, 27, 6, 14, 14 samples, respectively.
In the original data [24], each sample contains 12533 genes. In the preprocessed data set [27], there
are 174 samples and 9182 genes.
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Table 1: Classification Accuracy of SVM using 5-fold cross validation. Six feature selection meth-
ods are compared. RF: ReliefF, F-s: F-score, IG: Information Gain, and RFS: our method.

Average accuracy of top 20 features (%) Average accuracy of top 80 features (%)

RF F-s T-test IG mRMR RFS RF F-s T-test IG mRMR RFS
ALLAML 90.36 89.11 92.86 93.21 93.21 95.89 95.89 96.07 94.29 95.71 94.46 97.32
GLIOMA 50 50 56 60 62 74 54 60 58 66 66 70
LUNG 91.68 87.7 89.22 93.1 92.61 93.63 93.63 91.63 90.66 95.1 94.12 96.07
Carcinom. 79.88 65.48 49.9 85.09 78.22 91.38 90.24 83.33 68.91 89.65 87.92 93.66
Pro-GE 92.18 95.09 92.18 92.18 93.18 95.09 91.18 93.18 93.18 89.27 86.36 95.09
Pro-MS 76.41 98.89 95.56 98.89 95.42 98.89 89.93 98.89 94.44 98.89 93.14 100
Average 80.09 81.04 79.29 87.09 85.78 91.48 85.81 87.18 83.25 89.10 87 92.02

Prostate-GE data set has in total 102 samples in two classes tumor and normal, which have 52 and
50 samples, respectively. The original data set contains 12600 genes. In our experiment, intensity
thresholds were set at 100 C16000 units. Then we filtered out the genes with max/min ≤ 5 or
(max-min) ≤ 50. After preprocessing, we obtained a data set with 102 samples and 5966 genes.

Prostate-MS data can be obtained from the FDA-NCI Clinical Proteomics Program Databank [20].
This MS data set consists of 190 samples diagnosed as benign prostate hyperplasia, 63 samples
considered as no evidence of disease, and 69 samples diagnosed as prostate cancer. The samples
diagnosed as benign prostate hyperplasia as well as samples having no evidence of prostate cancer
were pooled into one set making 253 control samples, whereas the other 69 samples are the cancer
samples.

5.2 Classification Accuracy Comparisons

All data sets are standardized to be zero-mean and normalized by standard deviation. SVM classifier
has been individually performed on all data sets using 5-fold cross-validation. We utilize the linear
kernel with the parameter C = 1. We compare our feature selection method (called as RFS) to
several popularly used feature selection methods in bioinformatics, such as F -statistic [4], reliefF
[11, 13], mRMR [19], t-test, and information gain [21]. Because the above data sets are for multi-
class classification problem, we don’t compare to `1-SVM, HHSVM and other methods that were
designed for binary classification.

Fig. 1 shows the classification accuracy comparisons of all five feature selection methods on six data
sets. Table 1 shows the detailed experimental results using SVM. We compute the average accuracy
using the top 20 and top 80 features for all feature selection approaches. Obviously our approaches
outperform other methods significantly. With top 20 features, our method is around 5%-12% better
than other methods all six data sets.

6 Conclusions

In this paper, we proposed a new efficient and robust feature selection method with emphasizing joint
`2,1-norm minimization on both loss function and regularization. The `2,1-norm based regression
loss function is robust to outliers in data points and also efficient in calculation. Motivated by
previous work, the `2,1-norm regularization is used to select features across all data points with
joint sparsity. We provided an efficient algorithm with proved convergence. Our method has been
applied into both genomic and proteomic biomarkers discovery. Extensive empirical studies have
been performed on two bioinformatics tasks, six data sets, to demonstrate the performance of our
method.
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