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Proof Details

For Proposition 1, recall the definitions from the main body of the paper (using the same equation
numbers as in the main body)

ℓc(y,x
⊤θ) = min(1, ℓ(y,x⊤θ)) (2)

ℓρ(y,x
⊤θ) = ρℓ(y,x⊤θ) + 1− ρ. (4)

Proposition 1 For any loss ℓ(y,x⊤θ), we have ℓc(y,x
⊤θ) = min0≤ρ≤1 ℓρ(y,x

⊤θ).

Proof of Proposition 1

Notice that d
dρ
ℓρ(y,x

⊤θ) = ℓ(y,x⊤θ) − 1. Hence if ℓ(y,x⊤θ) > 1, then ρ = 0 will be the

optimizer, obtaining a minimum objective value of 1. Otherwise if ℓ(y,x⊤θ) < 1, then ρ = 1 will
be the optimizer, obtaining a minimum objective value of ℓ(y,x⊤θ). If ℓ(y,x⊤θ) = 1, then all
feasible values of ρ yield the same objective value of 1.

To prove Lemma 1, recall the definition from the main body of the paper

ℓ∗(y, α) = sup
θ

αx⊤θ − ℓ(y,x⊤θ). (8)

Lemma 1 For any convex differentiable loss function ℓ(y,x⊤θ) such that the level sets of ℓα(v) =
αx⊤(θ − v) + ℓ(y,x⊤v) are bounded

ℓ(y,x⊤θ) = sup
α

αx⊤θ − ℓ∗(y, α). (9)

Proof of Lemma 1

First note that
sup
α

αx⊤θ − ℓ∗(y, α) = sup
α

αx⊤θ − sup
v

αx⊤v − ℓ(y,x⊤v) (18)

= sup
α

min
v

αx⊤(θ − v) + ℓ(y,x⊤v) (19)

by the definition (8).2 Since the inner objective has bounded level sets in v for all α by assumption,
strong maximin duality holds in this case. [4, pp.281-2]. Hence

(19) = min
v

sup
α

αx⊤(θ − v) + ℓ(y,x⊤v) (20)

Finally, notice that the inner supremum in (20) always achieves +∞ unless v = θ (or θ⊤x = 0),
therefore the outer minimization in v must select v = θ, yielding the final objective value ℓ(y,x⊤θ).

For the proof of Theorem 1, first recall the main optimization objective and its equivalents that were
formulated in the main body of the paper (using the same equation numbers as the main body)

min
θ

γ

2
‖θ‖22 +

n
∑

i=1

ℓc(yi, Xi:θ) (3)

= min
θ

min
0≤ρ≤1

γ

2
‖θ‖22 +

n
∑

i=1

ρiℓ(yi, Xi:θ) + 1− ρi (5)

= min
0≤ρ≤1

min
θ

ρ⊤ℓ(y, Xθ) + 1⊤(1− ρ) +
γ

2
‖θ‖2 (6)

2We are using the fact that the inner objective is convex and has bounded level sets to note that the inner
infimum can always be acheived, hence it can be re-expressed as a min.
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Theorem 1 Let K = XX⊤ denote the kernel matrix over input data. Then

(6) = min
− 1√

n+1
1≤ν≤ 1√

n+1
1, ν1=

1√
n+1

, ‖ν‖=1

sup
α

−(n+ 1) ν⊤T (α)ν (10)

where ν is an (n+ 1)× 1 vector, α is an n× 1 vector, and the matrix T (α) is given by

T (α) =
1

8γ

[

1⊤

I

]

∆(α)K∆(α) [1 I ] +
1

4

[

2(1⊤ℓ∗(y,α)− n) (ℓ∗(y,α) + 1)⊤

ℓ∗(y,α) + 1 0

]

. (11)

Proof of Theorem 1

First note that applying (9) from Lemma 1 to the main objective (6) yields

(6) = min
0≤ρ≤1

min
θ

ρ⊤ℓ(y, Xθ) + 1⊤(1− ρ) +
γ

2
‖θ‖2

= min
0≤ρ≤1

min
θ

sup
α
−ρ⊤ℓ∗(y,α) +α⊤∆(ρ)Xθ + 1⊤(1− ρ) +

γ

2
θ⊤θ (21)

where ℓ∗(y,α) denotes the n × 1 vector of dual values over training examples and ∆(ρ) denotes
putting ρ on the main diagonal of a square matrix.

