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Abstract

Givenn noisy samples witlp dimensions, where < p, we show that the multi-
step thresholding procedure can accurately estimate aespactorg € R? in a
linear model, under the restricted eigenvalue conditi@iskel-Ritov-Tsybakov
09). Thus our conditions for model selection consisteneycansiderably weaker
than what has been achieved in previous works. More imptbytahis method al-
lows very significant values of, which is the number of non-zero elements in the
true parameter. For example, it works for cases where thiaang Lasso would
have failed. Finally, we show that X obeys a uniform uncertainty principle and
if the true parameter is sufficiently sparse, the Gauss-guselector (Cangks-
Tao 07) achieves th& loss within a logarithmic factor of the ideal mean square
error one would achieve with an oracle which would supplyfexerinformation
about which coordinates are non-zero and which are abowvedise level, while
selecting a sufficiently sparse model.

1 Introduction

In a typical high dimensional setting, the number of vaiallis much larger than the number of
observations:. This challenging setting appears in linear regressiggnadirecovery, covariance

selection in graphical modeling, and sparse approximatiom this paper, we consider recovering
0 € R? in the following linear model:

Y = XB+e, (1.1)

whereX is ann x p design matrixY is a vector of noisy observations aads the noise term. We
assume throughout this paper that n (i.e. high-dimensionaly ~ N(0,021,,), and the columns
of X are normalized to hav& norm./n. Given such a linear model, two key tasks are to identify
the relevant set of variables and to estimateith bounded/; loss.

In particular, recovery of the sparsity patte¥n= supp(3) := {j : 5; # 0}, also known as variable
(model) selection, refers to the task of correctly ideritifythe support set (or a subset of “signifi-
cant” coefficients in3) based on the noisy observations. Even in the noiselessreaseerings (or

its support) from(X,Y") seems impossible when< p. However, a line of recent research shows
that it becomes possible whehis also sparse: when it has a relatively small number of nenze
coefficients and when the design matdixis also sufficiently nice, which we elaborate below. One
important stream of research, which we also adopt herejnexjaomputational feasibility for the
estimation methods, among which the Lasso and the Dantiggtee are both well studied and
shown with provable nice statistical properties; see famegle [11, 9, 19, 21, 5, 18, 12, 2]. For a
chosen penalization parameer > 0, regularized estimation with thg-norm penalty, also known



as the Lasso [16] or Basis Pursuit [6] refers to the followdogvex optimization problem

- 1

ﬂ:argmﬁm%IIYfXﬂlli+AnIIﬂH1, 1.2)
where the scaling factdr/(2n) is chosen by convenience; The Dantzig selector [5] is defased

(DS) arg min
BeRP

QH subject to
1

%XT(Y - XB)H < An. (1.3)

Our goal in this work is to recovef as accurately as possible: we wish to obtﬁirsuch that

| supp(8) \ S| (and sometimeES A supp(3)| also) is small, with high probability, while at the same
time ||B—ﬁ\|§ is bounded within logarithmic factor of the ideal mean sguemror one would achieve
with an oracle which would supply perfect information abueitich coordinates are non-zero and
which are above the noise level (hence achievingtiaele inequalityas studied in [7, 5]); We deem
the bound orf2-loss as a natural criteria for evaluating a sparse modehithie not exactlyS. Let

s = |S]. GivenT C {1,...,p}, let us defineX as then x |T'| submatrix obtained by extracting
columns ofX indexed byT; similarly, let 3 € RI”!, be a subvector of € R? confined tdT".

Formally, we study Multi-step Procedure; First we obtain an initial estimatdgi;,;; using the Lasso
as in (1.2) or the Dantzig selector as in (1.3), with= O(c+/2logp/n).

1. We then threshold the estimat@g;; with ¢y, with the general goal such that, we get a
set]; with cardinality at mos®s; in general, we also havd; U S| < 2s, wherel; =
{7 €{1,...,p} : Bjinit > to} for somet, to be specified. Set = I;.

2. We then feedY, X;) to either the Lasso estimator as in (1.2) or the ordlnarytlsqsares
(OLS) estimator to obtaifi, where we seB; = (X7 X;)~'XTY andj;. = 0.

