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A Proof of theorem 2

Theorem 2 (Multivariable version of Ihara’s formula). LetC(V ) be the set of functions onV . We
define two linear operators onC(V ) by

(D̂f)(i) :=
( ∑

e∈E⃗
t(e)=i

ueuē
1− ueuē

)
f(i), (Âf)(i) :=

∑
e∈E⃗

t(e)=i

ue
1− ueuē

f(o(e)), wheref ∈ C(V ).

Then we have(
ζG(u)

−1 =
)
det(I − UM) = det(I + D̂ − Â)

∏
[e]∈E

(1− ueuē).

Proof. First, we define three linear operatorsO : C(V ) → C(E⃗), T ∗ : C(E⃗) → C(V ), and
ι : C(E⃗) → C(E⃗) as follows:

(Of)(e) := f(o(e)), (T ∗g)(i) :=
∑

e∈E⃗,t(e)=i

g(e), (ιg)(e) := g(ē) wheref ∈ C(V ) andg ∈ C(E⃗).

We see thatM = OT ∗ − ι, because(
(OT ∗ − ι)g

)
(e) =

∑
e′∈E⃗,t(e′)=o(e)

g(e′) − g(ē) = (Mg)(e) for g ∈ C(E⃗).

Then we have

det(I − UM) = det
(
I − UOT ∗(I + Uι)−1

)
det(I + Uι)

= det
(
I − T ∗(I + Uι)−1UO

)
det(I + Uι).

In the second equality, we useddet(In − AB) = det(Im − BA) for n ×m andm × n matrices
A andB ([S1], Lemma 8.2.4). The linear operatorι is a block diagonal matrix with standard basis.
The(e, ē) block of I + Uι is [

1 ue
uē 1

]
.

Therefore, we havedet(I + Uι) =
∏

[e]∈E(1− ueuē).

Finally, we check thatT ∗(I + Uι)−1UO = Â − D̂. The matrix(I + Uι)−1 is a block diagonal
matrix with (e, ē) block

1

1− ueuē

[
1 −ue

−uē 1

]
. (A.1)
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Forf ∈ C(V ), we have(
T ∗(I + Uι)−1UOf

)
(i) =

∑
e∈E⃗,t(e)=i

(
(I + Uι)−1UOf

)
(e)

=
∑

e∈E⃗,t(e)=i

1

1− ueuē

(
(UOf)(e)− ue(UOf)(ē)

)
=

∑
e∈E⃗,t(e)=i

1

1− ueuē

(
uef(o(e))− ueuēf(o(ē))

)
= (Âf)(i)− (D̂f)(i).

B Proof of theorem 3

B.1 Explicit formula of derivatives of the Bethe free energy

In the proof of theorem 3, the graphG = (V,E) is assumed to be a simple graph, i.e., there is no
multiple edges and loop-edge

For the proof, we need explicit expressions of the second derivatives of the Bethe free energy. We
list them below.

The first derivatives of the Bethe Free Energy are

∂F

∂mi
= −hi + (1− di)

1

2

∑
xi=±1

xi log bi(xi) +
1

4

∑
k∈Ni

∑
xi,xk=±1

xi log bik(xi, xk), (B.1)

∂F

∂χij
= −Jij +

1

4

∑
xi,xj=±1

xixj log bij(xi, xj). (B.2)

The second derivatives of the Bethe Free Energy are

∂2F

∂mi∂mj
=


(1− di)

1
1−m2

i
+ 1

4

∑
k∈Ni

∑
xi,xk

1
1+mixi+mkxk+χikxixk

if i = j,
1
4

∑
xi,xj

xixj

1+mixi+mjxj+χijxixj
if i andj are adjacent(i ̸= j),

0 otherwise,

(B.3)

∂2F

∂mk∂χij
=


1
4

∑
xi,xj

xj

1+mixi+mjxj+χijxixj
if k = i,

1
4

∑
xi,xj

xi

1+mixi+mjxj+χijxixj
if k = j,

0 otherwise,

(B.4)