Next, observe that the inner minimization and maximization can be exchanged since the inner objec-
tive has bounded level sets in θ, meaning that strong minmax duality holds [4, pp.281-2]. Making
the exchange then solving for the critical point in θ yields

θ = − 1

γ
X⊤∆(ρ)α (12)

(the objective is convex in θ). Substituting this result back into (21) yields

(6) = min
0≤ρ≤1

sup
α
−ρ⊤ℓ∗(y,α) + 1⊤(1− ρ)− 1

2γ
ρ⊤∆(α)XX⊤∆(α)ρ. (22)

From here, deriving the reformulated objective merely involves algebraic manipulation. Consider

R = −ρ⊤ℓ∗(y,α)− 1⊤(ρ− 1)− 1

2γ
ρ⊤∆(α)K∆(α)ρ (23)

= −
(

a+ ρ⊤b+ ρ⊤Cρ
)

(24)

where a = −n, b = ℓ∗(y,α) + 1, C = 1

2γ
∆(α)K∆(α), and K = XX⊤. Now let η = 2ρ − 1,

which implies ρ = 1

2
(η + 1). Therefore, one can rewrite the objective as

R = −
(

a+ 1

2
η⊤b+ 1

2
1⊤b+ 1

4
η⊤Cη + 1

2
η⊤C1+ 1

4
1⊤C1

)

(25)

= −
(

p+ η⊤s+ η⊤Sη
)

(26)

where p = a+ 1

2
1⊤b+ 1

4
1⊤C1, s = 1

2
b+ 1

2
C1, and S = 1

4
C. Now note that if we let

v =

[

1
η

]

(27)

the objective can be rewritten as

R = −v⊤T (α)v (28)

where

T (α) =

[

p 1

2
s⊤

1

2
s S

]

(29)

=
1

4

[

1⊤

I

]

C [ 1 I ] +
1

4

[

4a+ 21⊤b b⊤

b 0

]

(30)

= (11).
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Finally, introduce the rescaling ν = 1√
n+1

v, so that the objective becomes

R = −(n+ 1) ν⊤T (α)ν (31)

which gives the objective used in (10).

Next, to derive the transformed constraints, notice that − 1√
n+1

1 ≤ ν ≤ 1√
n+1

1 and ν1 = 1√
n+1

in (10) simply follow from the original constraints 0 ≤ ρ ≤ 1 in (6) plus the additional constraint
v1 = 1 introduced in (27), via the substitution chain ρ 7→ η 7→ v 7→ ν given above.

The introduction of the final constraint ‖ν‖ = 1 requires an additional argument. Recall from the
proof of Proposition 1 that the solution to (6) always has the property that ρ ∈ {0, 1}n, hence adding
this constraint to (6) does not change its optimal objective value. Given the above substitutions, im-
posing this discreteness constraint on ρ is equivalent to asserting νi ∈ {± 1√

n+1
} for all i. However,

given the box constraints that have already been established on ν, this reduces to enforcing ‖ν‖ = 1.

Before proving Theorem 2 we need to establish some useful relationships between the translated
versions of the vectors and matrices introduced above.

Lemma 2 Let M∗ denote the matrix that participates in the optimal solution of (16). Consider the
rescaling M = (n + 1)M∗. If we define m = M:1 (i.e. the first column of M ), and m̂ = m2:n+1

(i.e. the subvector of m such that m⊤ = [1 m̂⊤]), then from the feasibility constraints M∗ � 0 and
δ(M∗) = 1

n+1
1 it follows that M � 0, δ(M) = 1, −1 ≤ Mij ≤ 1, m1 = 1, and −1 ≤ mi ≤ 1

for all i, j.