3. We then possibly threshol@; with ¢, = 4X\,+/|11] (to be specified), to obtatfg repeat
step2 with I = I to obtalnﬁf and set all other coordinates to zero; retﬁrn

Our algorithm is constructive in that it does not rely on th&kmown parameters, B, =
minjeg |3;] or those that characterize the incoherence condition& pmstead, our choice of,,
and thresholding parameters only dependsrom, andp. In our experiments, we apply only the
first two steps, which we refer to agwo-step procedutdn particular, the Gauss-Dantzig selector
is a two-step procedure with the Dantzig selectofgs[5]. In theory, we apply the third step only
when By is sufficiently large and when we wish to get a “sparser” mddel

More definitions. For a matrixA, let Ay,in(A) and A,ax(A) denote the smallest and the largest
eigenvalues respectively. We refer to a veatar R? with at mosts non-zero entries, where< p,
as as-sparsevector. Throughout this paper, we assume that 2s and

A . 2 2
Amln(25) - u;éo;g;l—nsparse ||XU||2 /(’ﬂ ||U||2) > O (14)
Itis clear thatn > 2s is necessary, as any submatrix with more thasolumns must be singular. In
general, we also assumg,a(s) = max,z0.s—sparse || X 0|2 /(n |[v]|3) < oo. As defined in [4],
the s-restricted isometry constafif of X is the smallest quantity such that
2 2 2
(1 =65) lvlly < IXzvlly /n < (1 +65) vl

forall T C {1,...,p} with |T'| < s and coefficients sequences;),cr. It is clear thatd, is

non-decreasing i and1 — §; < Apin(s) < Amax(s) < 1+ d5. Hencedos < 1 implies (1.4).

Occasionally, we usgr € RI7I, whereT C {1,...,p}, to also represent it3-extended version
B' € RP such thaps,-. = 0 andps’, = fr; for example in (1.5) below.

Oracle inequalities. The following idea has been explained in [5]; we hence dbedtihere only
briefly. Note that due to different normalization of columof X, our expressions are slightly



different from those in [5]. Consider the least square estim3; = (X7X;)"'XTY, where
|I| < s and consider theleal least-squares estimatgf

—~ |12
B3° = argmin E HB — ﬁl‘ , (1.5)
IC{1,...p}, [TI<s 2
which minimizes the expected mean squared error. It follfveus [5] that for Apax(s) < oo,
E 8- 8°/3 > min (1,1/Amax(s) me ,0%/n). (1.6)
Now we check if forA .« (s) < oo, it holds with high probablllty that
—~ 2
Hﬁ—ﬁHg = O(logp) Zmln ,0%/n), so that .7
—~ 2
Hﬁ - 5“2 = O(log p) max(1, Amax(s))E||3° — B]|% in view of (1.6). (1.8)

These bounds are meaningful since
2 .
E min( /n) = oo 18 = Bulls +

represents the ideal squared bias and variance. We elebmmatonditions on the design, under
which we accomplish these goals using the multi-step praeesdn the rest of this section. We now
define a constanX, ., for eacha > 0, by which we bound the maximum correlation between the
noise and covariates df, which we only apply taX with column/; norm bounded by/n; Let

XTe 21
T, = { < /\UM,}, wherel, ., = ov1+ay/ (;gp, hence (1.9

n
P(7,) >1— (y/mlogpp®)~!, fora > 0;see [5]. (1.10)
Variable selection. Our first result in Theorem 1.1 shows that consistent vagiaklection is pos-
sible under the Restricted Eigenvalue conditions, as fozewhin [2]. Similar conditions have been
used by [10] and [17].

IIIU

Assumption 1.1 (Restricted Eigenvalue assumptionRE(s, kg, X) [2]) For some integed <
s < p and a positive numbek,, the following holds:

1 A . . ||XUH2
—————— = min min ——=— > 0. 1.11
K(s, ko, X)  socti..o), w0, Vv, lly (1.11)

<kol|vs |
6l ="01" o lly

If RE(s, ko, X) is satisfied withky > 1, then the square submatrices of siz€s of X* X are nec-
essarily positive definite (see [2]) and hence (1.4) musi.hdle do not impose any extra constraint
on s besides what is allowed in order for (1.11) to hold. Note thbens > n/2, it is impossible
for the restricted eigenvalue assumption to holdkagor any I such thatl| = 2s becomes singular
in this case. Hence our algorithm is especially relevanhi would like to estimate a parameter
such thats is very close ta; See Section 4 for such examples. Bt := minjcg |3;].