∂2F

∂χij∂χkl
=

{
1
4

∑
xixj

1
1+mixi+mjxj+χijxixj

if ij = kl,

0 otherwise.
(B.5)

We use notations

rij :=
1

4

∑
xi,xj

1

1 +mixi +mjxj + χijxixj
, (B.6)

sij :=
1

4

∑
xi,xj

xj
1 +mixi +mjxj + χijxixj

, (B.7)

tij :=
1

4

∑
xi,xj

xixj
1 +mixi +mjxj + χijxixj

. (B.8)

Note thatrij = rji andtij = tji, butsij ̸= sji in general.
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B.2 Detailed proof of theorem 3

Theorem 3(Main Formula). The following equality holds at any point ofL(G):(
ζG(u)

−1=
)

det(I −UM) = det(∇2F )
∏
ij∈E

∏
xi,xj=±1

bij(xi, xj)
∏
i∈V

∏
xi=±1

bi(xi)
1−di 22N+4M ,

wherebij(xi, xj) = 1
4 (1 +mixi +mjxj + χijxixj), bi(xi) = 1

2 (1 +mi), and

ui→j :=
χij −mimj

1−m2
j

. (B.9)

Proof. First, note that the Hessian of the Bethe free energy is a square matrix of sizeN +M :

∇2F ({mi, χij}) :=

(
∂2F

∂mi∂mj

) (
∂2F

∂mi∂χst

)(
∂2F

∂χuv∂mj

) (
∂2F

∂χuv∂χst

) .
Recall thatN is the number of vertices andM is the number of undirected edges.

Step1: Computation of Y
From (B.5), the (E,E)-block of the Hessian is a diagonal matrix given by

∂2F

∂χij∂χkl
= δij,klrij .

Using this diagonal block, we erase (V,E)-block and (E,V)-block of the Hessian. Thus, we obtain a
square matrixX such thatdetX = 1 and

XT (∇2F )X =

[
Y 0

0
(

∂2F
∂χij∂χkl

)]
.

Applying an identity1 0
−sij
rij

0 1
−sji
rij

0 0 1


wi tij sij
tij wj sji
sij sji rij

 1 0 0
0 1 0

−sij
rij

−sji
rij

1

 =

 wi −
s2ij
rij

tij − sijsji
rij

0

tij − sijsji
rij

wj −
s2ji
rij

0

0 0 rij


for each edge, we have

(Y )i,j =


(1− di)

1
1−m2

i
+

∑
k∈Ni

(rik − s2ik
rik

) if i = j,

tij − sijsji
rij

if i andj are adjacent,

0 otherwise.

The elements ofY are represented in terms of{mi, χij} as follows:

(Y )i,i =
1

1−m2
i

+
∑
k∈Ni

(rik − s2ik
rik

− 1

1−m2
i

)

=
1

1−m2
i

+
∑
k∈Ni

(χik −mimk)
2

(1−m2
i )(1−m2

i −m2
k + 2mimkχik − χ2

ik)
and,

(Y )i,j = tij −
sijsji
rij

=
−(χij −mimj)

(1−m2
i −m2

j + 2mimjχij − χ2
ij)

for adjacenti andj.

Step2: Computation ofIN + D̂ − Â
From the definition (B.9) ofuj→i, we see that

ui→juj→i

1− ui→juj→i
=

(χij −mimj)
2

(1−m2
i −m2

j + 2mimjχij − χ2
ij)
,

ui→j

1− ui→juj→i
=

(1−m2
i )(χij −mimj)

(1−m2
i −m2

j + 2mimjχij − χ2
ij)
.
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Therefore, the diagonal element is

(IN + D̂ − Â)i,i = (IN + D̂)i,i = 1 +
∑
k∈Ni

ui→kuk→i

1− ui→kuk→i

= 1 +
∑
k∈Ni

(χik −mimk)
2

(1−m2
i −m2

k + 2mimkχik − χ2
ik)
,

and for adjacenti andj,

(IN + D̂ − Â)i,j = −(Â)i,j =
−uj→i

1− ui→juj→i

=
−(1−m2

j)(χij −mimj)

(1−m2
i −m2

j + 2mimjχij − χ2
ij)
.