From the definitions M∗ =
∑k

j=1
σ∗jν

∗
jν
∗
j
⊤ and ν̄∗ =

∑k

j=1
σ∗jν

∗
j given at the end of Section 4,

and the fact that M∗ satisfies the constraints in (16), if one defines vj = 1

ν∗
1j

ν∗j and σj = σ∗j , it

follows that v1j = 1, σj ≥ 0,
∑

j σj = 1, and therefore M =
∑

j σjvjv
⊤
j .

We will also use the definitions ηj = v2:n+1,j and η̄ =
∑

j σjηj , so that vj = [1 η⊤j ]
⊤, as in (27).

Finally, consider the definition of the rounded solution ρ̂ = 1

2
(1+ν̄∗2:n+1

√
n+ 1) given at the end of

Section 4. Furthermore, define ρj =
1

2
(1+ηj) and ρ̄ =

∑

j σjρj . From the collection of definitions

and properties above, one can determine that ρ̂ = 1

2
(1 + ν̄∗2:n+1

√
n+ 1) = 1

2
(1 + m2:n+1) =

1

2
(1+ m̂) = 1

2
(1+ η̄) = ρ̄. It also follows that 0 ≤ ρ̂i ≤ 1 for all i.

Theorem 2 (Part 1) R̂(ρ̂,α∗) ≤ 2R(ρ∗,θ∗) ≤ 2n, where R̂(ρ̂,α∗) is the value of (10) at the
rounded solution ρ̂ = 1

2
(1+ ν̄∗2:n+1

√
n+ 1).

Proof of Theorem 2 (Part 1)

Let (α∗,M∗) denote the optimal solution to the relaxation (15) and let (ρ∗,θ∗) denote the optimal
solution to the target problem (6). Consider the rescaling M = (n + 1)M∗ discussed in Lemma 2
above, so that M � 0 and δ(M) = 1. Define

R̂(M,α∗) = −tr(MT (α∗)) (32)

which gives the value of the relaxed objective achieved by (M∗,α∗) in (15) where M∗ = M/(n+
1). Recall that R(ρ∗,θ∗) denotes the optimum objective value obtained in (6). It then immediately
follows that

R̂(M,α∗) ≤ R(ρ∗,θ∗) ≤ n. (33)

since the optimal relaxed objective value is a lower bound by construction (13), and the second
inequality follows trivially from the observation that R(0,0) = n. Our goal is to analyze the relaxed
objective R̂(M,α∗) at the saddle point (M,α∗) to bound the effects of rounding the solution to ρ̂.

We need some preliminary definitions to make things clearer. From the definition given in (11)
rewrite T (α) as

T (α) = D(α) +G(α)− P (34)
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where

D(α) =
1

4

[

21⊤ℓ∗(y,α) ℓ∗(y,α)⊤

ℓ∗(y,α) 0

]

(35)

G(α) =
1

4

[

1⊤

I

]

C(α) [ 1 I ] (36)

C(α) =
1

2γ
∆(α)K∆(α) (37)

P =
1

4

[

2n −1⊤
−1 0

]

. (38)

One can then obtain a straightforward decompostion

R̂(M,α∗) = −tr(MT (α∗)) (39)

= tr (M(−D(α∗)−G(α∗) + P )) (40)

= tr (M(−D(α∗)− 2G(α∗))) + tr(MG(α∗)) + tr(MP ). (41)

They key property of this decomposition is that each term must be nonnegative. That is, note that

tr(MP ) ≥ 0 (42)

tr(MG(α∗)) ≥ 0 (43)

since, in the first case, M11 = 1 and −1 ≤ Mij ≤ 1, and in the second case, G(α∗) � 0. Also, by
Lemma 3 below we have

tr (M(−D(α∗)− 2G(α∗))) ≥ 0. (44)

Therefore, since each term in (41) is nonnegative and their sum is at most R(ρ∗,θ∗) (established in
(33)), it must follow that each individual term in (41) is upper bounded by R(ρ∗,θ∗). In particular

tr(MG(α∗)) ≤ R(ρ∗,θ∗). (45)

Finally, to bound the objective value obtained by ρ̂, we will work instead with its translation m =
[1 (2ρ̂− 1)⊤] = M:1, defined in Lemma 2 above. In particular, using the definition (32) let

