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As a cross-bin similarity measure, which can be robust to waveform misalignment, the Earth
Mover’s Distance (EMD) [1, 2] gains its name from the intuition that given two waveforms, one
can be seen as a mass of earth properly spread in space, the other as a collection of holes in that
same space. The EMD measures the least amount of work needed to fill all of the holes with all of
the earth, where a unit of work corresponds to transporting a unit of earth by a unit of ground dis-
tance. In this paper, we formulate the EMD in the specific context of spike sorting, where the EMD
is employed to compare a spike template (object model) and a spike waveform (object candidate).
Specifically, we denote the ground distance between the uth sample in the object model and the vth

sample in the object candidate as duv (e.g. Euclidean distance duv = |u− v|), and the flow (amount
of transported earth) between them as fuv . The goal is to find the best alignment t that corresponds
to the smallest EMD

arg min
t

(min
fuv

Z(fuv(t))). (1)

In Eq.1 the inner optimization is to find the EMD for each alignment, and the outer one is to obtain
the best alignment. In the following, we use the superscript M to denote the object model and C

for the object candidate. w
(C)
v is the weight of the vth sample in the object candidate and w

(M)
u

the weight of the uth sample in the object model, respectively. As EMD works most conveniently
on waveforms with non-negative, equally summed weights (w(C)

v and w
(M)
u ), both object candidate

and object model are aligned to the same DC level with all the samples being positive

wi(n) = Vspike(n)− 1
Nspike

∑Nspike

n=1
Vspike(n) + VDC , (2)

where wi represents an object candidate/model, Vspike represents a spike waveform under similarity
measure, and VDC is an arbitrary DC bias to satisfy wi(n) > 0, ∀i, n. ss According to the definition
of EMD [1], Z in Eq. 1 is formulated as

Z(fuv(t)) =
∑m(M)

u=1

∑m(C)

v=1
duvfuv(t),

subject to ∑m(M)

u=1
fuv(t) = w(C)

v (t), 1 ≤ v ≤ m(C)

∑m(C)

v=1
fuv(t) = w(M)

u , 1 ≤ u ≤ m(M)

∑m(M)

u=1

∑m(C)

v=1
fuv(t) = NspikeVDC

fuv(t) ≥ 0, 1 ≤ u ≤ m(M), 1 ≤ v ≤ m(C).

Equation 1 as a linear programming problem can be considered in geometric terms as finding an
optimum in a closed convex polytope. In the problem presented in this work, the polytope is defined
by intersecting m(M) + m(C) + 1 half-spaces in a m(M) × m(C)-dimensional Euclidean space.
Computing the EMD is based on a solution to the wellknown transportation problem [3] from linear
optimization, for which efficient algorithms, e.g., simplex methods, are available. The simplex
method essentially works by searching the boundary of the polytope for an optimum. Detailed
descriptions of the simplex method to solve Eq. 1 are presented in [4, 5]. In the experiment section,
cluster isolation quality is quantitatively scored by EMD based similarity measure.
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