Combining the results of step 1 and 2, we have

IN + D̂ − Â = Y


1−m2

1 0 . . . 0
0 1−m2

2 . . . 0
...

...
. . .

...
0 0 . . . 1−m2

N

 .
Step3: Final step
We see that

ζG(u)
−1 = det(I − UM) (B.10)

= det(IN + D̂ − Â)
∏

[e]∈E

(1− ueuē) (B.11)

= det(Y )
∏
i∈V

(1−m2
i )

∏
[e]∈E

(1− ueuē)

= det(∇2F )
∏
i∈V

(1−m2
i )

∏
ij∈E

1− ui→juj→i

rij

= det(∇2F )
∏
i∈V

(1−m2
i )

1−di

∏
ij∈E

(1− ui→juj→i)(1−m2
i )(1−m2

j )

rij
. (B.12)

From (B.10) to (B.11), we used the edge zeta version of Ihara’s formula (theorem 3).

Furthermore, with a straightforward computation we see that

(1− ui→juj→i)(1−m2
i )(1−m2

j )

rij
= 44

∏
xi,xj=±1

bij(xi, xj),

(1−m2
i )

1−di = 22−2di

∏
xi=±1

bi(xi)
1−di ,

wherebij(xi, xj) = 1
4 (1 +mixi +mjxj + χijxixj) andbi(xi) = 1

2 (1 +mi).

Therefore,

(B.12)= 2
∑

i∈V (2−2di)44M det(∇2F )
∏
i∈V

∏
xi=±1

bi(xi)
1−di

∏
ij∈E

∏
xi,xj=±1

bij(xi, xj)

= 22N+4M det(∇2F )
∏
i∈V

∏
xi=±1

bi(xi)
1−di

∏
ij∈E

∏
xi,xj=±1

bij(xi, xj).
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C Proof of corollary 2

Here, we prove the limit formula in corollary 2.

Corollary 2. Let{mi(t) := 0, χij(t) := t} ∈ L(G) for t < 1. Then we have

lim
t→1

det(∇2F (t))(1− t)M+N−1 = −2−M−N+1(M −N)κ(G),

whereκ(G) is the number of spanning trees inG.

Proof. We can easily check thatui→j(t) = t,∏
ij∈E

∏
xi,xj=±1

bij(xi, xj) = 4−4M (1− t)2M (1 + t)2M , and

∏
i∈V

∏
xi=±1

bi(xi)
1−di = 2−2N+4M

on this interval. Therefore

lim
t→1

det(∇2F (t))(1− t)M+N−1 = lim
t→1

ζG(u(t))
−1(1− t)M+N−1(

4−4M (1− t)2M (1 + t)2M2−2N+4M22N+4M
)−1

= lim
t→1

ζG(t)
−1(1− t)−M+N−12−2M

= −(M −N)κ(G)2−M−N+1.

On the final equality, we used Hashimoto’s formula:

lim
u→1

ζG(u)
−1(1− u)−M+N−1 = −2M−N+1(M −N)κ(G).

We refer to [S2–4] for this formula.

D Transformation of messages and proof of theorem 5

D.1 Transformation of messages

First, we make an easy observation on the LBP update.