R̂(ρ̂,α∗) = R̂(mm⊤,α∗) = −m⊤T (α∗)m (46)

where m = [1 (2ρ̂ − 1)⊤] = M:1 (the latter equality follows from Lemma 2 above). Note that by
the special structure of D(α∗) and P we have

tr(MD(α∗)) = m⊤D(α∗)m (47)

tr(MP ) = m⊤Pm (48)

Also since m⊤T (α∗)m ≤ tr(MT (α∗)) by the optimality of M∗ = M/(n+1) (see (13)) we must
also have

0 ≤ m⊤G(α∗)m ≤ tr(M∗G(α∗)) ≤ R(ρ∗,θ∗). (49)

From (47)–(49) we conclude

R̂(ρ̂,α∗) = −m⊤T (α∗)m (50)

= −m⊤ (D(α∗) +G(α∗)− P )m (51)

≤ −m⊤ (D(α∗)− P )m (52)

= −tr (M(D(α∗)− P )) (53)

= −tr (M(T (α∗)−G(α∗))) (54)

= −tr(M(T (α∗)) + tr(MG(α∗)) (55)

≤ 2R(ρ∗,θ∗). (56)
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Lemma 3 tr (M(−D(α∗)− 2G(α∗))) ≥ 0.

Proof of Lemma 3

The proof of this lemma uses the definitions and properties from Lemma 2 above. Note that by the
special structure of D(α∗) and G(α∗) we have

tr(M(D(α∗) + 2G(α∗)) (57)

=
∑

j

σjv
⊤
j (D(α∗) + 2G(α∗))vj (58)

= 1

2
1⊤ℓ∗(y,α∗) + 1

2
η̄⊤ℓ∗(y,α∗) + 1

2
1⊤C(α∗)1+ η̄⊤C(α∗)1+ 1

2

∑

j

σjη
⊤
jC(α∗)ηj (59)

= ρ̄⊤ℓ∗(y,α∗) + 2
∑

j

σjρ
⊤
j C(α∗)ρj (60)

= ρ̄⊤ℓ∗(y,α∗) +
1

γ

∑

j

σjρ
⊤
j ∆(α∗)K∆(α∗)ρj (61)

= ρ̄⊤ℓ∗(y,α∗) +
1

γ

∑

j

σjα
∗⊤∆(ρj)K∆(ρj)α

∗ (62)

= ρ̄⊤ℓ∗(y,α∗) +
1

γ
α∗⊤K̄α∗ (63)

where

K̄ =
∑

j

σj∆(ρj)K∆(ρj) (64)

Note that K̄ � 0 since σj ≥ 0.

It remains to show (63) is nonpositive. Recall that α∗ was assumed to maximize (14), which means

−ρ̄⊤ℓ∗(y,α∗)− 1

2γ
α∗⊤K̄α∗ (65)

= max
α
−ρ̄⊤ℓ∗(y,α)− 1

2γ
α⊤K̄α (66)

= max
α

min
θ

ρ̄⊤ℓ(y, Xθ)−α⊤∆(ρ̄)Xθ − 1

2γ
α⊤K̄α (67)

= min
θ

max
α

ρ̄⊤ℓ(y, Xθ)−α⊤∆(ρ̄)Xθ − 1

2γ
α⊤K̄α (68)

= min
θ

ρ̄⊤ℓ(y, Xθ) +
γ

2
θ⊤X⊤∆(ρ̄)K̄+∆(ρ̄)Xθ (69)

≥ 0

where we have used the fact that ρ̂ ≥ 0 and

−ρ̄⊤ℓ∗(y,α) = min
θ

ρ̄⊤ℓ(y, Xθ)−α⊤∆(ρ̄)Xθ (70)

K̄α∗ = −γ∆(ρ̄)Xθ∗. (71)

Unfortunately, (65) is not quite the same as (63) (note the γ verus 2γ difference in the denominators).
However, given the above results for (65) we can now return to (63) and observe

−ρ̄⊤ℓ∗(y,α∗)− 1

γ
α∗⊤K̄α∗ (72)

= −ρ̄⊤ℓ∗(y,α∗) +α∗⊤∆(ρ̄)Xθ∗ by (71) (73)

= ρ̄⊤ℓ(y, Xθ∗)−α∗⊤∆(ρ̄)Xθ∗ +α∗⊤∆(ρ̄)Xθ∗ by (70) (74)

= ρ̄⊤ℓ(y, Xθ∗) (75)

≥ 0.
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Theorem 2 (Part 2) If the unclipped loss ℓ(y, ŷ) is b-Lipschitz in ŷ for b < ∞ and either y or K
remains bounded, then there exists a c <∞ such that R(ρ̂, θ̂) ≤ c.

