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First, we restate Equations and Theorems from the main paper.

Consider the REC-BP condition for a single equivalence constraint relaxed:
cmap(X;=z) = cmap(X;=2) = O6X;=z)+0(X;=1z)+7% (1)

Proposition 1 Let map(.) denote the MAP values of a model M, and let c-map(.) denote the MAP
values of a compensation that results from relaxing an equivalence constraint X; = X that split M
into two independent sub-models. Then the compensation has parameters satisfying Equation 1 iff
c-map(X; =z) = c-map(X; =) = map(X; =z, X;=2) + .

Consider the REC-I condition for a single equivalence constraint relaxed:
cmap(X;=z) = cmap(X;j=z) = 2 -[0(X;=2)+0(X,=1)] (2)

Proposition 2 Let map(.) denote the MAP values of a model M, and let c-map(.) denote the MAP
values of a compensation that results from relaxing an equivalence constraint X; =X; in M. If
c-map(.) has valid configurations and scaled values, then c-map(.) satisfies Equation 2.

Consider the REC-BP condition for a k equivalence constraints relaxed:
cmap(X;=z) = cmap(X;=2) = O6X;=z)+0(X;=z)+7% (3)

Theorem 1 Let map(.) denote the MAP values of a model M, and let c-map(.) denote the MAP
values of a compensation that results from relaxing enough equivalence constraints X;=X; in M
to render it fully disconnected. Then a compensation whose parameters satisfy Equation 3 has
values exp{c-map(X; =x)} that correspond to the max-marginals of a fixed-point of max-product
belief propagation run on M, and vice-versa.

Consider REC-I condition for a & equivalence constraints relaxed:
cmap(X;=z) = cmap(X;=2) = (Q1+k)[0(Xi=2)+0(X,;=x)] 4)

Theorem 2 Let map(.) denote the MAP values of a model M, and let c-map(.) denote the MAP val-
ues of a compensation that results from relaxing k equivalence constraints X; =X . If the compen-
sation has parameters satisfying either Eqs. 3 or 4, and if X* is an optimal assignment for the com-
pensation that is also valid, then: (1) X* is optimal for the model M, and (2) 1J%kc-ma p* = map”.

Theorem 3 Let map(.) denote the MAP values of a model M, and let c-map(.) denote the MAP
values of a compensation that results from relaxing k equivalence constraints X; = X;. If the com-
pensation has parameters satisfying Equation 4, then map* < 1J%kc—map*.

Theorem 4 Let map(.) denote the MAP values of a model M, and let c-map(.) denote the MAP val-
ues of a compensation that results from relaxing k equivalence constraints X; =X . If the compen-
sation has parameters satisfying Eq. 4, and if z is a partial assignment that sets the same sign to vari-

ables X; and X, for any equivalence constraint X; = X ; deleted, then: map(z) < 1J%kc—map(z).



A Proofs
Proof of Proposition 1 Let c-map,(X;) and c-map,(X;) denote a compensation’s MAP values in
subnetworks M; and M. Then:
c-map, (X;) = r-map;(X;) + 0(X;) and c-map;(X;) = r-map;(X;) + 0(X;).
Using Equation 1, we find
c-map(X;==) = c-map,(X; =) + c-mapj
= r-map;(X;=2) + 0(X;=z) + c-map; = 0(X;=z) + 0(X; =x) +
c-map(X; =) = c-map; + c-map;(X; =)
= c-map; +r-map;(X;=x) +0(X;=12) = 0(X;=2) + 0(X; =) +
thus we have that
0(X;=x) = r-map;(X;=xz) + c-map; —v and 0(X;=z) = c-map; + r-map;(X;=x) — 7.
Substituting back in, we find that
c-map(X;=x) = c-map(X; =x)
= r-map;(X;=x) + r-map;(X;=x) + c-map] + c-map; — v = map(X; =z, X; =) +7
since r-map, (X; =) + r-map,;(X; =z) = map(X; =z, X; =) and c-mapj + c-map; = c-map*
and v = %c-map*. We can reverse the steps, for the other direction. O
Proof of Proposition 2 It suffices to show §(X; =z) +6(X; =) = ==L . c-map(X; =z, X; =x).
Now,
cmap(X;=z, X;=2) = map(X;=z,X;=2)+ [0(X;=2) + 0(X; =1)]
= klicmap(X;=2,X;=2)+ [0(X;=2) + (X, =1)]
$00(X;=2)+0(X;=2)=(1—- 1) -cmap(X; =z, X;=2) = =1 . cmap(X; =z, X, =z). O

Proof of Theorem 1 Analogous to the correspondence of the ED-BP algorithm and sum-product
belief propagation, shown in [1]. (]

Lemma 1 Let map(.) denote the MAP values of a model M, and let c-map(.) denote the MAP
values of a compensation that results from relaxing k equivalence constraints X; = X;. If the com-
pensation has parameters satisfying Equation 4, and if X is a complete assignment that is also valid,

then map(x) < qic-map(X), with equality if X is also optimal for c-map(.).

Proof First, we have
c-map() = map(R) + X oy [0(Xi =) + 0(X;=)] = map(%) + ¥y —y, ropc-map(X;=1).