Proposition D.1. Let {πi→j} be any set of messages. We define a transformation from messages
{µt

i→j} to messages{µ̃t
i→j} by

µ̃t
i→j(xj) ∝

µt
i→j(xj)

πi→j(xj)
. (D.1)

We also define transformation from functions{ψij , ψi} to functions{ψ̃ij , ψ̃i} by

ψ̃ij(xi, xj) ∝
ψij(xi, xj)

πi→j(xj)πj→i(xi)
, (D.2)

ψ̃i(xi) ∝ ψi(xi)
∏
k∈Ni

πk→i(xi). (D.3)

Then the update
µt+1
i→j(xj) ∝

∑
xi

ψji(xj , xi)ψi(xi)
∏

k∈Ni\j

µt
k→i(xi), (D.4)

is equivalent to
µ̃t+1
i→j(xj) ∝

∑
xi

ψ̃ji(xj , xi)ψ̃i(xi)
∏

k∈Ni\j

µ̃t
k→i(xi). (D.5)

Proof. The equivalence of (D.4) and (D.5) is easily checked by (D.1), (D.2), and (D.3).
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Symbolically, proposition D.1 implies that

Π ◦ T ◦Π−1 = T̃ , (D.6)

whereΠ is the transformation of the messages byπi→j , T is the LBP update with{ψij , ψi}, and
T̃ is the LBP update with{ψ̃ij , ψ̃i} . Differentiation of this relation gives the transformation of the
linearization matrix.

If we choose{πi→j} asπi→j(xj) = µ∞
i→j(xj), then (D.1), (D.2) and (D.3) becomes

µ̃t
i→j(xj) ∝

µt
i→j(xj)

µ∞
i→j(xj)

(D.7)

ψ̃ij(xi, xj) ∝
bij(xi, xj)

bi(xi)bj(xj)
(D.8)

ψ̃i(xi) ∝ bi(xi). (D.9)

This is the transformation used in the paper.

D.2 Proof of theorem 5

Theorem 5 ([S5], Proposition 4.5). At a LBP fixed pointη∞, the linearizationT ′(η∞) is similar
to UM, i.e.UM = P T ′(η∞)P−1 with an invertible matrixP .

Proof. Let {µ∞
i→j(xj)} be the set of messages at the fixed point and letΠ be the transformation

of messages defined by the fixed point messages. We parameterize the messages byηti→j =

µt
i→j(+)/µt

i→j(−). It is enough to prove the assertion after the transformation and in this pa-
rameterization, because these operations cause similar linearization matrices.

After the transformation, the LBP update is given in terms ofη̃ as follows:

η̃t+1
i→j =

∑
xi
ψ̃ji(+, xi)ψ̃i(xi)

∏
k∈Ni\j µ̃k→i(xi)∑

xi
ψ̃ji(−, xi)ψ̃i(xi)

∏
k∈Ni\j µ̃k→i(xi)

=

bji(+,+)
bj(+)

∏
k∈Ni\j η̃k→i(xi) +

bji(+,−)
bj(+)

bji(−,+)
bj(−)

∏
k∈Ni\j η̃k→i(xi) +

bji(−,−)
bj(−)

.

Let η̃∞ := Π(η∞), thenη̃∞e = 1 for all e ∈ E⃗. We can computẽT ′(η̃∞) as follows:

T̃ ′(η̃∞) =
∂η̃t+1

i→j

∂η̃tk→l

∣∣∣
η̃t=1

=
(bji(+,+)

bj(+)
− bji(−,+)

bj(−)

)
Mi→j,k→l

=
χij −mimj

1−m2
j

Mi→j,k→l.

E Idea and proof of theorem 7

E.1 Idea of theorem 7

In theorem 7, we show that the sum of indexes is equal to one. This is not so special. The simplest
example that illustrate the idea of the theorem is sketched in figure E.1. For each stationary point,
plus or minus sign is assigned depending on the sign of the second derivative. When we deform the
function, the sum is still equal to one as long as the outward gradients are positive at the boundaries.
(See figure E.2.)

Lemma 1, combined with lemma 2, describes the behavior of the Bethe free energy near the bound-
ary ofL(G).
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Figure E.1: The sum of indexes is one. Figure E.2: The sum of indexes is still one.

E.2 Proof of lemma 1

Lemma 1. If a sequence{qn} ⊂ L(G) converges to a pointq∗ ∈ ∂L(G), then∥∇F (qn)∥ → ∞,
where∂L(G) is the boundary ofL(G) ⊂ RN+M .

