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Abstract

We are often interested in casting classification and clustering problems as a re-
gression framework, because it is feasible to achieve some statistical properties
in this framework by imposing some penalty criteria. In this paper we illustrate
optimal scoring, which was originally proposed for performing the Fisher linear
discriminant analysis by regression, in the application of unsupervised learning. In
particular, we devise a novel clustering algorithm that we call optimal discriminant
clustering. We associate our algorithm with the existing unsupervised learning al-
gorithms such as spectral clustering, discriminative clustering and sparse principal
component analysis. Experimental results on a collection of benchmark datasets
validate the effectiveness of the optimal discriminant clustering algorithm.

1 Introduction
The Fisher linear discriminant analysis (LDA) is a classical method that considers dimensionality re-
duction and classification jointly. LDA estimates a low-dimensional discriminative space defined by
linear transformations through maximizing the ratio of between-class scatter to within-class scatter.
It is well known that LDA is equivalent to a least mean squared error procedure in the binary classi-
fication problem [4]. It is of great interest to obtain a similar relationship in multi-class problems. A
significant literature has emerged to address this issue [6, 8, 12, 14]. This provides another approach
to performing LDA by regression, in which penalty criteria are tractably introduced to achieve some
statistical properties such as regularized LDA [5] and sparse discriminant analysis [2].

It is also desirable to explore unsupervised learning problems in a regression framework. Recently,
Zou et al. [17] reformulated principal component analysis (PCA) as a regression problem and then
devised a sparse PCA by imposing the lasso (the elastic net) penalty [10, 16] on the regression
vector. In this paper we consider unsupervised learning problems by optimal scoring, which was
originally proposed to perform LDA by regression [6]. In particular, we devise a novel unsupervised
framework by using the optimal scoring and the ridge penalty.

This framework can be used for dimensionality reduction and clustering simultaneously. We are
mainly concerned with the application in clustering. In particular, we propose a clustering algorithm
that we called optimal discriminant clustering (ODC). Moreover, we establish a connection of our
clustering algorithm with discriminative clustering algorithms [3, 13] and spectral clustering algo-
rithms [7, 15]. This implies that we can cast these clustering algorithms as regression-type problems.
In turn, this facilitates the introduction of penalty terms such as the lasso and elastic net so that we
have sparse unsupervised learning algorithms.

Throughout this paper, Im denotes the m×m identity matrix, 1m the m×1 vector of ones, 0 the zero
vector or matrix with appropriate size, and Hm = Im − 1

m1m1′m the m×m centering matrix. For
an m×1 vector a = (a1, . . . , am)′, diag(a) represents the m×m diagonal matrix with a1, . . . , am

as its diagonal entries. For an m×m matrix A = [aij ], we let A+ be the Moore-Penrose inverse
of A, tr(A) be the trace of A, rk(A) be the rank of A and ‖A‖F =

√
tr(A′A) be the Frobenius

norm of A.
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2 Problem Formulation

We are concerned with a multi-class classification problem. Given a set of n p-dimensional data
points, {x1, . . . ,xn} ∈ X ⊂ Rp, we assume that the xi are grouped into c disjoint classes and that
each xi belongs to one class. Let V = {1, 2, . . . , n} denote the index set of the data points xi and
partition V into c disjoint subsets Vj ; i.e., Vi ∩ Vj = ∅ for i 6= j and ∪c

j=1Vj = V , where the
cardinality of Vj is nj so that

∑c
j=1 nj = n.

We also make use of a matrix representation for the problem in question. In particular, we let X =
[x1, . . . ,xn]′ be an n×p data matrix, and E = [eij ] be an n×c indicator matrix with eij = 1 if input
xi is in class j and eij = 0 otherwise. Let Π = diag(n1, . . . , nc), Π

1
2 = diag(

√
n1, . . . ,

√
nc),

π = (n1, . . . , nc)′ and
√

π = (
√

n1, . . . ,
√

nc)
′. It follows that 1′nE = 1′cΠ = π′, E1c = 1n,

1′cπ = n, E′E = Π and Π−1π = 1c.

