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First, we restate Equations and Theorems from the main paper.

Consider the REC-BP condition for a single equivalence constraint relaxed:

c-map(Xi =x) = c-map(Xj =x) = θ(Xi =x) + θ(Xj =x) + γ (1)

Proposition 1 Let map(.) denote the MAP values of a model M, and let c-map(.) denote the MAP
values of a compensation that results from relaxing an equivalence constraint Xi≡Xj that split M
into two independent sub-models. Then the compensation has parameters satisfying Equation 1 iff
c-map(Xi =x) = c-map(Xj =x) = map(Xi =x,Xj =x) + γ.

Consider the REC-I condition for a single equivalence constraint relaxed:

c-map(Xi =x) = c-map(Xj =x) = 2 · [θ(Xi =x) + θ(Xj =x)] (2)

Proposition 2 Let map(.) denote the MAP values of a model M, and let c-map(.) denote the MAP
values of a compensation that results from relaxing an equivalence constraint Xi≡Xj in M. If
c-map(.) has valid configurations and scaled values, then c-map(.) satisfies Equation 2.

Consider the REC-BP condition for a k equivalence constraints relaxed:

c-map(Xi =x) = c-map(Xj =x) = θ(Xi =x) + θ(Xj =x) + γ (3)

Theorem 1 Let map(.) denote the MAP values of a model M, and let c-map(.) denote the MAP
values of a compensation that results from relaxing enough equivalence constraints Xi≡Xj in M
to render it fully disconnected. Then a compensation whose parameters satisfy Equation 3 has
values exp{c-map(Xi =x)} that correspond to the max-marginals of a fixed-point of max-product
belief propagation run on M, and vice-versa.

Consider REC-I condition for a k equivalence constraints relaxed:

c-map(Xi =x) = c-map(Xj =x) = (1 + k)[θ(Xi =x) + θ(Xj =x)] (4)

Theorem 2 Let map(.) denote the MAP values of a model M, and let c-map(.) denote the MAP val-
ues of a compensation that results from relaxing k equivalence constraints Xi≡Xj . If the compen-
sation has parameters satisfying either Eqs. 3 or 4, and if x⋆ is an optimal assignment for the com-
pensation that is also valid, then: (1) x

⋆ is optimal for the model M, and (2) 1

1+k
c-map

⋆ = map
⋆.

Theorem 3 Let map(.) denote the MAP values of a model M, and let c-map(.) denote the MAP
values of a compensation that results from relaxing k equivalence constraints Xi≡Xj . If the com-

pensation has parameters satisfying Equation 4, then map
⋆ ≤ 1

1+k
c-map

⋆.

Theorem 4 Let map(.) denote the MAP values of a model M, and let c-map(.) denote the MAP val-
ues of a compensation that results from relaxing k equivalence constraints Xi≡Xj . If the compen-
sation has parameters satisfying Eq. 4, and if z is a partial assignment that sets the same sign to vari-
ables Xi and Xj , for any equivalence constraint Xi≡Xj deleted, then: map(z) ≤ 1

1+k
c-map(z).
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A Proofs

Proof of Proposition 1 Let c-mapi(Xi) and c-mapj(Xj) denote a compensation’s MAP values in
subnetworks Mi and Mj . Then:

c-mapi(Xi) = r-mapi(Xi) + θ(Xi) and c-mapj(Xj) = r-mapj(Xj) + θ(Xj).

Using Equation 1, we find

c-map(Xi =x) = c-mapi(Xi =x) + c-map
⋆
j

= r-mapi(Xi =x) + θ(Xi =x) + c-map
⋆
j = θ(Xi =x) + θ(Xj =x) + γ

c-map(Xj =x) = c-map
⋆
i + c-mapj(Xj =x)

= c-map
⋆
i + r-mapj(Xj =x) + θ(Xj =x) = θ(Xi =x) + θ(Xj =x) + γ

thus we have that

θ(Xj =x) = r-mapi(Xi =x) + c-map
⋆
j − γ and θ(Xi =x) = c-map

⋆
i + r-mapj(Xj =x) − γ.

