A Smoothed Approximate Linear Program:
Technical Appendix

1 Proof of Theorem 1

Lemma 1. For any r € RE and 6 > 0:

(i) £(r,0) is a bounded, decreasing, piecewise linear, convex function of 6.
(i) £(r,0) < (1+ a)|[J* — Orf/.

), %E(r, 0) = —ﬁ where Q(r) = argmax ¢ y ®r(x) — TOr(x).
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Proof. (i) Given any r, clearly v = ||®r — T®r| o0, s = 0 is feasible for (5) so that £(r, 6) is
bounded from below. To see that the LP is bounded, suppose (s,7) is feasible. Then, for
any x € X,

v > @r(z) —TOr(z) — s(z) > or(x) — TOr(x) — 0/myu- o (2).
Thus, the LP is bounded implying that £(r, ) is bounded from above.
(i) Let € = ||J* — ®r||oo. Then,
| T®r — Or|leo < ||[J* = TOr||0o + ||[J* — Prlleo < af|J" — ®r||oo + € = (1 + a)e.
Since v = ||T®r — ®r||, s = 0 is feasible for (5), it follows that £(r,0) < (1+a)||J* — D7 co-

(i%i) This claim follows immediately from standard LP sensitivity analysis; we note that
Q(r) is precisely the set of states whose constraints are binding at 6 = 0. |

Lemma 2. Let (r,s) be feasible for the LP (4). Then,
Or — A*s < J*,

where
oo

A* 23 (P )t = (I - aP) 7
k=0
and P, is the transition probability matriz corresponding to the optimal policy.

Proof. Note that
Or <T,-Pr + s,

where T~ is the Bellman operator corresponding to the optimal policy. Repeatedly applying
T~ and using the fact that T[j; ®r — J*, we obtain

Or < J* 4 Z(aPﬂ*)ks =J "+ As.
k=0
|

Theorem 1. Let 1 be in the span of ® and v be a probability distribution. Let r be an
optimal solution to the SALP (4). Moreover, let r* satisfy r* € argmin, |[|J* — ®r| .
Then,

. L 1(r*,0) + 26
I = @l < 7 4 O

Proof. First, define the weight vector 7 € RX by

oF = Or* — Ml’



and set § = s(r*,0), the s-component of the solution to the LP (5) with parameters r* and
6. We will demonstrate that (7, §) is feasible for (3). Observe that, by the definition of the
LP (5)

Or* <TOr* + 54 £(r",0)1.
Then,
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TOr = TPr* —
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= &F — 3.

Now, by Lemma 2,
[J7 = @l < [[J* — @7 4 A%l + |A™S]

= (J* = ®F + A*5) + v A*5
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as desired. | |

2 Proof of Theorem 2

Theorem 2. Let U 2 {y € RI* .y > 1}, For every o € ¥, let B(¢)) = max#‘ PZJwH .

Then, for an optimal solution (7, 8) to (6), we have:

-
|J* — ®F|1,, < inf [T* = @1 |oo. 1/ <VT¢+ 2y ¥ + D(@5) 1)> :
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Proof. Let r € RE be arbitrary. Let €,.(z) = ((®r)(x
according to s,(z) = e, (z)(1 — w(lz)) and notice that

(T®r)

(x))* and ¢ € U. Define s,
r(2) < €

().

We next make a few observations. First, define 7, according to ®7, = ®&r — W%&Wl, and
observe that by construction, (7, s,) is feasible for (6). Thus,

Herlloo,l/w < | TPr — (I)r”oo,l/w
I < .

—« 11—«
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Next, observe that
MM—ZMV z)(1 - 1/¢(x))
< Wu*

< (me ) lerlloo,1 s
< (T ST P — 1o 1/



Finally, observe that,

e (J* = @) < (7

w*, [L ,V )”J*_(bTHOO,l/’LZ)

Now, we have from the last set of inequalities in the proof of Theorem 1 and the above
observations:
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Since our choice of r and 1) were arbitrary, we have:

J* — @71, < inf (vTY)||J — ®r s
I = @il < inf 07017 — @t
10
1o T = Brllcy | 2 OITEr — Brllcs
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We now relate the Bellman error on the right hand side in the above bound to the optimal
approximation error. Before doing so we recall:

|TJ —TJ| < amaxP,|J — J|,

and derive the following intermediate result,

(Zyex (2 )| (@) (y) — J*(y)|>

max || P, |®r — J*|| 1/ = max
o

pxeX ¢($)
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pnxeX w([]’,‘)
> yex Pul@, y)v(y)
< yE .
< uni%)ﬁc( w(@) > @7 — J*||o 1/
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( ®r = T oo, 1/

Now,
IT®r — Brllacajo < (1T — Tl + 1T — Drllsc.ase)
< (cmpx Il = S llaga 157 =l
< (@B = T [loo,1/p + 177 = Prlloc,1/6)
(11) = [|®r = J*[|so,1/w(aB(¥) +1).
Using (10) and (11), we get the result. |



3 Sample Complexity Results: Proof of Theorem 3

Our proof will rely on the following lemma, which provides a Chernoff bound for the uniform
convergence of a certain class of functions and the proof of this lemma is based on bounding
the pseudo-dimension of this class of functions.

Lemma 3. Given a constant B > 0, define the function : R — [0, B] by
¢(t) & max (min(t, B),0).