2.1 Scoring Matrices

Hastie et al. [6] defined a scoring matrix for the c-class classification problem. That is, it is such
a c×(c−1) matrix Θ ∈ Rc×(c−1) that Θ′(E′E)Θ = Θ′ΠΘ = Ic−1. The jth row of Θ defines a
scoring or scaling for the jth class. Here we refine this definition as:

Definition 1 Given a c-class classification problem with the cardinality of the jth class being nj , a
c×(c−1) matrix Θ is referred to as the class scoring matrix if it satisfies

Θ′ΠΘ = Ic−1 and π′Θ = 0.

It follows from this definition that ΘΘ′ = Π−1− 1
n1c1′c. In the literature [15], the authors presented

a specific example for Θ = (θ1, . . . ,θc−1)′. That is, θ′1 =
(√

n−n1√
nn1

,−
√

n1√
n(n−n1)

1′c−1

)
and

θ′l =
(

0 ∗ 1′l−1,

√∑c
j=l+1 nj

√
nl

∑c
j=l nj

,

√
nl√∑c

j=l nj

∑c
j=l+1 nj

1′c−l

)

for l = 2, . . . , c−1. Especially, when c = 2, Θ = (
√

n2√
nn1

,−
√

n1√
nn2

)′ is a 2-dimensional vector.

Let Y = EΘ (n×(c−1)). We then have Y′Y = Ic−1 and 1′nY = 0. To address an unsupervised
clustering problem with c classes, we relax the setting of Y = EΘ and give the following definition.

Definition 2 An n×(c−1) matrix Y is referred to as the sample scoring matrix if it satisfies

Y′Y = Ic−1 and 1′nY = 0.

Note that c does not necessarily represent the number of classes in this definition. For example, we
view c−1 as the dimension of a reduced dimensional space in the dimensionality reduction problem.

2.2 Optimal Scoring for LDA

To devise a classifier for the c-class classification problem, we consider a penalized optimal scoring
model, which is defined by

min
Θ, W

{
f(Θ,W) , 1

2
‖EΘ−HnXW‖2F +

σ2

2
tr(W′W)

}
(1)

under the constraints Θ′ΠΘ = Ic−1 and π′Θ = 0 where Θ ∈ Rc×(c−1) and W ∈ Rp×(c−1).
Compared with the setting in [6], we add the constraint π′Θ = 0. The reason is due to
1′nHnXW = 0. We thus impose 1′nEΘ = π′Θ = 0 for consistency.

Denote
R = Π− 1

2 E′HnX(X′HnX + σ2Ip)−1X′HnEΠ− 1
2 .

Since Rπ
1
2 = 0, there exists a c×(c−1) orthogonal matrix ∆, the columns of which are the eigen-

vectors of R. That is, ∆ satisfies ∆′∆ = Ic−1 and ∆′π
1
2 = 0.
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Theorem 1 A minimizer of Problem (1) is Θ̂ = Π− 1
2 ∆ and Ŵ = (X′HnX+σ2Ip)−1X′HnEΘ̂.

Here [∆, 1√
n
π

1
2 ] is the c×c matrix of the orthonormal eigenvectors of R.

Since for an arbitrary class scoring matrix Θ, its rank is c−1, we have Θ = Θ̂Υ where Υ is
some (c−1)×(c−1) orthonormal matrix. Moreover, it follows from ΘΘ′ = Π−1 − 1

n1c1′c that the
between-class scatter matrix is given by

Σb = X′HnEΘΘ′E′HnX = X′HnEΘ̂Θ̂
′
E′HnX.

Accordingly, we can also write the generalized eigenproblem for the penalized LDA as

X′HnEΘ̂Θ̂
′
E′HnXA = (X′HnX + σ2Ip)AΛ,

because the total scatter matrix Σ is Σ = X′HnX. We now obtain

ŴΘ̂
′
E′HnXA = AΛ.

