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Abstract

Motivated from real world problems, like object categorization, we study a par-
ticular mixed-norm regularization for Multiple Kernel Learning (MKL). It is as-
sumed that the given set of kernels are grouped into distinct components where
each component is crucial for the learning task at hand. The formulation hence
employs l∞ regularization for promoting combinations at the component level and
l1 regularization for promoting sparsity among kernels in each component. While
previous attempts have formulated this as a non-convex problem, the formula-
tion given here is an instance of non-smooth convex optimization problem which
admits an efficient Mirror-Descent (MD) based procedure. The MD procedure
optimizes over product of simplexes, which is not a well-studied case in literature.
Results on real-world datasets show that the new MKL formulation is well-suited
for object categorization tasks and that the MD based algorithm outperforms state-
of-the-art MKL solvers like simpleMKL in terms of computational effort.

1 Introduction

In this paper the problem of Multiple Kernel Learning (MKL) is studied where the given kernels are
assumed to be grouped into distinct components and each component is crucial for the learning task
in hand. The focus of this paper is to study the formalism, algorithmics of a specific mixed-norm
regularization based MKL formulation suited for such tasks.

Majority of existing MKL literature have considered employing a block l1 norm regularization lead-
ing to selection of few of the given kernels [8, 1, 16, 14, 20] . Such formulations tend to select
the “best” among the given kernels and consequently the decision functions tend to depend only on
the selected kernel. Recently [17] extended the framework of MKL to the case where kernels are
partitioned into groups and introduces a generic mixed-norm regularization based MKL formulation
in order to handle groups of kernels. Again the idea is to promote sparsity leading to low number of
kernels. This paper differs from [17] by assuming that every component (group of kernels) is highly
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crucial for success of the learning task. It is well known in optimization literature that l∞ regulariza-
tions often promote combinations with equal preferences and l1 regularizations lead to selections.
The proposed MKL formulation hence employs l∞ regularization and promotes combinations of
kernels at the component level. Moreover it employs l1 regularization for promoting sparsity among
kernels in each component.

The formulation studied here is motivated by real-world learning applications like object categoriza-
tion where multiple feature representations need to be employed simultaneously for achieving good
generalization. Combining feature descriptors using the framework of Multiple Kernel Learning
(MKL) [8] for object categorization has been a topic of interest for many recent studies [19, 13].
For e.g., in the case of flower classification feature descriptors for shape, color and texture need
to be employed in order to achieve good visual discrimination as well as significant within-class
variation [12]. A key finding of [12] is the following: in object categorization tasks, employing few
of the feature descriptors or employing a canonical combination of them often leads to sub-optimal
solutions. Hence, in the framework of MKL, employing a l1 regularization, which is equivalent to
selecting one of the given kernels, as well as employing a l2 regularization, which is equivalent to
working with a canonical combination of the given kernels, may lead to sub-optimality. This im-
portant finding clearly motivates the use of l∞ norm regularization for combining kernels generated
from different feature descriptors and l1 norm regularization for selecting kernels generated from
the same feature descriptor. Hence, by grouping kernels generated from the same feature descriptor
together and employing the new MKL formulation, classifiers which are potentially well-suited for
object categorization tasks can be built.

Apart from the novel MKL formulation the main contribution of the paper is a highly efficient
algorithm for solving it. Since the formulation is an instance of a Second Order Cone Program
(SOCP), it can be solved using generic interior point algorithms. However it is impractical to work
with such solvers even for moderately large number of data points and kernels. Also the generic
wrapper approach proposed in [17] cannot be employed as it solves a non-convex variant of the
proposed (convex) formulation. The proposed algorithm employs mirror-descent [3, 2, 9] leading to
extremely scalable solutions.

The feasibility set for the minimization problem tackled by Mirror-Descent (MD) turns out to be
direct product of simplexes, which is not a standard set-up discussed in optimization literature. We
employ a weighted version of the entropy function as the prox-function in the auxiliary problem
solved by MD at each iteration and justify its suitability for the case of direct product of simplexes.
The mirror-descent based algorithm presented here is also of independent interest to the MKL com-
munity as it can solve the traditional MKL problem; namely the case when the number of groups is
unity. Empirically we show that the mirror-descent based algorithm proposed here scales better than
the state-of-the-art steepest descent based algorithms [14].

