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Abstract

Given a matrixM of low-rank, we consider the problem of reconstructing it from
noisy observations of a small, random subset of its entries. The problem arises
in a variety of applications, from collaborative filtering (the ‘Netflix problem’)
to structure-from-motion and positioning. We study a low complexity algorithm
introduced in [1], based on a combination of spectral techniques and manifold
optimization, that we call here OPTSPACE. We prove performance guarantees
that are order-optimal in a number of circumstances.

1 Introduction

Spectral techniques are an authentic workhorse in machine learning, statistics, numerical analysis,
and signal processing. Given a matrixM , its largest singular values –and the associated singular
vectors– ‘explain’ the most significant correlations in the underlying data source. A low-rank ap-
proximation ofM can further be used for low-complexity implementations of a number of linear
algebra algorithms [2].

In many practical circumstances we have access only to a sparse subset of the entries of anm × n
matrix M . It has recently been discovered that, if the matrixM has rankr, and unless it is too
‘structured’, a small random subset of its entries allow to reconstruct itexactly. This result was first
proved by Cand́es and Recht [3] by analyzing a convex relaxation indroduced by Fazel [4]. A tighter
analysis of the same convex relaxation was carried out in [5]. A number of iterative schemes to solve
the convex optimization problem appeared soon thereafter [6, 7, 8] (also see [9] for a generalization).

In an alternative line of work, the authors of [1] attacked the same problem using a combination
of spectral techniques and manifold optimization: we will refer to their algorithm as OPTSPACE.
OPTSPACE is intrinsically of low complexity, the most complex operation being computingr sin-
gular values and the corresponding singular vectors of a sparsem × n matrix. The performance
guarantees proved in [1] are comparable with the information theoretic lower bound: roughly
nr max{r, log n} random entries are needed to reconstructM exactly (here we assumem of or-
dern). A related approach was also developed in [10], although without performance guarantees for
matrix completion.

The above results crucially rely on the assumption thatM is exactly a rankr matrix. For many
applications of interest, this assumption is unrealistic and it is therefore important to investigate
their robustness. Can the above approaches be generalized when the underlying data is ‘well ap-
proximated’ by a rankr matrix? This question was addressed in [11] within the convex relaxation
approach of [3]. The present paper proves a similar robustness result for OPTSPACE. Remark-
ably the guarantees we obtain are order-optimal in a variety of circumstances, and improve over the
analogus results of [11].
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1.1 Model definition

LetM be anm × n matrix of rankr, that is

M = UΣV T . (1)

whereU has dimensionsm × r, V has dimensionsn × r, andΣ is a diagonalr × r matrix. We
assume that each entry ofM is perturbed, thus producing an ‘approximately’ low-rank matrixN ,
with

Nij = Mij + Zij , (2)

where the matrixZ will be assumed to be ‘small’ in an appropriate sense.

Out of them× n entries ofN , a subsetE ⊆ [m]× [n] is revealed. We letNE be them× n matrix
that contains the revealed entries ofN , and is filled with0’s in the other positions

NE
ij =

{
Nij if (i, j) ∈ E ,

0 otherwise. (3)

The setE will be uniformly random given its size|E|.

1.2 Algorithm

For the reader’s convenience, we recall the algorithm introduced in [1], which we will analyze here.
The basic idea is to minimize the cost functionF (X,Y ), defined by

F (X,Y ) ≡ min
S∈Rr×r

F(X,Y, S) , (4)

F(X,Y, S) ≡ 1

2

∑

(i,j)∈E

(Nij − (XSY T )ij)
2 . (5)

HereX ∈ R
n×r, Y ∈ R

m×r are orthogonal matrices, normalized byXT X = m1, Y T Y = n1.

Minimizing F (X,Y ) is ana priori difficult task, sinceF is a non-convex function. The key insight
is that the singular value decomposition (SVD) ofNE provides an excellent initial guess, and that the
minimum can be found with high probability by standard gradient descent after this initialization.
Two caveats must be added to this decription:(1) In general the matrixNE must be ‘trimmed’
to eliminate over-represented rows and columns;(2) For technical reasons, we consider a slightly
modified cost function to be denoted bỹF (X,Y ).