It is well known that ŴΘ̂
′
E′HnX and Θ̂

′
E′HnXŴ have the same nonzero eigenvalues. More-

over, Θ̂
′
E′HnXA is the eigenvector matrix of Θ̂

′
E′HnXŴ. We thus establish the relationship

between A in the penalized LDA and W in the penalized optimal scoring model (1).

3 Optimal Scoring for Unsupervised Learning

In this section we extend the notion of optimal scoring to unsupervised learning problems, leading
to a new framework for dimensionality reduction and clustering analysis simultaneously.

3.1 Framework

In particular, we relax EΘ in (1) as a sample scoring matrix Y and define the following penalized
model:

min
Y, W

{
f(Y,W) , 1

2
‖Y −HnXW‖2F +

σ2

2
tr(W′W)

}
(2)

under the constraints 1′nY = 0 and Y′Y = Ic−1. The following theorem provides a solution for
this problem.

Theorem 2 A minimizer of Problem (2) is Ŷ and Ŵ = (X′HnX + σ2Ip)−1X′HnŶ, where Ŷ is
the n×(c−1) orthogonal matrix of the top eigenvectors of HnX(X′HnX + σ2Ip)−1X′Hn.

The proof is given in Appendix A. Note that all the eigenvalues of HnX(X′HnX+σ2Ip)−1X′Hn

are between 0 and 1. Especially, when σ2 = 0, the eigenvalues are either 1 or 0. In this
case, if rk(HnX) ≥ c−1, f(Ŷ,Ŵ) achieves its minimum 0, otherwise the minimum value is
c−1−rk(HnX)

2 .

With the estimates of Y and W, we can develop an unsupervised learning procedure. It is clear that
W can be treated as a non-orthogonal projection matrix and HnXW is then the low-dimensional
configuration of X. Using this treatment, we obtain a new alternative to the regression formulation of
PCA by Zou et al. [17]. In this paper, however, we concentrate on the application of the framework
in clustering analysis.

3.2 Optimal Discriminant Clustering

Our clustering procedure is given in Algorithm 1. We refer to this procedure as optimal discriminant
clustering due to its relationship with LDA, which is shown by the connection between (1) and (2).

Assume that X̃ = [x̃1, . . . , x̃n]′ (n×r) is a feature matrix corresponding to the data matrix X. In
this case, we have

S = HnX̃(X̃′HnX̃ + σ2Ir)−1X̃′Hn = C(C + σ2In)−1,
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where C = HnX̃X̃′Hn is the n×n centered kernel matrix. This implies that we can obtain Ŷ
without the explicit use of the feature matrix X̃. Moreover, we can compute Z by

Z = HnX̃(X̃′HnX̃ + σ2Ir)−1X̃′HnY = SY.

We are thus able to devise this clustering algorithm by using the reproducing kernel k(·, ·) :
X×X → R such that K(xi,xj) = x̃′ix̃j and K = X̃X̃′.

Algorithm 1 Optimal Discriminant Clustering Algorithm
1: procedure ODC(HnX, c, σ2)
2: Estimate Ŷ and Ŵ according to Theorem 2;
3: Calculate Z = [z1, . . . , zn]′ = HnXŴ;
4: Perform K-means on the zi;
5: Return the partition of the zi as the partition of the xi.
6: end procedure

3.3 Related Work

We now explore the connection of the optimal discriminant clustering with the discriminative clus-
tering algorithm [3] and spectral clustering [7]. Recall that Ŷ is the matrix of the c−1 top eigenvec-
tors of C(C + σ2In)−1. Consider that if λ 6= 0 is an eigenvalue of C with associated eigenvector
u, then λ/(λ+σ2) ( 6= 0) is an eigenvalue of C(C+σ2In)−1 with associated eigenvector u. More-
over, λ/(λ + σ2) is increasing as λ increases. This implies that Ŷ is also the matrix of the c−1 top
eigenvectors of C. As we know, the spectral clustering applies a rounding scheme such as K-means
directly on Ŷ. We thus have a relationship between the spectral clustering and optimal discriminant
clustering.