The remainder of this paper is organized as follows: in section 2, details of the new MKL formulation
and its dual are presented. The mirror-descent based algorithm which efficiently solves the dual is
presented in section 3. This is followed by a summary of the numerical experiments carried for
verifying the major claims of the paper. In particular, the empirical findings are a) the new MKL
formulation is well-suited for object categorization tasks b) the MD based algorithm scales better
than state-of-the-art gradient descent methods (e.g. simpleMKL) in solving the special case where
number of components (groups) of kernels is unity.

2 Mixed-norm based MKL Formulation

This section presents the novel mixed-norm regularization based MKL formulation and its dual.
In the following text we concentrate on the case of binary classification. However many of the
ideas presented here apply to other learning problems too. Let the training dataset be denoted by
D = {(xi, yi), i = 1, . . . ,m | xi ∈ X , yi ∈ {−1, 1}}. Here, xi represents the ith training data
point with label yi. Let Y denote the diagonal matrix with entries as yi. Suppose the given ker-
nels are divided into n groups (components) and the jth component has nj number of kernels. Let
the feature-space mapping generated from the kth kernel of the jth component be φjk(·) and the
corresponding gram-matrix of training data points be Kjk

1. We are in search of a hyperplane clas-

1The gram-matrices are unit-trace normalized.
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sifier of the form
∑n
j=1

∑nj
k=1 w>jkφjk(xi) − b = 0. As discussed above, we wish to perform a

block l∞ regularization over the model parameters wjk associated with distinct components and l1
regularization for those associated with the same component. Intuitively, such a regularization pro-
motes combinations of kernels belonging to different components and selections among kernels of
the same component. Following the framework of MKL and the mixed norm regularization detailed
here, the following formulation is immediate:

min
wjk,b,ξi

1
2

[
maxj

(∑nj
k=1 ‖wjk‖2

)2]+ C
∑
i ξi

s.t. yi

(∑n
j=1

∑nj
k=1 w>jkφjk(xi)− b

)
≥ 1− ξi, ξi ≥ 0 ∀ i (1)

Here, ξi variables measure the slack in correctly classifying the ith training data point and C is the
regularization parameter controlling weightage given to the mixed-norm regularization term and the
total slack. MKL formulation in (1) is convex and moreover an instance of SOCP. This formulation
can also be realized as a limiting case of the generic CAP formulation presented in [17] (with γ =
1, γ0 → ∞). However since the motivation of that work was to perform feature selection, this
limiting case was neither theoretically studied nor empirically evaluated. Moreover, the generic
wrapper approach of [17] is inappropriate for solving this limiting case as that approach would solve
a non-convex variant of this (convex) formulation. In the following text, a dual of (1) is derived.

Let a simplex of dimensionality d be represented by ∆d. Following the strategy of [14], one can
introduce variables λj ≡

[
λj1 . . . λjnj

]> ∈ ∆nj and re-write (1) as follows:

min
wjk,b,ξi

1
2

[
maxj

(
minλj∈∆nj

∑nj
k=1

‖wjk‖22
λjk

)]
+ C

∑
i ξi

s.t. yi

(∑n
j=1

∑nj
k=1 w>jkφjk(xi)− b

)
≥ 1− ξi, ξi ≥ 0 ∀ i (2)

This is because for any vector [a1 . . . an] ≥ 0, the following holds: minxi≥0,
P
i xi=1

∑
i
a2
i

xi
=

(
∑
i ai)

2. Notice that the max over j and min over λj can be interchanged. To see that rewrite

maxj as mint t with constraints minλj∈∆nj

∑nj
k=1

‖wjk‖22
λjk

≤ t, where t is a new decision variable.
This problem is feasible in both λjs and t and hence we can drop the minimization over individual

constraints to obtain an equivalent problem: minλj∈∆nj
∀j,t t subject to

∑nj
k=1

‖wjk‖22
λjk

≤ t. One can
now eliminate t by reintroducing the maxj and interchange the minλj∈∆nj

∀j with other variables
to obtain:

min
λj∈∆nj

∀j
min

wjk,b,ξi

1
2 maxj

∑nj
k=1

‖wjk‖22
λjk

+ C
∑
i ξi

s.t. yi

(∑n
j=1

∑nj
k=1 w>jkφjk(xi)− b

)
≥ 1− ξi, ξi ≥ 0 ∀ i (3)

Now one can derive the standard dual of (3) wrt. to the variables wjk, b, ξi alone, leading to:

min
λj∈∆nj

∀j
max

α∈Sm(C), γ∈∆n

1>α− 1
2
α>

 n∑
j=1

(∑nj
k=1 λjkQjk

γj

)α (4)

where α, γ are Lagrange multipliers, Sm(C) ≡ {x ∈ Rm | 0 ≤ x ≤ C1,
∑m
i=1 xiyi = 0} and

Qjk ≡ YKjkY. The following points regarding (4) must to be noted:

• (4) is equivalent to the well-known SVM [18] formulation with kernel Keff ≡∑n
j=1

(Pnj
k=1 λ

∗
jkKjk

γ∗j

)
2. In other words, 1

γ∗j
is the weight given to the jth component

and λ∗jk is weight given to the kth kernel of the jth component.