Theorem 1.1 (Variable selection under Assumption 1.1)Suppose thaRE (s, ko, X) condition
holds, where;, = 1 for the DS and= 3 for the Lasso. Supposg, > B\, 4 p for A, , , asin(1.9),
whereB > 1 for the DS and> 2 for the Lasso. LeB, = m Lets > K*(s, ko, X) and

Bin > 42 max(K (s, ko, X), 1)Any/5 + max (4K2(s, ko, X), \/532) An/5.
Then with probability at leasP (7,,), the multi-step procedure returmssuch that

~ B2
S C I:=supp3), where|I\ S| < 1—; and

Azapll 2log p(1 + a)so?(1 + B3/16)
B-Bl3 < Sy < :
19 =915 = 2 ) PR, (29
which satisfie§1.7) and (1.8) given that3,i, > o/y/nand> Y, min(8?,02/n) = so?/n.



Our analysis builds upon the rate of convergence boundsifpierived in [2]. The first implica-
tion of this work and also one of the motivations for analggthe thresholding methods is: under
Assumption 1.1, one can obtain consistent variable seleétir very significant values of, if only

a few extra variables are allowed to be included in the estima In our simulations, we recover
the exact support sé&t with very high probability using a two-step procedure. Ntitat we did not
optimize the lower bound onas we focus on cases when the suppoif o large.

Thresholding that achieves the oracle inequalitiesThe natural question upon obtaining Theo-
rem 1.1is: is there a good thresholding rule that enables obtain a sufficiently sparse estimator
3 when some components Gf (and hences,,,;,,) are well belows /\/n, which also satisfies the
oracle inequality as in (1.7)? Before we answer this quastie definesy as the smallest integer
such that

p
ZIH]II 2 \20%) < 59202, where A\ = /2log p/n, (1.12)

=1

and the(s, s’)-restricted orthogonality constant [4] .- as the smallest quantity such that
| (Xpe, Xpc') /n] < 050 el [I€]]], (1.13)

holds for all disjoint set§", 7" C {1,...,p} of cardinality|T'| < s and|T’| < ', wheres + s’ <
p. Note thatf is non-decreasing in, s’ and small values of; .- indicates that disjoint subsets
covariates inX and X1 span nearly orthogonal subspaces.

Theorem 1.2 says that under a uniform uncertainty princ{pl&/P), thresholding of an initial
Dantzig selectopi,it, at the level of©(o+/2logp/n) indeed identifies a sparse modebf car-
dinality at most2s, such that the/3-loss for its corresponding least-squares estimator isedd
bounded withinO(log p) of the ideal mean square error as in (1.5), wigeis as sparse as required
by the Dantzig selector to achieve such an oracle inequ&ljityThis is accomplished without any
knowledge of the significant coordinates/®and not being able to observe parameter values.

Assumption 1.2 (A Uniform Uncertainly Principle) [5] For some integet < s < n/3, assume
Jas + 05,25 < 1, which implies that\,i, (25) > 6, 2 given thatl — Ja5 < Ayin(25).

Theorem 1.2 Chooser,a > 0 and set\,, = A, .o, where), ; := (V1 +a+ 771)y/2logp/n,
in (1.3). Supposes is s-sparse withdes + 0525 < 1 — 7. Let thresholdt, be chosen from the
range (Ci A, -0, Cs), 0| for some constant§’;, Cy to be defined. Then with probability at least

—(y/7logpp®)~1, the Gauss-Dantzig select@rselects a moddl := supp(ﬁ) suchthatl| < 2s,

i=1

p
81 < and 3 1 <20 s (s St i) . @18

whereC; depends ow, 7, 25, 05 2, and Cy; see(3.3).

Our analysis builds upon [5]. Note that allowing to be chosen from a range (as wide as one
would like, with the cost of increasing the constéhtin (1.14)), saves us from having to estimate
C4, which indeed depends oias andds »5. Assumption 1.2 implies that Assumption 1.1 holds for

kO = 1 with K S kOa \/ mm 25 / nnn 25 - 525 \/ mln 25 / ]- - 525 - 525)

(see [2]); Itis an open quest|0n if we can derive the samdtrasder Assumption 1.1.