Proof. First, note that it is enough to prove the assertion whenhi = 0 andJij = 0.

We prove by contradiction. Assume that∥∇F (qn)∥ ̸→ ∞. Then, there existsR > 0 such that
∥∇F (qn)∥ ≤ R for infinitely manyn. Let B0(R) be the closed ball of radiusR centered at the
origin. Taking subsequences, if necessary, we can assume that

∇F (qn) → ∃
(
ξ

η

)
∈ B0(R), (E.1)

because of the compactness ofB0(R). Let b(n)ij (xi, xj) andb(n)i (xi) be the pseudomarginals corre-
sponding toqn. Sinceqn → q∗ ∈ ∂L(G), there existij ∈ E, xi andxj such that

b
(n)
ij (xi, xj) → 0.

Without loss of generality, we assume thatxi = +1 andxj = +1. From (E.1), we have

∇F (qn)ij =
1

4
log

b
(n)
ij (+,+)b

(n)
ij (−,−)

b
(n)
ij (+,−)b

(n)
ij (−,+)

−→ ηij .

Thereforeb(n)ij (+,−) → 0 or b(n)ij (−,+) → 0 holds; we assumeb(n)ij (+,−) → 0 without loss of
generality. Now we have

b
(n)
i (+) = b

(n)
ij (+,−) + b

(n)
ij (+,+) → 0.

In this situation, the following claim holds.

Claim. Letk ∈ Ni. In the limit ofn→ ∞,∑
xi,xk=±1

xi log
b
(n)
ik (xi, xk)

b
(n)
i (xi)

= log

[
b
(n)
ik (+,+)b

(n)
ik (+,−)b

(n)
i (−)2

b
(n)
ik (−,+)b

(n)
ik (−,−)b

(n)
i (+)2

]
(E.2)

converges to a finite value.

proof of claim. Fromb
(n)
i (+) → 0, we have

b
(n)
ik (+,−), b

(n)
ik (+,+) −→ 0 and b

(n)
i (−) → 1.

Case 1:b(n)ik (−,+) −→ b∗ik(−,+) ̸= 0 andb(n)ik (−,−) −→ b∗ik(−,−) ̸= 0.
In the same way as (E.2),

∇F (qn)ik =
1

4
log

b
(n)
ik (+,+)b

(n)
ik (−,−)

b
(n)
ik (+,−)b

(n)
ik (−,+)

−→ ηik.
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Therefore
b
(n)
ik (+,+)

b
(n)
ik (+,−)

−→ ∃r ̸= 0.

Then we see that (E.2) converges to a finite value.

Case 2:b(n)ik (−,+) −→ 1 andb(n)ik (−,−) −→ 0.
Similar to the case 1, we have

b
(n)
ik (+,+)b

(n)
ik (−,−)

b
(n)
ik (+,−)

−→ ∃r ̸= 0.

Thereforeb
(n)
ik (+,−)

b
(n)
ik (+,+)

→ 0. This implies that b
(n)
i (+)

b
(n)
ik (+,+)

→ 1. Then we see that (E.2) converges to a

finite value.

Case 3:b(n)ik (−,+) −→ 0 andb(n)ik (−,−) −→ 1.
Same as the case 2.

Now let us get back to the proof of lemma 1. We rewrite (B.1) as

∇F (qn)i =
1

2
log b

(n)
i (+)− 1

2
log b

(n)
i (−) +

1

4

∑
k∈Ni

∑
xi,xk=±1

xi log
b
(n)
ik (xi, xk)

b
(n)
i (xi)

From (E.1), this value converges toξi. The second and the third terms in (E.2) converges to a finite
value, while the first value converges to infinite. This is a contradiction.

E.3 Detailed proof of theorem 7

Theorem 7. If det∇2F (q) ̸= 0 for all q ∈ (∇F )−1(0) then∑
q:∇F (q)=0

sgn
(
det∇2F (q)

)
= 1, where sgn(x) :=

{
1 if x > 0,

−1 if x < 0.
(E.3)

We call each summand,which is+1 or −1, index ofF at q.