We study the relationship between the discriminative clustering algorithm and the spectral cluster-
ing algorithm. Let M be a linear transformation from the r-dimensional X̃ to an s-dimensional
transformed feature space F, namely

F = X̃M,

where M is an r×s matrix of rank s (s < r). The corresponding scatter matrices in the F-space
are thus given by M′ΣM and M′ΣbM. The discriminative clustering algorithm [3, 13] in the
reproducing kernel Hilbert space (RKHS) tries to solve the problem of

argmax
E, M

f(E,M) , tr((M′(Σ+σ2Ir)M)−1M′ΣbM)

= tr
(
(M′(X̃′HnX̃+σ2Ir)M)−1M′X̃′HnE

(
E′E

)−1
E′HnX̃M

)

Applying the discussion in [15] to HnX̃M(M′(X̃′HnX̃+σ2Ir)M)−1M′X̃′Hn, we have the fol-
lowing relaxation problem

max Y∈Rn×(c−1),M∈Rr×s tr(Y′HnX̃M(M′(X̃′HnX̃+σ2Ir)M)−1M′X̃′HnY),
s.t. Y′Y = Ic−1 and Y′1n = 0.

(3)

Express M = X̃′HnB + N where N satisfies N′X̃′Hn = 0 (i.e., N ∈ span{X̃′Hn}⊥) and B is
some n×s matrix. Under the condition of either σ2 = 0 or N = 0 (i.e., M ∈ span{X̃′Hn}), we
can obtain that

HnX̃M(M′(X̃′HnX̃+σ2Ir)M)−1M′X̃′Hn = CB(B′(CC + σ2C)B)−1B′C.

Again consider that if λ 6= 0 is an eigenvalue of C with associated eigenvector u, then λ/(λ+σ2) 6=
0 is an eigenvalue of C(CC + σ2C)+C with associated eigenvector u. Moreover, λ/(λ + σ2) is
increasing in λ. We now directly obtain the following theorem from Theorem 3.1 in [13].

Theorem 3 Let Y∗ and M∗ be the solution of Problem (3). Then
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Table 1: Summary of the benchmark datasets, where c is the number of classes, p is the dimension
of the input vector, and n is the number of samples in the dataset.

Types Dataset c p n

Face
ORL 40 1024 400
Yale 15 1024 165
PIE 68 1024 6800

Gene SRBCT 4 2308 63

UCI

Iris 4 4 150
Yeast 10 8 1484

Image segmentation 7 19 2100
Statlog landsat satellite 7 36 2000

(i) If σ2 = 0, Y∗ is the solution of the following problem

argmaxY∈Rn×(c−1) tr(Y′CC+Y),
s.t. Y′Y = Ic−1 and Y′1n = 0.

(ii) If M ∈ span{X̃′Hn}, Y∗ is the solution of the following problem:

argmaxY ∈Rn×(c−1) tr(Y′CY),
s.t. Y′Y = Ic−1 and Y′1n = 0.

Theorem 3 shows that discriminative clustering is essentially equivalent to spectral clustering. This
further leads us to a relationship between the discriminative clustering and optimal discriminant
clustering from the relationship between the spectral clustering and optimal discriminant clustering.
In summary, we are able to unify the discriminative clustering as well as spectral clustering into the
optimal scoring framework in (2).

4 Experimental Study

To evaluate the performance of our optimal discriminant clustering (ODC) algorithm, we conducted
experimental comparisons with other related clustering algorithms on several real-world datasets. In
particular, the comparison was implemented on three face datasets, the “SRBCT” gene dataset, and
four UCI datasets. Further details of these datasets are summarized in Table 1.