Previous work. Finally, we briefly review related work in multi-step proagéds and the role of
sparsity for high-dimensional statistical inference. @efthis work, hard thresholding idea has
been shown in [5] (via Gauss-Dantzig selector) as a methodrtect the bias of the initial Dantzig
selector. The empirical success of the Gauss-Dantzigtseliecterms of improving the statistical
accuracy is strongly evident in their experimental resulBur theoretical analysis on the oracle
inequalities, which hold for the Gauss-Dantzig selectadarma uniform uncertainty principle, is
exactly inspired by their theoretical analysis of the alidantzig selector under the same conditions.
For the Lasso, [12] has also shown in theoretical analysisttivesholding is effective in obtaining



a two-step estimatc(? that is consistent in its support with however, the choice of threshold level
depends on the unknown valg,;, (which needs to be sufficiently large) ardand their theory
does not directly yield (or imply) an algorithm for findingcuparameters. Further, as pointed out
by [2], a weakening of their condition is still sufficient féissumption 1.1 to hold.

The sparse recovery problem under arbitrary noise is aldbsiadied, see [3, 15, 14]. Although
as argued in [3, 14], the best accuracy under arbitrary nuéseessentially been achieved in both
work, their bounds are worse than that in [5] (hence the prtgs&per) under the stochastic noise as
discussed in the present paper; see more discussions M@sgover, greedy algorithms in [15, 14]
requires to be part of their input, while the iterative algorithms Iretpresent paper do not have such
requirement, and hence adapt to the unknown level of sgarsiell. A more general framework
on multi-step variable selection was studied by [20]. Thegtwl the probability of false positives
at the price of false negatives, similar to what we aim forhia present paper. Unfortunately, their
analysis is constrained to the case whkéa a constant. Finally, under a restricted eigenvalue con-
dition slightly stronger than Assumption 1.1, [22] reqsite= O(4/n/logp) in order to achieve
variable selection consistency using the adaptive Las3jcel@the second step procedure.

Organization of the paper. We prove Theorem 1.1 essentially in Section 2. A threshglfliame-
work for the general setting is described in Section 3, whilslo sketches the proof of Theorem 1.2.
Section 4 briefly discusses the relationship between ligparsity and random design matrices.
Section 5 includes simulation results showing that our step procedure is consistent with our
theoretical analysis on variable selection.

2 Thresholding procedure wheng,,;, is large

We use a penalization parameter = B\, ,, and assumé,,;, > C\,/s for some constants
B, C throughout this section; we first specify the thresholdiagameters in this case. We then show
in Theorem 2.1 that our algorithm works under any conditisadong as the rate of convergence
of the initial estimator obeys the bounds in (2.2). Theoreinid a corollary of Theorem 2.1 under
Assumption 1.1, given the rate of convergence boundgifgrfollowing derivations in [2].

Thelterative Procedure. We obtain an initial estimatg#,it using the Lasso or the Dantzig selector.
Let So = {7 : Bjinit > 4\n 1}, and(©) := G Iterate through the following steps twice, fbr=

0,1: (a) Sett; = 4\,1/|Si|; (b) Threshold3(®) with ¢; to obtain := S;. ;, where
Sip1 = {j €S, : B](” > 4\, |§i|} and compute3\ ™ = (X7 x,) ' xTY. (2.1)

Return the final set of variables & and outpuﬁ such thalz§§2 = Bg) andﬁj =0,Vj € §§.
2

Theorem 2.1 Let A\, > B\, ., WhereB > 1 is a constant suitably chosen such that the initial
estimatorgi,; satisfies or,, for vinit = Ginit — 3 and some constanfs,, B,
[vinit,sll, < BoAnV's @and |vinit,se|l; < Bins; (2.2)

Supposefmin > (max ( Bi, 2) 2v/2 + max (Bo, \/EBQ)) AnA/S, (2.3)

V

whereB, = 1/(BAmin(2s)). Then fors > B2/16, it holds on7,, that |S;| < 2s,Vi = 1,2, and

Hg@)_ﬂng < Mo |S|/Amm(\S|)<)\ BoV/2s,Vi = 1,2, (2.4)

whereﬁ i) are the OLS estimators based én= SZ, Finally, the Iterative Procedure includes the
correct set of variables i¥, such thats € S, C S; and

521 8] = [supnd) | < e < B 25)



Remark 2.2 Without the knowledge af, one could us& > o in \,; this will put a stronger
requwement O min, but aII conclusions of Theorem 2.1 hold. We also note thatdier to obtain
81 such thaq51| < 2sand 51 D S, we only need to threshold,i attq = Bi A, (See Section 3 and

Lemma 3.2 for an example); instead of having to estiniztewe use, = O(\,/s) to threshold.