OPTSPACE( matrixNE )

1: Trim NE , and letÑE be the output;
2: Compute the rank-rprojection ofÑE , Tr(Ñ

E) = X0S0Y
T
0 ;

3: Minimize F̃ (X,Y ) through gradient descent, with initial condition(X0, Y0).

We may note here that the rank of the matrixM , if not known, can be reliably estimated from̃NE .
We refer to the journal version of this paper for further details.

The various steps of the above algorithm are defined as follows.

Trimming. We say that a row is ‘over-represented’ if it contains more than2|E|/m revealed entries
(i.e. more than twice the average number of revealed entries). Analogously, a column is over-
represented if it contains more than2|E|/n revealed entries. The trimmed matrix̃NE is obtained
from NE by setting to0 over-represented rows and columns.̃ME andZ̃E are defined similarly.
Hence,ÑE = M̃E + Z̃E .

Rank-r projection. Let

ÑE =

min(m,n)∑

i=1

σixiy
T
i , (6)
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be the singular value decomposition ofÑE , with singular vectorsσ1 ≥ σ2 ≥ . . . . We then define

Tr(Ñ
E) =

mn

|E|

r∑

i=1

σixiy
T
i . (7)

Apart from an overall normalization,Tr(Ñ
E) is the best rank-rapproximation toÑE in Frobenius

norm.

Minimization. The modified cost functioñF is defined as

F̃ (X,Y ) = F (X,Y ) + ρG(X,Y ) (8)

≡ F (X,Y ) + ρ

m∑

i=1

G1

( ||X(i)||2
3µ0r

)
+ ρ

n∑

j=1

G1

( ||Y (j)||2
3µ0r

)
, (9)

whereX(i) denotes thei-th row of X, andY (j) the j-th row of Y . See Section 1.3 below for the
definition of µ0. The functionG1 : R

+ → R is such thatG1(z) = 0 if z ≤ 1 andG1(z) =

e(z−1)2 − 1 otherwise. Further, we can chooseρ = Θ(nǫ).

Let us stress that the regularization term is mainly introduced for our proof technique to work (and
a broad family of functionsG1 would work as well). In numerical experiments we did not find any
performance loss in settingρ = 0.

One important feature of OPTSPACE is thatF (X,Y ) and F̃ (X,Y ) are regarded as functions of
ther-dimensional subspaces ofRm andRn generated (respectively) by the columns ofX andY .
This interpretation is justified by the fact thatF (X,Y ) = F (XA,Y B) for any two orthogonal
matricesA, B ∈ R

r×r (the same property holds for̃F ). The set ofr dimensional subspaces ofR
m

is a differentiable Riemannian manifoldG(m, r) (the Grassman manifold). The gradient descent
algorithm is applied to the functioñF : M(m,n) ≡ G(m, r) × G(n, r) → R. For further details on
optimization by gradient descent on matrix manifolds we refer to [12, 13].

1.3 Main results

Our first result shows that, in great generality, the rank-rprojection ofÑE provides a reasonable
approximation ofM . Throughout this paper, without loss of generality, we assumeα ≡ m/n ≥ 1.

Theorem 1.1. Let N = M + Z, where M has rank r and |Mij | ≤ Mmax for all (i, j) ∈ [m]× [n],
and assume that the subset of revealed entries E ⊆ [m] × [n] is uniformly random with size |E|.
Then there exists numerical constants C and C ′ such that

1√
mn

||M − Tr(Ñ
E)||F ≤ CMmax

(
nrα3/2

|E|

)1/2

+ C ′ n
√

rα

|E| ||Z̃E ||2 , (10)

with probability larger than 1 − 1/n3.

Projection onto rank-rmatrices through SVD is pretty standard (although trimming is crucial for
achieving the above guarantee). The key point here is that a much better approximation is obtained
by minimizing the cost̃F (X,Y ) (step 3 in the pseudocode above), providedM satisfies an appro-
priate incoherence condition. LetM = UΣV T be a low rank matrix, and assume, without loss of
generality,UT U = m1 andV T V = n1. We say thatM is (µ0, µ1)-incoherent if the following
conditions hold.