To effectively evaluate the performance, we employed two typical measurements: the Normalized
Mutual Information (NMI) and the Clustering Error (CE). It should be mentioned that for NMI, the
larger this value, the better the performance. For CE, the smaller the value, the better the perfor-
mance. More details and the corresponding implementations for both can be found in [11].

In the experiments, we compared our ODC with four different clustering algorithms, i.e., the
conventional K-means [1], normalized cut (NC) [9], DisCluster [3] and DisKmeans [13]. It is
worth noting that two discriminative clustering algorithms: DisCluster [3] and DisKmeans [13],
are very closely related to our ODC, because they are derived from the discriminant anal-
ysis criteria in essence (also see the analysis in Section 3.3). In addition, the implemen-
tation code for NC is available at http://www.cis.upenn.edu/∼jshi/software/.
For the sake of simplicity, the parameter σ2 in ODC is sought from the range σ2 ∈
{10−3, 10−2.5, 10−2, 10−1.5, 10−1, 10−0.5, 100, 100.5, 101, 101.5, 102, 102.5, 103}. Similarly, the
parameters in other clustering algorithms compared here are also searched in a wide range.

For simplicity, we just reported the best results of clustering algorithms with respect to different
parameters on each dataset. Table 2 summaries the NMI and CE on all datasets. According to the
NMI values in Table 2, our ODC outperforms other clustering algorithms on five datasets: ORL,
SRBCT, iris, yeast and image segmentation. According to the CE values in Table 2, it
is obvious that the performance of our ODC is best in comparison with other algorithms on all the
datasets, and NC and DisKmeans algorithms can achieve the almost same performance with ODC
on the SRBCT and iris datasets respectively. Also, it is seen that the DisCluster algorithm has
dramatically different performance based on the NMI and CE. The main reason is that the final
solution in DisCluster is very sensitive to the initial variables and numerical computation.
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Figure 1: The NMI versus the parameter σ tuning in ODC on all datasets, where the NMI of K-
means is used as the baseline: (a) ORL; (b) Yale; (c) PIE; (d) SRBCT; (e) iris; (f) yeast; (g)
image segmentation; (h) statlog landsat satellite.

In order to reveal the effect of the parameter σ on ODC, Figures 1 and 2 depict the NMI and CE
results of ODC with respect to different parameters σ on all datasets. Similar to [11, 13], we used the
results of K-means as a baseline. From Figures 1 and 2, we can see that similar to the conventional
clustering algorithms (including the compared algorithms), the parameter σ has a significant impact
on the performance of ODC, especially when the evaluation results are measured by NMI. In contrast
to the result in Figure 1, the effect of the parameter σ becomes less pronounced in Figure 2.

Table 2: Clustering results: the Normalized Mutual Information (NMI) and the Clustering Error
(CE) (%) of all clustering algorithms are calculated on different datasets.

Measure Dataset K-means NC DisCluster DisKmeans ODC

NMI

ORL 0.7971 0.8015 0.7978 0.8531 0.8567
Yale 0.6237 0.6203 0.5974 0.5641 0.5766
PIE 0.1140 0.2232 0.1940 0.3360 0.3035

SRBCT 0.2509 0.3722 0.3216 0.2683 0.3966
Iris 0.6595 0.6876 0.7248 0.7353 0.7353

Yeast 0.2968 0.2915 0.2993 0.3020 0.3041
Image segmentation 0.5830 0.5500 0.5700 0.5934 0.5942

Statlog landsat satellite 0.6126 0.6316 0.6152 0.6009 0.6166

CE (%)

ORL 38.25 34.50 38.75 29.00 28.50
Yale 45.45 46.06 45.45 45.45 44.84
PIE 79.82 79.82 77.35 66.23 65.52

SRBCT 55.55 47.61 50.79 53.96 47.61
Iris 16.66 15.33 12.66 11.33 11.33

Yeast 59.43 59.90 59.43 57.07 56.73
Image segmentation 45.14 49.47 45.95 41.66 40.23