Consider a pair of random variables (Y,Z) € RX x R. For eachi =1,...,n, let the pair
(Y(i), Z(i)) be an i.i.d. sample drawn according to the distribution of (Y,Z). Then, for all

e € (0, B],
> 6)
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Moreover, given § € (0,1), if
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3 (2(K+ 2)log + log ) ,

n >
- € )

€

then this probability is at most §.

Before presenting the proof, we present a few definitions and intermediate results. Consider
a family F of functions from a set S to {0,1}. Define the Vapnik-Chervonenkis (VC)
dimension dimvyc(F) to be the cardinality d of the largest set {x1,z2,...,24} C S satisfying:

Ve € {0,1}%, 3f € F such that Vi, f(z;) =1iff ¢; = 1.

Now, let F be some set of real-valued functions mapping S to [0, B]. The pseudo-dimension
dimp(F) is the following generalization of VC dimension: for each function f € F and
scalar ¢ € R, define a function g: S x R — {0, 1} according to:

9(@,¢) £ I{f(2)-c20}-
Let G denote the set of all such functions. Then, we define dimp(F) £ dimyc(G).

In order to prove Lemma 3, define the F to be the set of functions f: RX x R — [0, B],
where, for all z € R¥ and y € R,

fly,2) 2 C(rTy+2).

Here, ¢(t) £ max (min(¢, B),0), and r € R¥ is a vector that parameterizes f. We will show
that dimp(F) < K + 2.
We will use the following standard result from convex geometry:

Lemma 4 (Radon’s Lemma). A set A C R™ of m + 2 points can be partitioned into two
disjoint sets A1 and As, such that the convex hulls of A1 and As intersect.

Lemma 5. dimp(F) < K +2

Proof. Assume, for the sake of contradiction, that dimp(F) > K +2. It must be that there
exists a ‘shattered’ set

{(yu), 20 D), (y® 2@ (@) (K ) C<K+3>)} CRE xR xR,
such that, for all e € {0,1}%+3 there exists a vector r, € RX with

g(rjy<i>+z<”) > iffe; =1, V1<i<K+3.



Observe that we must have ¢ € (0, B] for all i, since if ¢ < 0 or ¢(¥ > B, then no such
shattered set can be demonstrated. But if ¢() € (0, B, for all r € RE,

¢ (ﬂy(i) n Z(z‘)) > ) = Ty > 0 0,

and
¢ (ﬁym n z“)) < = pTy < D 0

For each 1 < i < K + 3, define (Y € RE*! component-wise according to

@ a {y§) ifj < K+1,

i D — 20 if j = K 4+ 1.

Let A= {zM 2@  2E+)Y c RE+! and let A; and Aj be subsets of A satisfying the
conditions of Radon’s lemma. Define a vector & € {0, 1}%+3 component-wise according to

~ A]I
€, = {x(i)€A1}'

Define the vector 7 £ rs. Then, we have

K
Z"ijjle(—i-h V$€A1,
Jj=1

K
ijxj<x;<+1, V.TJEAQ.
Jj=1

Now, let Z € RE+! be a point contained in both the convex hull of A; and the convex hull
of Ay. Such a point must exist by Radon’s lemma. By virtue of being contained in the

convex hull of Ay, we must have
K

Z T;T; > TK41-
j=1
Yet, by virtue of being contained in the convex hull of A, we must have
K
Y T < T,
j=1

which is impossible. |

With the above pseudo-dimension estimate, Lemma 3 follows immediately from Corollary 2
of Haussler [11, Section 4]. Armed with this Lemma, we are ready to prove Theorem 3.

Proof of Theorem 3. Define the vectors

A

N ” ” + A A “ A +
S~ = (Prgarp — Ty=Prgarp)” , and § = (Pfgarp — TPPsarp)

One has, via Lemma 2, that
Prgarp — JF < A*§N*
Thus, as in the last set of inequalities in the proof of Theorem 1, we have

27rT* LSur
(12) [|J* — ®Fsarpll1, < v (J* — igarp) + {_7’;

Now, let 7~ , be the empirical measure induced by the collection of sampled states X.
Given a state x € X, define a vector Y (z) € RX and a scalar Z(z) € R according to

Y(x) £ ®(2)" —aPe®(x)", Z(z) £ —g(z, 4" (2)),



so that, for any vector of weights r € N,

(Pr(z) — Tu*ér(x))+ =( (TTY(a:) + Z(a:)) .
Then,

% Z C(rTY(x) + Z T rY (z) + Z(z))|.
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Applying Lemma 3, we have that
) <é.

(13) P (|1 8 — T 8y

Next, suppose (rsarLp, 8) is an optimal solution to the SALP (6). Then, with probability at
least 1 — 6,
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where the first inequality follows from (13), and the final inequality follows from the opti-
mality of (Fsarp,8) for the sampled SALP (7).

Notice that, without loss of generality, we can assume that $(z) = (Prsarp(z) —
T®rgarLp(x))™, for each z € X. Thus, 0 < 5(z) < B. Applying Hoeffding’s inequality,

2
<|7T/L ys - IL y5| > 6) < QGXP( g; ) < 2*3835128’

where final inequality follows from our choice of S. Combining this with (12) and (14), with

probability at least 1 — § — 273836128 we have
. . . 24T, 3 2€
|J* = ®Fsarplli, < v’ (J* — Preap) + L
1-— 11—«
277—'—* S 4e
T 7x [
J" =@ —r .
v rsaLp) + 1l-«a 11—«
The result then follows from (9)—(11) in the proof of Theorem 2. |