A1. For all i ∈ [m], j ∈ [n] we have,
∑r

k=1 U2
ik ≤ µ0r,

∑r
k=1 V 2

ik ≤ µ0r.

A2. There existsµ1 such that|∑r
k=1 Uik(Σk/Σ1)Vjk| ≤ µ1r

1/2.

Theorem 1.2. Let N = M + Z, where M is a (µ0, µ1)-incoherent matrix of rank r, and assume
that the subset of revealed entries E ⊆ [m] × [n] is uniformly random with size |E|. Further, let
Σmin = Σ1 ≤ · · · ≤ Σr = Σmax with Σmax/Σmin ≡ κ. Let M̂ be the output of OPTSPACE on
input NE . Then there exists numerical constants C and C ′ such that if

|E| ≥ Cn
√

ακ2 max
{
µ0r

√
α log n ; µ2

0r
2ακ4 ; µ2

1r
2ακ4

}
, (11)
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then, with probability at least 1 − 1/n3,

1√
mn

||M̂ − M ||F ≤ C ′ κ2 n
√

αr

|E| ||ZE ||2 . (12)

provided that the right-hand side is smaller than Σmin.

Apart from capturing the effect of additive noise, these two theorems improve over the work of [1]
even in the noiseless case. Indeed they provide quantitative bounds in finite dimensions, while the
results of [1] were only asymptotic.

1.4 Noise models

In order to make sense of the above results, it is convenient to consider a couple of simple models
for the noise matrixZ:

Independent entries model. We assume thatZ ’s entries are independent random variables, with zero
meanE{Zij} = 0 and sub-gaussian tails. The latter means that

P{|Zij | ≥ x} ≤ 2 e−
x
2

2σ
2 , (13)

for some bounded constantσ2.

Worst case model. In this modelZ is arbitrary, but we have an uniform bound on the size of its
entries:|Zij | ≤ Zmax.

The basic parameter entering our main results is the operator norm ofZ̃E , which is bounded as
follows.

Theorem 1.3. If Z is a random matrix drawn according to the independent entries model, then
there is a constant C such that,

||Z̃E ||2 ≤ Cσ

(√
α|E| log |E|

n

)1/2

, (14)

with probability at least 1 − 1/n3.

If Z is a matrix from the worst case model, then

||Z̃E ||2 ≤ 2|E|
n
√

α
Zmax , (15)

for any realization of E.

Note that for|E| = Ω(n log n) , no row or column is over-represented with high probability. It
follows that in the regime of|E| for which the conditions of Theorem 1.2 are satisfied, we have
ZE = Z̃E . Then, among the other things, this result implies that for the independent entries model
the right-hand side of our error estimate, Eq. (12), is with high probability smaller thanΣmin, if
|E| ≥ Crα3/2n log nκ4(σ/Σmin)2. For the worst case model, the same statement is true ifZmax ≤
Σmin/C

√
rκ2.

Due to space constraints, the proof of Theorem 1.3 will be given in the journal version of this paper.

1.5 Comparison with related work

Let us begin by mentioning that a statement analogous to our preliminary Theorem 1.1 was proved
in [14]. Our result however applies to any number of revealed entries, while the one of [14] requires
|E| ≥ (8 log n)4n (which forn ≤ 5 · 108 is larger thann2).

As for Theorem 1.2, we will mainly compare our algorithm with the convex relaxation approach
recently analyzed in [11]. Our basic setting is indeed the same, while the algorithms are rather
different.

4



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600

Convex Relaxation
Lower Bound

rank-r projection
OptSpace : 1 iteration

2 iterations
3 iterations

10 iterations

|E|/n

R
M

S
E

Figure 1: Root mean square error achieved by OPTSPACE for reconstructing a random rank-2matrix, as a
function of the number of observed entries|E|, and of the number of line minimizations. The performance of
nuclear norm minimization and an information theory lower bound are also shown.

Figure 1 compares the average root mean square error for the two algorithms as a function of|E|.
HereM is a random rankr = 2 matrix of dimensionm = n = 600, generated by lettingM = Ũ Ṽ T

with Ũij , Ṽij i.i.d. N(0, 20/
√

n). The noise is distributed according to the independent entries
model withZij ∼ N(0, 1). This example is taken from [11] Figure 2, from which we took the
data for the convex relaxation approach, as well as the information theory lower bound. After one
iteration, OPTSPACE has a smaller root mean square error than [11], and in about 10 iterations it
becomes indistiguishable from the information theory lower bound.