Proof. Define a mapΦ : L(G) → RN+M by

Φ(q)i = (1− di)
1

2

∑
xi=±1

xi log bi(xi) +
1

4

∑
k∈Ni

∑
xi,xk=±1

xi log bik(xi, xk), (E.4)

Φ(q)ij =
1

4

∑
xi,xj=±1

xixj log bij(xi, xj), (E.5)

wherebij(xi, xj) and bi(xi) are given byq = {mi, χij} ∈ L(G). Therefore, we have∇F =

Φ−
(
h
J

)
and∇Φ = ∇2F . Then following claim holds.

Claim. The setsΦ−1(
(
h
J

)
),Φ−1(0) ⊂ L(G) are finite and∑

q∈Φ−1( h
J )

sgn(det∇Φ(q)) =
∑

q∈Φ−1(0)

sgn(det∇Φ(q)), (E.6)

holds.

Before the proof of this claim, we prove theorem 7 under the claim.

From (E.4) and (E.5), it is easy to see thatΦ(q) = 0 ⇔ q = {mi = 0, χij = 0}. At this point,
we can easily check that∇Φ = ∇2F is a positive definite matrix. Therefore the right hand side
of (E.6) is equal to one. The left hand side of (E.6) is equal to the left hand side of (E.3), because
q ∈ Φ−1(

(
h
J

)
) ⇔ ∇F (q) = 0. Then the assertion of theorem 7 is proved.
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Figure F.1: The graphG.
Figure F.2: The grapĥG.

Proof of the claim.First, we prove thatΦ−1(
(
h
J

)
) = (∇F )−1(0) is a finite set. If not, we can choose

a sequence{qn} of distinct points from this set. LetL(G) be the closure ofL(G). SinceL(G) is
compact, we can choose a subsequence that converges to some pointq∗ ∈ L(G). From lemma 1,
q∗ ∈ L(G) and∇F (q∗) = 0 hold. By the assumption in theorem 7, we havedet∇2F (q∗) ̸= 0.
This implies that∇F (q) ̸= 0 in some neighborhood ofq∗. This is a contradiction becauseqn → q∗.

Secondly, we prove the equality (E.6) using lemma 2. Define a sequence of compact convex sets
Cn := {q ∈ L(G)|

∑
ij∈E

∑
xi,xj

− log bij ≤ n}, which increasingly converges toL(G). Since

Φ−1(0) andΦ−1
(
h
J

)
are finite, they are included inCn for sufficiently largen. TakeK > 0 and

ϵ > 0 to satisfyK − ϵ > ∥
(
h
J

)
∥. From lemma 1, we see thatΦ(∂Cn) ∩B0(K) = ϕ for sufficiently

largen. Letno be such a large number. LetΠϵ : RN+M → B0(K) be a smooth map that is identity
onB0(K − ϵ), monotonically increasing on∥x∥, andΠϵ(x) =

K
∥x∥x for ∥x∥ ≥ K. Then we obtain

a composition map̃Φ := Πϵ ◦ Φ : Cn0 → B0(K) that satisfyΦ̃(∂Cn0) ⊂ ∂B0(K). By definition,
we haveΦ−1(0) = Φ̃−1(0) andΦ−1

(
h
J

)
= Φ̃−1

(
h
J

)
. Therefore, both0 and

(
h
J

)
are regular values

of Φ̃. From lemma 2, we have∑
q∈Φ̃−1( h

J )

sgn(det∇Φ̃(q)) =
∑

q∈Φ̃−1(0)

sgn(det∇Φ̃(q)).

Then, the assertion of the claim is proved.

F Proof of corollary 4

F.1 Detailed proof of example 2

In this subsection we prove the assertion of corollary 4 for the graph of example 2, which is displayed
in figure F.1. The+ and− signs represent that of two body interactions.