3 Athresholding framework for the general setting

In this section, we wish to derive a meaningful criteria fonsistency in variable selection, when
OBmin IS Well below the noise level. Suppose that we are given diai@stimators,;; that achieves
the rate of convergence bound as in (1.14), which adaptsyniel@ally to the uncertainty in the
support setS and the “significant” set. We show that although we cannotajutae the presence
of variables indexed byj : |3;] < o+/2logp/n} to be included in the final st (cf. (3.7)) due
to their lack of strength, we wish to include the significaatigbles fromS in I such that the OLS
estimator based ohachieves this almost ideal rate of convergencg;asdoes, even though some
variables fromS are missing in/. Here we pay a price for the missing variables in order toiotda
sparse model. Toward this goal, we analyze the following algorithm undssumption 1.2.

The General Two-step Procedure Assumedy, + 0 2, < 1 — 7, wherer > 0;

1. Firstwe obtain an initial estimatg,;, using the Dantzig selector witk,  := (v/1+ a+

771)y/2log p/n, wherer,a > 0; we then thresholg.;; with ¢y, chosen from the range
(C1Ap,r0,Cap 0], to Obtain a sef of cardinality at mos®s, (we prove a stronger result
in Lemma 3.2), where

I'={je{1,....p}: Bjinit > to}, forC, as defined in (3.3) (3.2)
2. In the second step, given a dedf cardinality at moss, we run the OLS regression to
obtain obtained via (3.1)3; = (X} X;)"'X7Y and set3; = 0,Vj ¢ I.
Theorem 2 in [5] has shown that the Dantzig selector achiegagy the ideal level of MSE.

Proposition 3.1 [5] LetY = X + ¢, for ¢ being i.i.d. N (0, 0%) and || X;||3 = n. Chooser, a > 0
and set\, = \, .0 := (vV1+a+ 77 )o/2logp/n in (1.3). Then ifj3 is s-sparse With(s%
05,25 < 1—7, the Dantzig selector obeys with probability at least (/7 log pp®) Hﬂ ﬂH
2C3(V1+a+771)2logp (0?/n+ > F_  min (67,0%/n)).

From this point on we lef := §,, andf := 6, »,; Analysis in [5] (Theorem 2) and the current paper
yields the following constants, wheé& has not been optimized,

1436 Co 0(1+5)

Cy = 20(’)+m Where%:l—é—@ T-5-0) (3.2)
whereCy, = 2\/5( 1{}‘129) +(141/v2) iljg‘i)z We now define
Cr =)+ % and C2 = 3(VItatr )2((Ch+Co)’ +1) + m 3.3)
We first set up the notation following that in [5]. We order thi¢s in decreasing order of magnitude
B1] = [Bal... > |Byl- (3.4)

Recall thats, is the smallest integer such that?_, min(3?, \?0?) < spA\%0?, where A =
v/2log p/n. Thus by definition ok, as essentially shown in [5], that< s, < s and

P
soA?o? < /\202+Zmin( 2 No?) < 2logp< —|—Zmln< U )) (3.5
i=1

so+1

and so\%o? Z min( 2 ,A20%) > (so + 1)min(82 1, A\°0%) for s < p, (3.6)

v



which implies thaimin (32, | |, A\?0?) < A%0? and hence by (3.4),
16;| < Ao forall j > s. (3.7)

We now show in Lemma 3.2 that thresholding at the level'at at step 1 selects a sebf at most
2s( variables, among which at mosf are fromSe©.

Lemma 3.2 Chooser > 0 such thatdys + 652, < 1 — 7. Let Sinir be thel;-minimizer subject to

the constraints, foh := \/2logp/nand), ; := (/1 +a+t~1)/2logp/n,

1
H’I’LXT(Y - Xﬁinit) < )\p,TJ' (38)

oo

Given some constaidty > C4, for C; as in(3.3), choose a thresholding parametgrso that
C4>\p77-0' > tog > Cl)\p,To—; Set] = {j : ‘ﬁj,init| > to}.
Then with probability at leadP (7,,), as detailed in Proposition 3.1, we have fgf as in(3.2),

[I| < 2sp, and [TUS| < s+ sp, and (3.9
6Dl < (Ch+ Cy)?2 + 1), 704/s0, WhereD :={1,...,p}\ I. (3.10)

Next we show that even if we miss some column&ah S, we can still hope to get the convergence
rate as required in Theorem 1.2 so long|&s ||, is bounded and is sufficiently sparse, for example,
as bounded in Lemma 3.2. We first show in Lemma 3.3 a genemalt @s rate of convergence of
the OLS estimator based on a chosen mddethere a subset of relevant variables are missing.