Statlog landsat satellite 32.30 32.65 32.25 31.20 30.50

5 Concluding Remarks

In this paper we have proposed a regression framework to deal with unsupervised dimensionality
reduction and clustering simultaneously. The framework is based on the optimal scoring and ridge
penalty. In particular, we have developed a new clustering algorithm which is called optimal discrim-
inant clustering (ODC). ODC can efficiently identify the optimal solution and it has an underlying
relationship with the discriminative clustering and spectral clustering.
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Figure 2: The CE (%) versus the parameter σ tuning in ODC on all datasets, where the CE (%) of
K-means is used as the baseline: (a) ORL; (b) Yale; (c) PIE; (d) SRBCT; (e) iris; (f) yeast;
(g) image segmentation; (h) statlog landsat satellite.

This framework allows us for developing a sparse unsupervised learning algorithm; that is, we alter-
natively consider the following optimization problem:

min
Y, W

f(Y,W) =
1
2
‖Y −HnXW‖2F +

λ1

2
tr(W′W) + λ2‖W‖1

under the constraints 1′nY = 0 and Y′Y = Ic−1. We will study this further.
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A Proof of Theorem 2

For simplicity, we replace HnX by X and let q = c−1 in the following derivation. Consider the
Lagrange function:

L(Y,W,B,b)

=
1
2
tr(Y′Y)− tr(Y′XW) +

1
2
tr(W′(X′X+σ2Ip)W)− 1

2
tr(B(Y′Y−Iq))− tr(b′Y′1n),

where B is a q×q symmetric matrix of Lagrange multipliers and b is a q×1 vector of Lagrange
multipliers. By direct differentiation, it can be shown that

∂L

∂Y
= Y −XW −YB− 1nb′,

∂L

∂W
= (X′X + σ2Ip)W −X′Y.

Letting ∂L
∂Y = 0, we have

Y −XW −YB− 1nb′ = 0.

Pre-multiplying both sides of the above equation by 1′n, we obtain b = 0. Thus, it follows from
∂L
∂Y = 0 and ∂L

∂W = 0 that {
Y −XW −YB = 0,
W = (X′X + σ2Ip)−1X′Y.
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Substituting the second equation into the first equation, we further have
(In −X(X′X + σ2Ip)−1X′)Y = YB.

Now we take the spectral decomposition of B as B = UBΛBU′
B where UB is a q×q orthonormal

matrix and ΛB is a q×q diagonal matrix. We thus have (In − X(X′X + σ2Ip)−1X′)YUB =
YUBΛB . This shows that the diagonal entries of ΛB and the columns of YUB are the eigenvalues
and the associated eigenvectors of In −X(X′X + σ2Ip)−1X′.

We consider the case that n ≥ p. Let the SVD of X be X = UΓV′ where U (n×p) and V (p×p) are
orthogonal, and Γ = diag(γ1, . . . , γp) (p×p) is a diagonal matrix with γ1 ≥ γ2 ≥ · · · ≥ γp ≥ 0. We
then have X(X′X + σ2Ip)−1X′ = UΛU′, where Λ = diag(λ1, . . . , λp) with λi = γ2

i /(γ2
i + σ2).

There exists such an n×(n−p) orthogonal matrix U3 that its last column is 1√
n
1n and [U,U3]

is an n×n orthonormal matrix. That is, U3 is the eigenvector matrix of X(X′X + σ2Ip)−1X′
corresponding to the eigenvalue 0. Let U1 be the n×q matrix of the first q columns of [U,U3].