It is enough to check thatdet(I − BM) > 0 for arbitrary0 ≤ β13, β23, β14, β34 < 1 and−1 <

β12 ≤ 0. The graphĜ in figure F.2 is obtained by erasing vertices2 and4 in G. To compute
det(I − BM), it is enough to consider̂G. In fact

det(I − BM) = ζG(β)
−1

=
∏
p∈P

(1− g(p)) (F.1)

=
∏
p̂∈P̂

(1− g(p̂)) (F.2)

= ζĜ(β̂)
−1 = det(I − B̂M̂),

whereβ̂e1 := β12β23, β̂e2 := β13, β̂e3 := β14β34 andβ̂ei = β̂ēi . The equality between (F.1) and
(F.2) is obtained by the one to one correspondence between prime cycles ofG andĜ.
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Figure F.3: Two other types of graphs.

Figure F.4: List of interaction types.

By definition, we have

B̂M̂ =



0 0 0 0 β̂e1 β̂e1
0 0 0 β̂e2 0 β̂e2
0 0 0 β̂e3 β̂e3 0

0 β̂e1 β̂e1 0 0 0

β̂e2 0 β̂e2 0 0 0

β̂e3 β̂e3 0 0 0 0


,

where the rows and columns are indexed bye1, e2, e3, ē1, ē2 andē3. Then the determinant is

det(I − B̂M̂) = det

I −
 0 β̂e1 β̂e1

β̂e2 0 β̂e2
β̂e3 β̂e3 0

det

I +
 0 β̂e1 β̂e1

β̂e2 0 β̂e2
β̂e3 β̂e3 0


= (1− β̂e1 β̂e2 − β̂e1 β̂e3 − β̂e2 β̂e3 − 2β̂e1 β̂e2 β̂e3)

(1− β̂e1 β̂e2 − β̂e1 β̂e3 − β̂e2 β̂e3 + 2β̂e1 β̂e2 β̂e3).

Since−1 < β̂e1 ≤ 0 and0 ≤ β̂e2 , β̂e3 < 1, we conclude that this is positive.

F.2 Other cases

There are two operations on graphs that do not change the set of prime cycles. The first one is adding
or removing a vertex of degree two on any edge. The second one is adding or removing an edge
with a vertex of degree one. With these two operations, all graphs that have two linearly independent
cycles are reduced to three types of graphs. The first type is in figure F.2. The other types are in
figure F.3.

Up to equivalence of interactions, all types of signs of two body interactions are listed in figure F.4
except for the attractive case. We check the uniqueness for each case in order.

Case (1):Proved in example 2.

10



Case (2):In this case,

BM =


βe1 0 0 0 βe1 0
βe2 0 0 βe2 0 0
0 βe3 βe3 0 0 0
0 0 0 βe1 βe1 0
0 0 βe2 0 0 βe2
0 βe3 0 0 0 βe3

 ,
where rows and columns are labeled bye1, e2, e3, ē1, ē2 andē3. Then the determinant is

det(I − BM) = (1− βe1)(1− βe3)(1− βe1 − βe3 + βe1βe3 − 4βe1β
2
e2βe3). (F.3)

This is positive when0 ≤ βe1 , βe2 < 1 and−1 < βe3 ≤ 0.

Case (3):The determinant (F.3) is also positive when0 ≤ βe2 < 1 and−1 < βe1 , βe3 ≤ 0.

Case (4):In this case,

BM =

 βe1 βe1 0 βe1
βe2 βe2 βe2 0
0 βe1 βe1 βe1
βe2 0 βe2 βe2

 ,
where rows and columns are labeled bye1, e2, ē1 andē2. Then we have

det(I − BM) = (1− βe1)(1− βe2)(1− βe1 − βe2 − 3βe1βe2). (F.4)

This is positive when0 ≤ βe1 < 1 and−1 < βe2 ≤ 0.

Case (5):The determinant (F.4) is positive when−1 < βe1 , βe2 ≤ 0.
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