Substituting back in, we find that

c-map(Xi =x) = c-map(Xj =x)

= r-mapi(Xi =x) + r-mapj(Xj =x) + c-map
⋆
1 + c-map

⋆
2 − γ = map(Xi =x,Xj =x) + γ

since r-mapi(Xi =x) + r-mapj(Xj =x) = map(Xi =x,Xj =x) and c-map
⋆
1 + c-map

⋆
2 = c-map

⋆

and γ = 1

2
c-map

⋆. We can reverse the steps, for the other direction. �

Proof of Proposition 2 It suffices to show θ(Xi =x)+ θ(Xj =x) = κ−1

κ
· c-map(Xi =x,Xj =x).

Now,

c-map(Xi =x,Xj =x) = map(Xi =x,Xj =x) + [θ(Xi =x) + θ(Xj =x)]

= κ−1 · c-map(Xi =x,Xj =x) + [θ(Xi =x) + θ(Xj =x)]

so θ(Xi =x) + θ(Xj =x) = (1 − 1

κ
) · c-map(Xi =x,Xj =x) = κ−1

κ
· c-map(Xi =x,Xj =x). �

Proof of Theorem 1 Analogous to the correspondence of the ED-BP algorithm and sum-product
belief propagation, shown in [1]. �

Lemma 1 Let map(.) denote the MAP values of a model M, and let c-map(.) denote the MAP
values of a compensation that results from relaxing k equivalence constraints Xi≡Xj . If the com-
pensation has parameters satisfying Equation 4, and if x̃ is a complete assignment that is also valid,
then map(x̃) ≤ 1

1+k
c-map(x̃), with equality if x̃ is also optimal for c-map(.).

Proof First, we have

c-map(x̃) = map(x̃)+
∑

Xi≡Xj
[θ(Xi =x)+θ(Xj =x)] = map(x̃)+

∑

Xi≡Xj

1

1+k
c-map(Xi =x).

Note that x is the state assumed by Xi and Xj in assignment x̃. Since c-map(Xi =x) ≥ c-map(x̃),

c-map(x̃) ≥ map(x̃) +
∑

Xi≡Xj

1

1+k
c-map(x̃) = map(x̃) + k

1+k
c-map(x̃)

and thus 1

1+k
c-map(x̃) ≥ map(x̃). In the case where c-map(x̃) = c-map

⋆, we have that

c-map(Xi =x) = c-map(x̃) for all Xi≡Xj , so we have map(x̃) = 1

1+k
c-map(x̃). �

Proof of Theorem 2 Note first in a REC-BP compensation, from Equation 3, that

θ(Xi =x) + θ(Xj =x) = c-map(Xi =x) − k
1+k

c-map
⋆ = c-map

⋆ − k
1+k

c-map
⋆ = 1

1+k
c-map

⋆

When we decompose c-map(x⋆) into the original factors, i.e., map(x⋆), and the auxiliary parame-
ters θ(Xi =x) + θ(Xj =x):

c-map(x⋆) = map(x⋆) +
∑

Xi≡Xj

[θ(Xi =x) + θ(Xj =x)]

= map(x⋆) +
∑

Xi≡Xj

1

1+k
c-map

⋆ = map(x⋆) + k
1+k

c-map
⋆
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and 1

1+k
c-map(x⋆) = map(x⋆). Similarly, for a REC-I compensation, since θ(Xi =x) +

θ(Xj =x) = 1

1+k
c-map(Xi =x) = 1

1+k
c-map

⋆.

We now want to show that x⋆ must be optimal for map(.). Suppose for contradiction that there is an
assignment x̂ such that map(x̂) > map(x⋆). Then:

c-map(x̂) = map(x̂) +
∑

Xi≡Xj

[θ(Xi =x) + θ(Xj =x)]

= map(x̂) +
∑

Xi≡Xj
[c-map(Xi =x) − k

1+k
c-map

⋆]

≥ map(x̂) +
∑

Xi≡Xj
[c-map(x̂) − k

1+k
c-map

⋆]

= map(x̂) + k · c-map(x̂) − k2

1+k
c-map

⋆

> map(x⋆) + k · c-map(x̂) − k2

1+k
c-map

⋆

= 1

1+k
c-map

⋆ + k · c-map(x̂) − k2

1+k
c-map

⋆

= k · c-map(x̂) + 1−k2

1+k
c-map

⋆ = k · c-map(x̂) + (1 − k) · c-map
⋆

and thus c-map(x̂) > c-map
⋆ which contradicts the optimality of c-map

⋆.