Proof of Theorem 2 (Part 2)

For simplicity we will show the proof for the case when ℓ(y, ŷ) is strictly convex in ŷ. Recall that
(M∗,α∗) solves the saddle point problem (14). Therefore, given M∗, the resulting objective must
be at equilibrium in α∗, hence

∇αR̂(M∗,α∗) = −∆(ρ̂)ℓ∗(y,α∗)′ − 1

γ
K̄α∗ = 0 (76)

where ℓ∗(y,α∗)′ denotes the vector of derivatives of ℓ∗(yi, α∗i )
′ with respect to αi at α∗i , and K̄

is defined in (64). Therefore we have that −∆(ρ̂)ℓ∗(y,α∗)′ = K̄α∗/γ. (The strict convexity of
ℓ(y, ŷ) in ŷ ensures that ℓ∗(y, α) is smooth in α, hence the derivative exists at α∗ [22, Section 26].)

Now consider the definition

b∗ = −∆(ρ̂)ℓ∗(y,α∗)′ =
1

γ
K̄α∗. (77)

Note that under the assumptions of the theorem, there must exist a constant c < ∞ such that
‖b∗‖∞ ≤ c. We prove this fact in two cases. First, consider the case where y is bounded.
Since ℓ(y, ŷ) is b-Lipschitz in ŷ by assumption, it follows that ‖α∗‖∞ ≤ b [22, Corollary 13.3.3].
Since both y and α∗ are bounded, ℓ∗(y,α∗)′ must be bounded (since it was determined above
that ℓ∗(y, α) is smooth in α). Finally, 0 ≤ ρ̂ ≤ 1 was established in Lemma 2 above; therefore
b∗ is bounded. Second, consider the case where K is bounded. Then K̄ must be bounded, since
both σj and ρj are bounded. Finally, since α∗ is bounded (as established above) it follows that
b∗ = K̄α∗/γ is bounded.

Finally, consider the objective value obtained by fixing ρ̂ and re-optimizing θ

R(ρ̂, θ̂) = min
θ

R(ρ̂,θ) (78)

= min
θ

ρ̂⊤ℓ(y, Xθ) +
γ

2
‖θ‖2 + 1⊤(1− ρ̂) (79)

= max
‖α‖∞≤b

−ρ̂⊤ℓ∗(y,α)− 1

2γ
α⊤∆(ρ̂)K∆(ρ̂)α+ 1⊤(1− ρ̂) (80)

≤ max
‖α‖∞≤b

−ρ̂⊤ℓ∗(y,α) + 1⊤(1− ρ̂) (81)

≤ max
‖α‖∞≤b

−ρ̂⊤ℓ∗(y,α∗) + (α−α∗)⊤b∗ + 1⊤(1− ρ̂) (82)

= max
‖α‖∞≤b

−ρ̂⊤ℓ∗(y,α∗)− 1

γ
α∗⊤K̄α∗ +α⊤b∗ + 1⊤(1− ρ̂) (83)

Note that by Lemma 3 and the observation after (44) we have that the two first terms in (83) are
bounded by 0 ≤ −ρ̂⊤ℓ∗(y,α∗)− 1

γ
α∗⊤K̄α∗ ≤ R(ρ∗,θ∗). Therefore

(83) ≤ max
‖α‖∞≤b

R(ρ∗,θ∗) +α⊤b∗ + 1⊤(1− ρ̂) (84)

≤ max
‖α‖∞≤b

2n+α⊤b∗ (85)

Since it was established above that b∗ is bounded, it follows that R(ρ̂, θ̂) is bounded.
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