Next let us compare our main result with the performance guarantee in [11], Theorem 7. Let us
stress that we require some bound on the condition numberκ, while the analysis of [11, 5] requires
a stronger incoherence assumption. As far as the error bound is concerned, [11] proved

1√
mn

||M̂ − M ||F ≤ 7

√
n

|E| ||Z
E ||F +

2

n
√

α
||ZE ||F . (16)

(The constant in front of the first term is in fact slightly smaller than7 in [11], but in any case larger
than4

√
2).

Theorem 1.2 improves over this result in several respects:(1) We do not have the second term on
the right hand side of (16), that actually increases with the number of observed entries;(2) Our
error decreases asn/|E| rather than(n/|E|)1/2; (3) The noise enters Theorem 1.2 through the
operator norm||ZE ||2 instead of its Frobenius norm||ZE ||F ≥ ||ZE ||2. ForE uniformly random,
one expects||ZE ||F to be roughly of order||ZE ||2

√
n. For instance, within the intependent entries

model with bounded varianceσ, ||ZE ||F = Θ(
√

|E|) while ||ZE ||2 is of order
√
|E|/n (up to

logarithmic terms).

2 Some notations

The matrixM to be reconstructed takes the form (1) whereU ∈ R
m×r, V ∈ R

n×r. We write
U = [u1, u2, . . . , ur] andV = [v1, v2, . . . , vr] for the columns of the two factors, with||ui|| =

√
m,

||vi|| =
√

n, anduT
i uj = 0, vT

i vj = 0 for i 6= j (there is no loss of generality in this, since
normalizations can be absorbed by redefiningΣ).

5



We shall writeΣ = diag(Σ1, . . . ,Σr) with Σ1 ≥ Σ2 ≥ · · · ≥ Σr > 0. The maximum and mini-
mum singular values will also be denoted byΣmax = Σ1 andΣmin = Σr. Further, the maximum
size of an entry ofM is Mmax ≡ maxij |Mij |.
Probability is taken with respect to the uniformly random subsetE ⊆ [m]× [n] given|E| and (even-
tually) the noise matrixZ. Defineǫ ≡ |E|/√mn. In the case whenm = n, ǫ corresponds to the
average number of revealed entries per row or column. Then it is convenient to work with a model in
which each entry is revealed independently with probabilityǫ/

√
mn. Since, with high probability

|E| ∈ [ǫ
√

α n − A
√

n log n, ǫ
√

α n + A
√

n log n], any guarantee on the algorithm performances
that holds within one model, holds within the other model as well if we allow for a vanishing shift
in ǫ. We will useC, C ′ etc. to denote universal numerical constants.

Given a vectorx ∈ R
n, ||x|| will denote its Euclidean norm. For a matrixX ∈ R

n×n′

, ||X||F is
its Frobenius norm, and||X||2 its operator norm (i.e.||X||2 = supu6=0 ||Xu||/||u||). The standard
scalar product between vectors or matrices will sometimes be indicated by〈x, y〉 or 〈X,Y 〉, respec-
tively. Finally, we use the standard combinatorics notation[N ] = {1, 2, . . . , N} to denote the set of
first N integers.

3 Proof of Theorem 1.1

As explained in the introduction, the crucial idea is to consider the singular value decomposition
of the trimmed matrixÑE instead of the original matrixNE . Apart from a trivial rescaling, these
singular values are close to the ones of the original matrixM .
Lemma 3.1. There exists a numerical constant C such that, with probability greater than 1−1/n3,

∣∣∣σq

ǫ
− Σq

∣∣∣ ≤ CMmax

√
α

ǫ
+

1

ǫ
||Z̃E ||2 , (17)

where it is understood that Σq = 0 for q > r.