• It can be shown that none of γj , j = 1, . . . , n can be zero provided the given gram-matrices
Kjk are positive definite3.

2Superscript ‘*’ represents the optimal value as per (4)
3Add a small ridge if positive semi-definite.
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• By construction, most of the weights λjk are zero and at-least for one kernel in every
component the weight is non-zero (see also [14]).

These facts readily justify the suitability of the particular mixed norm regularization for object cat-
egorization. Indeed, in-sync with findings of [12], kernels from different feature descriptors (com-
ponents) are combined using non-trivial weights (i.e. 1

γ∗j
). Moreover, only the “best” kernels from

each feature descriptor (component) are utilized by the model. This sparsity feature leads to bet-
ter interpretability as well as computational benefits during the prediction stage. In the following
section an efficient iterative algorithm for solving the dual (4) is presented.

3 Efficient Algorithm for Solving the Dual

This section presents an efficient algorithm for solving the dual (4). Note that typically in object cat-
egorization or other such multi-modal learning tasks, the number of feature descriptors (i.e. number
of groups of kernels, n) is low (< 10). However the kernels constructed from each feature descriptor
can be very high in number i.e., nj ∀ j can be quite high. Also, it is frequent to encounter datasets
with huge number of training data points, m. Hence it is desirable to derive algorithms which scale
well wrt. m and nj . We assume n is small and almost O(1). Consider the dual formulation (4).
Using the minimax theorem [15], one can interchange the min over λjs and max over γ to obtain:

min
γ∈∆n

−

 min
λj∈∆nj

∀j

 max
α∈Sm(C)

1>α− 1
2
α>

 n∑
j=1

(∑nj
k=1 λjkQjk

γj

)α
︸ ︷︷ ︸

gγ(λ1,...,λn)


︸ ︷︷ ︸

f(γ)

(5)

We have restated the maximum over γ as a minimization problem by introducing a minus sign.
The proposed algorithm performs alternate minimization over the variables γ and (λ1, . . . , λn, α).
In other words, in one step the variables (λ1, . . . , λn, α) are assumed to be constant and (5) is
optimized wrt. γ. This leads to the following optimization problem:

min
γ∈∆n

n∑
j=1

Wj

γj

where Wj = α>
∑nj
k=1 λjkQjkα. This problem has an analytical solution given by:

γj =

√
Wj∑

j

√
Wj

(6)

In the subsequent step γ is assumed to be fixed and (5) is optimized wrt. (λ1, . . . , λn, α). For
this f(γ) needs to be evaluated by solving the corresponding optimization problem (refer (5) for
definition of f ). Now, the per-step computational complexity of the iterative algorithm will depend
on how efficiently one evaluates f for a given γ. In the following we present a mirror-descent
(MD) based algorithm which evaluates f to sufficient accuracy inO(log [maxj nj ])O(SVMm). Here
O(SVMm) represents the computational complexity of solving an SVM with m training data points.
Neglecting the log term, the overall per-step computational effort for the alternate minimization can
be assumed to be O(SVMm) and hence nearly-independent of the number of kernels. Alternatively,
one can employ the strategy of [14] and compute f using projected steepest-descent (SD) methods.
The following points highlight the merits and de-merits of these two methods:

• In case of SD, the per-step auxiliary problem has no closed form solution and projections
onto the feasibility set need to be done which are computationally intensive especially for
problems with high dimensions. In case of MD, the auxiliary problem has an analytical
solution (refer (8)).
• The step size needs to be computed using 1-d line search in case of SD; whereas the step-

sizes for MD can be easily computed using analytical expressions (refer (9)).
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• The computational complexity of evaluating f using MD is nearly-independent of no. ker-
nels. However no such statement can be made for SD (unless feasibility set is of Euclidean
geometry, which is not so in our case).