We now define Ŷ = U1, Ŵ = (X′X+ σ2Ip)−1X′U1, UB = Iq and ΛB = diag(1−λ1, . . . , 1−
λq) where λi = 0 whenever i > p. It is easily seen that such a Ŷ satisfies Ŷ′Ŷ = Iq and Ŷ′1n = 0
due to U′

1U
′
1 = Iq and X′1n = 0. Moreover, we have

f(Ŷ,Ŵ) =
q

2
− 1

2

q∑

i=1

λi =
q

2
− 1

2

q∑

i=1

γ2
i

γ2
i + σ2

where γi = 0 whenever i > p. Note that all the eigenvalues of X(X′X + σ2Ip)−1X′ are between
0 and 1. Especially, when σ2 = 0, the eigenvalues are either 1 or 0. In this case, if rk(X) ≥ q,
f(Ŷ,Ŵ) achieves its minimum 0, otherwise the minimum value is q−rk(X)

2 .

To verify that (Ŷ, Ŵ) is a minimizer of problem (2), we consider the Hessian matrix of
L with respect to (Y,W). Let vec(Y′) = (y11, . . . , y1q, y21, . . . , ynq)′ and vec(W′) =
(w11, . . . , w1q, w21, . . . , wpq)′. The Hessian matrix is then given by

H(Y,W) =

[
∂2L

∂vec(Y′)∂vec(Y′)′
∂2L

∂vec(Y′)∂vec(W′)′
∂2L

∂vec(W′)∂vec(Y′)′
∂2L

∂vec(W′)∂vec(W′)′

]
=

[
(Iq−B)⊗In −Iq⊗X
−Iq⊗X′ Iq⊗(X′X + σ2Ip)

]
.

Let C′ = [C′
1,C

′
2], where C1 and C2 are n×q and p×q, be an arbitrary nonzero (n+p)×q matrix

such that C′
1[1n, Ŷ] = 0, which is equivalent to C′

11n = 0 and C′
1U1 = 0.

If rk(X) ≤ q, we have C′
1X = 0. Hence,

vec(C′)′H(Ŷ,Ŵ)vec(C′) = tr(C′
1C1(Iq −B))− 2tr(C′

1XC2) + tr(C′
2(X

′X + σ2Ip)C2)

= tr(C′
1C1(Iq −B)) + tr(C′

2(X
′X + σ2Ip)C2) ≥ 0.

This implies that (Ŷ, Ŵ) is a minimizer of problem (2).

In the case that rk(X) = m > q, we have p > q. Thus we can partition U and V into U = [U1,U2]
and V = [V1,V2] where V1 and V2 are p×q and p×(p−q). Thus,

vec(C′)′H(Ŷ,Ŵ)vec(C′) = tr(C′
1C1(Iq −B))− 2tr(C′

1XC2) + tr(C′
2(X

′X + σ2Ip)C2)
≥ tr(C′

1U2Λ2U′
2C1)−2tr(C′

1U2Γ2V′
2C2)+tr(C′

2V2D2V′
2C2)

+tr(C′
1U3U′

3C1Λ1) + tr(C′
2V1D1V′

1C2)

= tr
[
(Λ1/2

2 U′
2C1 −D1/2

2 V′
2C2)′(Λ

1/2
2 U′

2C1 −D1/2
2 V′

2C2)
]

+tr(C′
1U3U′

3C1Λ1) + tr(C′
2V1D1V′

1C2) ≥ 0.

Here Λ1 = diag(λ1, . . . , λq), Λ2 = diag(λq+1, . . . , λp), Γ1 = diag(γ1, . . . , γq), Γ2 =
diag(γq+1, . . . , γp), D1 = Γ2

1 + σ2Iq and D2 = Γ2
2 + σ2Ip−q, so we have Γ2 = D1/2

2 Λ1/2
2 .

Moreover, we use the fact that
tr(C′

1U2U′
2C1Λ1) ≥ tr(C′

1U2Λ2U′
2C1)

because λiIq −Λ2 for i = 1, . . . , q are positive semidefinite.

If n < p, we also make the SVD of X as X = UΓV′. But, right now, U is n×n, V is n×p, and Λ
is n×n. Using this SVD, we have the same result as the case of n ≥ p.
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