Proof. For any matrix A, letσq(A) denote theqth singular value ofA. Then,σq(A+B) ≤ σq(A)+
σ1(B), whence ∣∣∣σq

ǫ
− Σq

∣∣∣ ≤
∣∣∣σq(M̃

E)/ǫ − Σq

∣∣∣ + σ1(Z̃
E)/ǫ

≤ CMmax

√
α

ǫ
+

1

ǫ
||Z̃E ||2 ,

where the second inequality follows from the following Lemma as shown in [1].

Lemma 3.2(Keshavan, Montanari, Oh, 2009 [1]).There exists a numerical constant C such that,
with probability larger than 1 − 1/n3,

1√
mn

∣∣∣∣
∣∣∣∣M −

√
mn

ǫ
M̃E

∣∣∣∣
∣∣∣∣
2

≤ CMmax

√
α

ǫ
. (18)

We will now prove Theorem 1.1.

Proof. (Theorem 1.1) For any matrixA of rank at most2r, ||A||F ≤
√

2r||A||2, whence

1√
mn

||M − Tr(Ñ
E)||F ≤

√
2r√
mn

∣∣∣∣∣∣

∣∣∣∣∣∣
M −

√
mn

ǫ

(
ÑE −

∑

i≥r+1

σixiy
T
i

)
∣∣∣∣∣∣

∣∣∣∣∣∣
2

≤
√

2r√
mn

(∣∣∣
∣∣∣M −

√
mn

ǫ
M̃E

∣∣∣
∣∣∣
2

+

√
mn

ǫ
||Z̃E ||2 +

√
mn

ǫ
σr+1

)

≤ 2CMmax

√
2αr/ǫ + (2

√
2r/ǫ) ||Z̃E ||2

≤ C ′Mmax

(
nrα3/2

|E|

)1/2

+ 2
√

2

(
n
√

rα

|E|

)
||Z̃E ||2 .

This proves our claim.
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4 Proof of Theorem 1.2

Recall that the cost function is defined over the Riemannian manifoldM(m,n) ≡ G(m, r)×G(n, r).
The proof of Theorem 1.2 consists in controlling the behavior ofF in a neighborhood ofu = (U, V )
(the point corresponding to the matrixM to be reconstructed). Throughout the proof we letK(µ)
be the set of matrix couples(X,Y ) ∈ R

m×r ×R
n×r such that||X(i)||2 ≤ µr, ||Y (j)||2 ≤ µr for

all i, j

4.1 Preliminary remarks and definitions

Givenx1 = (X1, Y1) andx2 = (X2, Y2) ∈ M(m,n), two points on this manifold, their distance
is defined asd(x1,x2) =

√
d(X1, X2)2 + d(Y1, Y2)2, where, letting(cos θ1, . . . , cos θr) be the

singular values ofXT
1 X2/m,

d(X1, X2) = ||θ||2 . (19)

GivenS achieving the minimum in Eq. (4), it is also convenient to introduce the notations

d−(x,u) ≡
√

Σ2
mind(x,u)2 + ||S − Σ||2F , (20)

d+(x,u) ≡
√

Σ2
maxd(x,u)2 + ||S − Σ||2F . (21)

4.2 Auxiliary lemmas and proof of Theorem 1.2

The proof is based on the following two lemmas that generalize and sharpen analogous bounds in
[1] (for proofs we refer to the journal version of this paper).

Lemma 4.1. There exists numerical constants C0, C1, C2 such that the following happens. Assume
ǫ ≥ C0µ0r

√
α max{ log n ; µ0r

√
α(Σmin/Σmax)

4 } and δ ≤ Σmin/(C0Σmax). Then,

F (x) − F (u) ≥ C1nǫ
√

α d−(x,u)2 − C1n
√

rα||ZE ||2d+(x,u) , (22)

F (x) − F (u) ≤ C2nǫ
√

α Σ2
max d(x,u)2 + C2n

√
rα||ZE ||2d+(x,u) , (23)

for all x ∈ M(m,n) ∩ K(4µ0) such that d(x,u) ≤ δ, with probability at least 1 − 1/n4. Here
S ∈ R

r×r is the matrix realizing the minimum in Eq. (4).