The MD based algorithm for evaluating f(γ) i.e. solving minλj∈∆nj
∀j gγ(λ1, . . . , λn) is detailed

below. Let λ represent the vector [λ1 . . . λn]>. Also let values at iteration ‘t’ be indicated using the
super-script ‘(t)’. Similar to any gradient-based method, at each step ‘t’ MD works with a linear
approximation of gγ : ĝ(t)

γ (λ) = gγ(λ(t)) + (λ − λ(t))>∇gγ(λ(t)) and follows the below update
rule:

λ(t+1) = argminλ∈∆n1×...×∆nn

[
ĝ(t)
γ (λ) +

1
st
ω(λ(t), λ)

]
(7)

where, ω(x, y) ≡ ω(y)− ω(x)− (y− x)>∇ω(x) is the Bregman-divergence (prox-function) asso-
ciated with ω(x), a continuously differentiable strongly convex distance-generating function. st is
a regularization parameter and also determines the step-size. (7) is usually known as the auxiliary
problem and needs to be solved at each step. Intuitively (7) minimizes a weighted sum of the local
linear approximation of the original objective and a regularization term that penalizes solutions far
from the current iterate. It is easy to show that the update rule in (7) leads to the SD technique
if ω(x) = 1

2‖x‖
2
2 and step-size is chosen using 1-d line search. The key idea in MD is to choose

the distance-generating function based on the feasibility set, which in our case is direct product of
simplexes, such that (7) is very easy to solve. Note that for SD, with feasibility set as direct product
of simplexes, (7) is not easy to solve especially in higher dimensions.

We choose the distance-generating function as the following modified entropy function: ω(x) ≡∑n
j=1

∑nj
k=1

(
xjkn

−1 + δn−1nj
−1
)

log
(
xjkn

−1 + δn−1nj
−1
)

where δ is a small positive number
(say, 10e− 16). Now, let g̃γ(t) ≡ st∇gγ(λ(t))−∇ω(λ(t)). Note that gγ is nothing but the optimal
objective of SVM with kernel Keff . Since it is assumed that each given kernel is positive definite,
the optimal of the SVM is unique and hence gradient of gγ wrt. λ exists [5]. Gradient of gγ can

be computed using ∂gγ

∂λ
(t)
jk

= − 1
2

(α(t))>Qjkα
(t)

γj
where α(t) is the optimal α obtained by solving an

SVM with kernel as
∑n
j=1

(Pnj
k=1 λ

(t)
jkKjk

γj

)
. With this notation, it is easy to show that the optimal

update (7) has the following analytical form4:

λ
(t+1)
jk =

exp
{
−g̃γ(t)

jk n
}

∑nj
k=1 exp

{
−g̃γ(t)

jk n
} (8)

The following text discusses the convergence issues with MD. Let the modulus of strong convexity
of ω wrt. ‖ · ‖ ≡ ‖ · ‖1 be σ. Also, let the ω-size of feasibility set be defined as follows: Θ ≡
maxu,v∈∆n1×...×∆nn

ω(u, v). It is easy to verify that σ = O(1)n−2 and Θ = O (log [maxj nj ]) in
our case. The convergence and its efficiency follow from this result [3, 2, 9]:

Result 1 With step-sizes:st =
√

Θσ
‖∇gγ‖∗

√
t

one has the following bound on error after iteration

T :εT = mint≤T gγ(λ(t))− gγ(λ∗) ≤ O(1)
√

ΘL‖·‖(gγ)√
σT

where ‖ · ‖∗ is the dual norm of the norm wrt. which the modulus of strong convexity was computed
(in our case ‖ · ‖∗ = ‖ · ‖∞) and L‖·‖(h) is Lipschitz constant of function h wrt. norm ‖ · ‖ (in our
case ‖ · ‖ = ‖ · ‖1 and it can be shown that the Lipschitz constant exists for gγ). Substituting the
particular values for our case, we obtain

st =

√
log [maxj nj ]
n‖∇gγ‖∞

√
t

(9)

and εT ∝
√

log[maxj nj ]√
T

. In other words, for reaching a reasonable approximation of the optimal,
the number iterations required are O(log [maxj nj ]), which is nearly-independent of the number

4Since the term involving δ is� λjk, it is neglected in this computation.
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of kernels. Since the computations in each iteration are dominated by the SVM optimization, the
overall complexity of MD is (nearly) O(SVMm). Note that the iterative algorithm can be improved
by improving the algorithm for solving the SVM problem. The overall algorithm is summarized in
algorithm 15. The MKL formulation presented here exploits the special structure in the kernels and