We know for a REC-I compensation, that x⋆ must be optimal for map(.). Otherwise it would not be
optimal for c-map(.), by Lemma 1. �

Proof of Theorem 3 Let x⋆ be an optimal assignment for map(.). Since x
⋆ must also be valid, we

have by Lemma 1 that map
⋆ = map(x⋆) ≤ 1

1+k
c-map(x⋆) ≤ 1

1+k
c-map

⋆. �

Proof of Theorem 4 We have that

map(z̃) = maxx̃∼z̃ map(x̃) ≤ maxx̃∼z̃

1

1+k
c-map(x̃)

≤ maxx∼z̃

1

1+k
c-map(x) = 1

1+k
c-map(z̃)

where the first inequality follows from Lemma 1. �

Proposition 3 Let map(.) denote the MAP values of a model M, and let c-map(.) denote the MAP
values of a compensation that results from relaxing a single equivalence constraint Xi≡Xj . If the
compensation has parameters satisfying either Eqs. 1 or 2, and if x

⋆ is an optimal assignment for
the compensation that is also valid, then:

map
⋆ ≤

1

2
c-map

⋆ ≤ r-map
⋆.

Proof The inequality map
⋆ ≤ 1

2
c-map

⋆ is implied by Theorem 3. The inequality 1

2
c-map

⋆ ≤

r-map
⋆, follows trivially if c-map

⋆ = c-map(Xi =x,Xj =x), for some state x, since 1

2
c-map

⋆ =
map

⋆ in this case, and map
⋆ ≤ r-map

⋆. Then assume that if c-map
⋆ = c-map(Xi =xi,Xj =xj),

then xi 6= xj . It must then be that c-map(Xi =xi) = c-map(Xi =xi,Xj =xj) = c-map(Xj =xj),
so there are at least 2 states x where the optimal MAP value c-map

⋆ is achieved. Select s pairs
of optimal assignments Xi =xi,Xj =xj where Xi and Xj are set to a particular state x exactly
once (like Xi =x1,Xj =x2 and Xi =x2,Xj =x3 and Xi =x3,Xj =x1). We know such a selection
exists. Suppose, without loss of generality, that Xi =x1,Xj =x2 is an optimal assignment (we can
relabel states). Then there must be an optimal assignment Xi =x2,Xj =x for some state x, since
c-map(Xi =x2) = c-map(Xj =x2). If x = x1 then we are done. Otherwise, we can assume
w.l.o.g. that x = x3, and we can repeat the above reasoning.
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Using these s assignments Xi =xi,Xj =xj , we have that:

s · c-map
⋆ =

∑

Xi=xi,Xj=xj

c-map(Xi =xi,Xj =xj)

=
∑

Xi=xi,Xj=xj

r-map(Xi =xi,Xj =xj) + θ(Xi =xi) + θ(Xj =xj)

=
[

∑

Xi=xi,Xj=xj

r-map(Xi =xi,Xj =xj)] +
[

∑

xi=xj

θ(Xi =xi) + θ(Xj =xj)
]

=
[

∑

Xi=xi,Xj=xj

r-map(Xi =xi,Xj =xj)] +
[

∑

xi=xj

1

2
c-map(Xi =xi)

]

=
[

∑

Xi=xi,Xj=xj

r-map(Xi =xi,Xj =xj)] +
[

∑

xi=xj

1

2
c-map

⋆
]

=
[

∑

Xi=xi,Xj=xj

r-map(Xi =xi,Xj =xj)] +
s

2
c-map

⋆

and thus

1

2
c-map

⋆ =
1

s

∑

Xi=xi,Xj=xj

r-map(Xi =xi,Xj =xj) ≤
1

s

∑

Xi=xi,Xj=xj

r-map
⋆ = r-map

⋆

as desired. �
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