Corollary 4.2. There exist a constant C such that, under the hypotheses of Lemma 4.1

||S − Σ||F ≤ CΣmaxd(x,u) + C

√
r

ǫ
||ZE ||2 . (24)

Further, for an appropriate choice of the constants in Lemma 4.1, we have

σmax(S) ≤ 2Σmax + C

√
r

ǫ
||ZE ||2 , (25)

σmin(S) ≥ 1

2
Σmin − C

√
r

ǫ
||ZE ||2 . (26)

Lemma 4.3. There exists numerical constants C0, C1, C2 such that the following happens. Assume
ǫ ≥ C0µ0r

√
α (Σmax/Σmin)2 max{ log n ; µ0r

√
α(Σmax/Σmin)4 } and δ ≤ Σmin/(C0Σmax).

Then,

||grad F̃ (x)||2 ≥ C1 nǫ2 Σ4
min

[
d(x,u) − C2

√
rΣmax

ǫΣmin

||ZE ||2
Σmin

]2

+

, (27)

for all x ∈ M(m,n) ∩ K(4µ0) such that d(x,u) ≤ δ, with probability at least 1 − 1/n4. (Here
[a]+ ≡ max(a, 0).)

We can now turn to the proof of our main theorem.
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Proof. (Theorem 1.2). Letδ = Σmin/C0Σmax with C0 large enough so that the hypotheses of
Lemmas 4.1 and 4.3 are verified.

Call {xk}k≥0 the sequence of pairs(Xk, Yk) ∈ M(m,n) generated by gradient descent. By as-
sumption, the following is true with a large enough constantC:

||ZE ||2 ≤ ǫ

C
√

r

(
Σmin

Σmax

)2

Σmin . (28)

Further, by using Corollary 4.2 in Eqs. (22) and (23) we get

F (x) − F (u) ≥ C1nǫ
√

αΣ2
min

{
d(x,u)2 − δ2

0,−

}
, (29)

F (x) − F (u) ≤ C2nǫ
√

αΣ2
max

{
d(x,u)2 + δ2

0,+

}
, (30)

where

δ0,− ≡ C

√
rΣmax

ǫΣmin

||ZE ||2
Σmin

, δ0,+ ≡ C

√
rΣmax

ǫΣmin

||ZE ||2
Σmax

. (31)

By Eq. (28), we can assumeδ0,+ ≤ δ0,− ≤ δ/10.

For ǫ ≥ Cαµ2
1r

2(Σmax/Σmin)4 as per our assumptions, using Eq. (28) in Theorem 1.1, together
with the boundd(u,x0) ≤ ||M − X0SY T

0 ||F /n
√

αΣmin, we get

d(u,x0) ≤
δ

10
. (32)

We make the following claims :

1. xk ∈ K(4µ0) for all k.

Indeed without loss of generality we can assumex0 ∈ K(3µ0) (because otherwise we can
rescale those lines ofX0, Y0 that violate the constraint). ThereforẽF (x0) = F (x0) ≤
4C2nǫ

√
αΣ2

maxδ
2/100. On the other hand̃F (x) ≥ ρ(e1/9 − 1) for x 6∈ K(4µ0).

Since F̃ (xk) is a non-increasing sequence, the thesis follows provided we takeρ ≥
C2nǫ

√
αΣ2

min.

2. d(xk,u) ≤ δ/10 for all k.

Assumingǫ ≥ Cαµ2
1r

2(Σmax/Σmin)6, we haved(x0,u)2 ≤ (Σ2
min/C ′Σ2

max)(δ/10)2.
Also assuming Eq. (28) with large enoughC we can show the following. For allxk such
thatd(xk,u) ∈ [δ/10, δ], we haveF̃ (x) ≥ F (x) ≥ F (x0). This contradicts the mono-
tonicity of F̃ (x), and thus proves the claim.

Since the cost function is twice differentiable, and because of the above, the sequence{xk} con-
verges to

Ω =
{
x ∈ K(4µ0) ∩ M(m,n) : d(x,u) ≤ δ , grad F̃ (x) = 0

}
. (33)

By Lemma 4.3 for anyx ∈ Ω,

d(x,u) ≤ C

√
rΣmax

ǫΣmin

||ZE ||2
Σmin

(34)

which implies the thesis using Corollary 4.2.
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