Algorithm 1: Mirror-descent based alternate minimization algorithm
Data: Labels and gram-matrices of training eg., component-id of each kernel, regularization

parameter (C)
Result: Optimal values of α, γ, λ in (4)
begin

Set γ, λ to some initial feasible values.
while stopping criteria for γ is not met do /* Alternate minimization loop */

while stopping criteria for λ is not met do /* Mirror-descent loop */
Solve SVM with current kernel weights and update α
Compute g̃γ(t) and update λ using (8)

Compute Wj and update γ using (6)
Return values of α, γ, λ

end

leads to non-trivial combinations of the kernels belonging to different components and selections
among the kernels of the same component. Moreover the proposed iterative algorithm solves the
formulation with a per-step complexity of (almost) O(SVMm), which is the same as that with tra-
ditional MKL formulations (which do not exploit this structure). As discussed earlier, this efficiency
is an outcome of employing state-of-the-art mirror-descent techniques. The MD based algorithm
presented here is of independent interest to the MKL community. This is because, in the special
case where number of components is unity (i.e. n = 1), the proposed algorithm solves the tradi-
tional MKL formulation. And clearly, owing to the merits of MD over SD discussed earlier, the new
algorithm can potentially be employed to boost the performance of state-of-the-art MKL algorithms.
Our empirical results confirm that the proposed algorithm (with n = 1) outperforms simpleMKL
in terms of computational efficiency.

4 Numerical Experiments

This section presents results of experiments which empirically verify the major claims of the pa-
per: a) The proposed formulation is well-suited for object categorization b) In the case n = 1, the
proposed algorithm outperforms simpleMKL wrt. computational effort. In the following, the ex-
periments done on real-world object categorization datasets are summarized. The proposed MKL
formulation is compared with state-of-the-art methodology for object categorization [19, 13] that
employs a block l1 regularization based MKL formulation with additional constraints for including
prior information regarding weights of kernels. Since such constraints lead to independent improve-
ments with all formulations, the experiments here compare the following three MKL formulations
without the additional constraints: MixNorm-MKL, the (l∞, l1) mixed-norm based MKL formula-
tion studied in this paper; L1-MKL, the block l1 regularization based MKL formulation [14]; and
L2-MKL, which is nothing but an SVM built using the canonical combination of all kernels i.e.
Keff ≡

∑n
j=1

∑nj
k=1 Kjk. In case of MixNorm-MKL, the MD based algorithm (section 3) was

used to solve the formulation. The SVM problem arising at each step of mirror-descent is solved
using the libsvm software6. L1-MKL is solved using simpleMKL7. L2-MKL is solved using
libsvm and serves as a baseline for comparison. In all cases, the hyper-parameters of the various
formulations were tuned using suitable cross-validation procedures and the accuracies reported de-
note testset accuracies achieved by the respective classifiers using the tuned set of hyper-parameters.

5Asymptotic convergence can be proved for the algorithm; details omitted due to lack of space.
6Available at www.csie.ntu.edu.tw/˜cjlin/libsvm
7Available at http://asi.insa-rouen.fr/enseignants/˜arakotom/code/mklindex.

html
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Figure 1: Plot of average gain (%) in accuracy with MixNorm-MKL on the various real-world
datasets.

The following real-world datasets were used in the experiments: Caltech-5 [6], Caltech-101 [7]
and Oxford Flowers [10]. The Caltech datasets contain digital images of various objects like faces,
watches, ants etc.; whereas the Oxford dataset contains images of 17 varieties of flowers. The
Caltech-101 dataset has 101 categories of objects whereas Caltech-5 dataset is a subset of the
Caltech-101 dataset including images of Airplanes, Car sides, Faces, Leopards and Motorbikes
alone. Most categories of objects in the Caltech dataset have 50 images. The number of images
per category varies from 40 to 800. In the Oxford flowers dataset there are 80 images in each flower
category. In order to make the results presented here comparable to others in literature we have
followed the usual practice of generating training and test sets using a fixed number of pictures from
each object category and repeating the experiments with different random selections of pictures. For
the Caltech-5, Caltech-101 and Oxford flowers datasets we have used 50, 15, 60 images per object
category as training images and 50, 15, 20 images per object category as testing images respectively.
Also, in case of Caltech-5 and Oxford flowers datasets, the accuracies reported are the testset ac-
curacies averaged over 10 such randomly sampled training and test datasets. Since the Caltech-101
dataset has large number of classes and the experiments are computationally intensive (100 choose
2 classifiers need to be built in each case), the results are averaged over 3 sets of training and test
datasets only. In case of the Caltech datasets, five feature descriptors8 were employed: SIFT, Op-
ponentSIFT, rgSIFT, C-SIFT, Transformed Color SIFT. Whereas in case of Oxford flowers dataset,
following strategy of [11, 10], seven feature descriptors9 were employed. Using each feature de-
scriptor, nine kernels were generated by varying the width-parameter of the Gaussian kernel. The
kernels can be grouped based on the feature descriptor they were generated from and the proposed
formulation can be employed to construct classifiers well-suited for object categorization. For eg. in
case of the Caltech datasets, n = 5 and nj = 9 ∀ j and in case of Oxford flowers dataset, n = 7 and
nj = 9 ∀ j. In all cases, the 1-vs-1 methodology was employed to handle the multi-class problems.