Note that z is the state assumed by X; and X in assignment X. Since c-map(X; =z) > c-map(x),

c-map(X) > map(X) + > x =, THC-map(X) = map(X) + Hikc—map(i)
and thus ﬁc-map(i) > map(X). In the case where c-map(X) = c-map*, we have that
c-map(X; =x) = c-map(x) for all X; =X}, so we have map(x) = H%kc-map(ii). O

Proof of Theorem 2 Note first in a REC-BP compensation, from Equation 3, that

0(Xi=x)+0(X;=x) = c-map(X; =x) — tEzc-map* = c-map* — t¥c-map* = 1 c-map*

When we decompose c-map(x*) into the original factors, i.e., map(x*), and the auxiliary parame-
ters (X, =) + 6(X;=x):

cmap(x") = map(x*) + 3 [0(Xi=2) + (X, =x)]
X=X

= map(x*) + Xy —y, TTpC-Map* = map(x*) + Ty c-map*



and 1J%kc-map( x*) = map(x*). Similarly, for a REC-1 compensation, since 6(X;=z) +

0(X;=12) = rzc-map(X;=x) = ;1c-map*.

1+ 1+

We now want to show that x* must be optimal for map(.). Suppose for contradiction that there is an
assignment X such that map (%) > map(x*). Then:

cmap(X) = map(X)+ Y [0(Xi=2)+0(X;=x)]
X=X,

map(X) + >y =x, [c-map(X;=x) — ch map*|

> map(%) + Yy, [map(x) — thpc-map’]
= map(x)+ k- c-map(x) — 1’i—z‘kc-map

> map(x*) + k- c-map(x) — %c-map*

= 1+kc map* + k - c-map(x )fH_kcmap

= k-c-map(X)+ 1+kk c-map* = k - c-map(x) + (1 — k) - c-map*

and thus c-map(%X) > c-map* which contradicts the optimality of c-map*.
We know for a REC-1 compensation, that x* must be optimal for map(.). Otherwise it would not be

optimal for c-map(.), by Lemma 1. O

Proof of Theorem 3 Let x* be an optimal a551gnment for map(. ) Since x* must also be valid, we

have by Lemma 1 that map* = map(x*) < 1+kc map(x*) < 1-ch map*. O
Proof of Theorem 4 We have that
map(z) = maxgz~zmap(X) < maxz.z H#kc-map(fc)

< maxy~z 4pC-Map(x) = 5 c-map(z)
where the first inequality follows from Lemma 1. ]

Proposition 3 Let map(.) denote the MAP values of a model M, and let c-map(.) denote the MAP
values of a compensation that results from relaxing a single equivalence constraint X; = X ;. If the
compensation has parameters satisfying either Eqgs. 1 or 2, and if X* is an optimal assignment for
the compensation that is also valid, then:

1
map* < —c-map* < r-map”.

[\

r-map*, follows trivially if c-map* = c-map(X; =z, X; =x), for some state x, since 3c-map*
map* in this case, and map* < r-map*. Then assume that if c-map* = c-map(X; =x;, X, =

then z; # x;. It must then be that c-map(X; =z;) = c-map(X; =z;, X;=x;) = c- map(X —Z‘J)
so there are at least 2 states « where the optimal MAP value c-map* is achieved. Select s pairs
of optimal assignments X; =x;, X;=x; where X; and X; are set to a particular state = exactly
once (like X; =z, X; =29 and X; =x9, X;=x3 and X; =23, X; =x). We know such a selection
exists. Suppose, WlthOllt loss of generality, that X; =z, X; =5 is an optimal assignment (we can
relabel states). Then there must be an optimal assignment X =x9, X; =1 for some state x, since
cmap(X;=x3) = c- map(X; =ux5). If x = x; then we are done. Otherwise, we can assume
w.l.o.g. that x = x3, and we can repeat the above reasoning.

Proof The inequality map* < fc map* is implied by Theorem 3. The inequality fc map* <
j)s



Using these s assignments X; =x;, X; =x;, we have that:
s-c-map* = Z c-map(X;=xz;, X, =x;)
Xi:.ri,Xj:L’]‘
= Z r-map(X; =x;, X;=x;) + 0(X;=x;) + 0(X; =x;)

X=ri, X =,

[ Z r-map(X; =z;, X;=x;)] + | Z 0(X;=w;) + 0(X;=x;)]

Xj:l‘j,Xj:’L‘j Ti=Tj
1
= | Z r-map(X;=w;, X; =z;)] + | Z Ec-map(XIv:xi)]
Xi:‘Ei,Xj:‘Ej Zi:l’j
1
= [ Z r—map(Xi:xZ-,Xj:xj)]—i—[ Z §c—map*}
Xi:(Ei,Xj:x]‘ :ci:zj

= | Z r-map(X;=uz;, X;=1;)] + gc-map*

Xi=ri, Xj=x;

and thus
11 [ | R
zC-map” = — Z r-map(X;=x;, X;=1x;) < 5 Z r-map* = r-map
Xi=z;, X =t Xi=xi, X =t
as desired. O
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