Lemma 3.3 (OLS estimator with missing variableg LetD := {1,...,p} \ITandSp =DnN S
such thatl N Sk = (0. Supposél U Sg| < 2s. Then we have off,, for the least squares estimator
based on/, 3; = (X} X;)~*X7Y, it holds that

Br-8 < ((Buysn 1801l + AowpVITT) Amin(1D) + 1801
|-5], < (( ) )

Now Theorem 1.2 is an immediate corollary of Lemma 3.2 andi3.@iew of (3.5), given that
|Sr| < s,and|I| < 2spand|IUSg| < |[TUS| < s+ sy <2sasinlLemma 3.2 (3.9). Henceitis
clear by (3.10) that we cannot cut too many “significant” ahtes; in particular, for those that are
larger\o/so, we can cut at most a constant number of them.

4 Linear sparsity and random matrices

A special case of design matrices that satisfy the Redtrieigenvalue assumptions are the random
design matrices. This is shown in a large body of work, fomegke [3, 4, 5, 1, 13], which shows
that the uniform uncertainty principle (UUP) holds for “geit” or random design matrices for very
significant values of. For example, it is well known that for a random matrix withd. Gaussian
variables (that is, Gaussian Ensemble, subject to noratalizs of columns), and the Bernoulli and
Subgaussian Ensembles [1, 13], the UUP holdssfer O(n/log(p/n)); hence the thresholding
procedure can recover a sparse model using nearly a comsieriier of measurements per non-
zero component despite the stochastic noise, whena nonnegligible fraction of. See [5] for
other examples of random designs. In our simulations assmBection 5, exact recovery rate of
the sparsity pattern is very high for a few types of randonrioes using a two-step procedure, once
the number of samples passes a certain threshold. For e¢afopan i.i.d. Gaussian Ensemble, the
threshold for exact recovery is= ©(slog(p/n)), where® hides a very small constant, wh8Rx

is sufficiently large; this shows a strong contrast with traireary Lasso, for which the probability of
success in terms of exact recovery of the sparsity patteadst® zero when < 2slog(p — s) [19].

In an ongoing work, the author is exploring thresholdingoaitnms for a broader class of random
designs that satisfy the Restricted Eigenvalue assungption
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Figure 1. (a) Compare the probability of success under 8 and64 for p = 256. The two-step
procedure requires much fewer samples than the ordinargd_ag) (c) show the probability of
success of the two-step procedure under different levespalsity whem increases fop = 512
and1024 respectively; (d) The number of samplesncreases almost linearly withfor p = 1024.

5 lllustrative experiments

In our implementation, we choose to use the Lasso as thaliegtimator. We show in Figure
that the two-step procedure indeed recovers a sparse meithg) @ small number of samples per
non-zero component i when X is a Gaussian Ensemble. Similar behavior was also observed
for the Bernoulli Ensemble in our simulations. We run undeeé cases of = 256,512,1024;

for eachp, we increase the sparsityby roughly equal steps from = 0.2p/log 0.2p to p/4. For
each tuple(p, s,n), we first generate a random Gaussian Ensemble of/sizep as X, where
X;; ~ N(0,1), which is then normalized to have columgnorm/n. For a given(p, s,n) and

X, we repeat the following experiment 100 timek: Generate a vectgs of lengthp: within g
randomly choose non-zero positions; for each position, we assign a valwedodr —0.9 randomly.

2) Generate a vecterof lengthp according taV (0, I,,), wherel,, is the identity matrix.3) Compute

Y = XB +e Y and X are then fed to the two-step procedure to obﬁim) We then compare

8 with g; if all components match in signs, we count this experimend auccess. At the end of
the 100 experiments, we compute the percentage of suctesstuas the probability of success.
We compare with the ordinary Lasso, for which we search okerftll path of LARS [8] and
always choose thg that best matches in terms of support. Inside the two-step procedure, we

always fix \,, ~ 0.694/2logp/n and threshold3;; atty = f“/b%\/?, wheres = |§0| for
S = {7 : Bjinit > 0.5\, }, andf, is a constant chosen from the rangdf6, 1/3].
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