The results of the experiments are summarized in figure 1. Each plot shows the % gain in accuracy
achieved by MixNorm-MKL over L1-MKL and L2-MKL for each object category. Note that for

8Code at http://staff.science.uva.nl/˜ksande/research/colordescriptors/
9Distance matrices available at http://www.robots.ox.ac.uk/˜vgg/data/flowers/17/

index.html
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Figure 2: Scaling plots comparing scalability of mirror-descent based algorithm and simpleMKL.

most object categories, the gains are positive and moreover quite high. The best results are seen
in case of the Caltech-101 dataset: the peak and avg. gains over L1-MKL are 800%, 37.57% re-
spectively and over L2-MKL are 600%, 21.75% respectively. The gain in terms of numbers for the
other two datasets are not as high merely because the baseline accuracies were themselves high.
The baseline accuracies i.e., the average accuracy achieved by L2-MKL (over all categories) were
93.84%, 34.81% and 85.97% for the Caltech-5, Caltech-101 and Oxford flowers datasets respec-
tively. The figures clearly show that the proposed formulation outperforms state-of-the-art object
categorization techniques and is hence highly-suited for such tasks. Another observation was that the
average sparsity (% of kernels with zero weightages) with the methods MixNorm-MKL, L1-MKL
and L2-MKL is 57%, 96% and 0% respectively. Also, it was observed that L1-MKL almost always
selected kernels from one or two components (feature descriptors) only whereas MixNorm-MKL
(and ofcourse L2-MKL) selected kernels from all the components. These observations clearly show
that the proposed formulation combines important kernels while eliminating redundant and noisy
kernels using the information embedded in the group structure of the kernels.

In the following, the results of experiments which compare the scalability of simpleMKL and
the proposed mirror-descent based algorithm wrt. the number of kernels are presented. Note that
in the special case, n = 1, the proposed formulation is exactly same as the l1 regularization based
formulation. Hence the mirror-descent based iterative algorithm proposed here can also be employed
for solving l1 regularization based MKL. Figure 2 shows plots of the training times as a function
of number of kernels with the algorithms on two binary classification problems encountered in the
object categorization experiments. The plots clearly show that the proposed algorithm outperforms
simpleMKL in terms of computational effort. Interestingly, it was found in our experiments that,
in most cases, the major computational effort at every iteration of SimpleMKL was in computing
the projection onto the feasible set! On the contrary Mirror descent allows an easily computable
closed form solution for the per-step auxiliary problem. We think this is the crucial advantage of
the proposed iterative algorithm over the gradient-decent based algorithms which were traditionally
employed for solving the MKL formulations.

5 Conclusions

This paper makes two important contributions: a) a specific mixed-norm regularization based MKL
formulation which is well-suited for object categorization and multi-modal tasks b) An efficient
mirror-descent based algorithm for solving the new formulation. Empirical results on real-world
datasets show that the new formulation achieves far better generalization than state-of-the-art ob-
ject categorization techniques. In some cases, the average gain in testset accuracy compared to
state-of-the-art was as high as 37%. The mirror-descent based algorithm presented in the paper not
only solves the proposed formulation efficiently but also outperforms simpleMKL in solving the
traditional l1 regularization based MKL. The speed-up was as high as 12 times in some cases. Appli-
cation of proposed methodology to various other multi-modal tasks and study of improved variants
of mirror-decent algorithm [4] for faster convergence are currently being explored by us.
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