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Abstract

We present a class of nonlinear (polynomial) models that are discriminatively
trained to directly map from the word content in a query-document or document-
document pair to a ranking score. Dealing with polynomial models on word fea-
tures is computationally challenging. We propose a low-rank (but diagonal pre-
serving) representation of our polynomial models to induce feasible memory and
computation requirements. We provide an empirical study on retrieval tasks based
on Wikipedia documents, where we obtain state-of-the-art performance while pro-
viding realistically scalable methods.

1 Introduction

Ranking text documents given a text-based query is one of the key tasks in information retrieval.
A typical solution is to: (i) embed the problem in a feature space, e.g. model queries and target
documents using a vector representation; and then (ii) choose (or learn) a similarity metric that
operates in this vector space. Ranking is then performed by sorting the documents based on their
similarity score with the query.

A classical vector space model, see e.g. [24], uses weighted word counts (e.g. via tf-idf) as the
feature space, and the cosine similarity for ranking. In this case, the model is chosen by hand and no
machine learning is involved. This type of model often performs remarkably well, but suffers from
the fact that only exact matches of words between query and target texts contribute to the similarity
score. That is, words are considered to be independent, which is clearly a false assumption.

Latent Semantic Indexing [8], and related methods such as pLSA and LDA [18, 2], are unsupervised
methods that choose a low dimensional feature representation of “latent concepts” where words
are no longer independent. They are trained with reconstruction objectives, either based on mean
squared error (LSI) or likelihood (pLSA, LDA). These models, being unsupervised, are still agnostic
to the particular task of interest.

More recently, supervised models for ranking texts have been proposed that can be trained on a
supervised signal (i.e., labeled data) to provide a ranking of a database of documents given a query.
For example, if one has click-through data yielding query-target relationships, one can use this to
train these models to perform well on this task. Or, if one is interested in finding documents related
to a given query document, one can use known hyperlinks to learn a model that performs well on this
task. Many of these models have typically relied on optimizing over only a few hand-constructed
features, e.g. based on existing vector space models such as tf-idf, the title, URL, PageRank and
other information [20, 5]. In this work, we investigate an orthogonal research direction, as we
analyze supervised methods that are based on words only. Such models are both more flexible, e.g.
can be used for tasks such as cross-language retrieval, and can still be used in conjunction with
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other features explored in previous work for further gains. At least one recent work, called Hash
Kernels [25], has been proposed that does construct a word-feature based model in a learning-to-rank
context.

In this article we define a class of nonlinear (polynomial) models that can capture higher order
relationships between words. Our nonlinear representation of the words results in a very high di-
mensional feature space. To deal with this space we propose low rank (but diagonal preserving) rep-
resentations of our polynomial models to induce feasible memory and computation requirements,
resulting in a method that both exhibits strong performance and is tractable to train and test.

We show experimentally on retrieval tasks derived from Wikipedia that our method strongly outper-
forms other word based models, including tf-idf vector space models, LSI, query expansion, margin
rank perceptrons and Hash Kernels.

The rest of this article is as follows. In Section 2, we describe our method, Section 3 discusses prior
work, and Section 4 describes the experimental study of our method.

2 Polynomial Semantic Indexing

Let us denote the set of documents in the corpus as {dt}`t=1 ⊂ RD and a query text as q ∈ RD, where
D is the dictionary size, and the jth dimension of a vector indicates the frequency of occurrence of
the jth word, e.g. using the tf-idf weighting and then normalizing to unit length.

Given a query q and a document d we wish to learn a (nonlinear) function f(q, d) that returns a
score measuring the relevance of d given q. Let us first consider the naive approach of concatenating
(q, d) into a single vector and using f(q, d) = w>[q, d] as a linear ranking model. This clearly does
not learn anything useful as it would result in the same document ordering for any query, given fixed
parameters w. However, considering a polynomial model:

f(q, d) = w>Φk([q, d])

where Φk(·) is a feature map that considers all possible k-degree terms:

Φk(x1, . . . , xD) = 〈xi1 . . . xik
: 1 ≤ i1 . . . ik ≤ D〉

does render a useful discriminative model. For example for degree k = 2 we obtain:

f(q, d) =
∑
ij

w1
ijqiqj +

∑
ij

w2
ijdiqj +

∑
ij

w3
ijdidj

where w has been rewritten as w1 ∈ RD×D, w2 ∈ RD×D and w3 ∈ RD×D. The ranking order
of documents d given a fixed query q is independent of w1 and the value of the term with w3 is
independent of the query, so in the following we will consider models containing only terms with
both q and d. In particular, we will consider the following degree k = 2 model:

f2(q, d) =
D∑

i,j=1

Wijqidj = q>Wd (1)

where W ∈ RD×D, and the degree k = 3 model:

f3(q, d) =
D∑

i,j,k=1

Wijkqidjdk + f2(q, d). (2)

Note that if W is an identity matrix in equation (1), we obtain the cosine similarity with tf-idf
weighting. When other weights are nonzero this model can capture synonymy and polysemy as it
looks at all possible cross terms, which can be tuned directly for the task of interest during training,
e.g. the value ofWij corresponding to related words e.g. the word “jagger” in the query and “stones”
in the target could be given a large value during training. The degree k = 3 model goes one stage
further and can upweight Wijk for the triple “jagger”, “stones” and “rolling” and can downweight
the triple “jagger”, “gem” and “stones”. Note that we do not necessarily require preprocessing
methods such as stemming here since these models can already match words with common stems (if
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it is useful for the task). Note also that in equation (2) we could have just as easily have considered
pairs of words in the query (rather than the document) as well.

Unfortunately, using such polynomial models is clearly infeasible for several reasons. Firstly, it
will hardly be possible to fit W in memory for realistic tasks. If the dictionary size is D = 30000,
then, for k = 2 this requires 3.4GB of RAM (assuming floats), and if the dictionary size is 2.5
Million (as it will be in our experiments in Section 4) this amounts to 14.5TB. For k = 3 this is even
worse. Besides memory requirements, the huge number of parameters can of course also affect the
generalization ability of this model.

We thus propose a low-rank (but diagonal preserving) approximation of these models which will
lead to capacity control, faster computation speed and smaller memory footprint.

For k = 2 we propose to replace W with W , where

W ij = (U>V )ij + Iij =
∑

l

UliVlj + Iij .

Plugging this into equation (1) yields:

f2
LR(q, d) = q>(U>V + I)d, (3)

=
N∑

i=1

(Uq)i(V d)i + q>d. (4)

Here, U and V areN×D matrices. Before looking at higher degree polynomials, let us first analyze
this case. This induces a N -dimensional “latent concept” space in a way similar to LSI. However,
this is different in several ways:

• First, and most importantly, we advocate training from a supervised signal using preference
relations (ranking constraints).

• Further, U and V differ so it does not assume the query and target document should be
embedded in the same way. This can hence model when the query text distribution is very
different to the document text distribution, e.g. queries are often short and have different
word occurrence and co-occurrence statistics. In the extreme case in cross language re-
trieval query and target texts are in different languages yet are naturally modeled in this
setup.

• Finally, the addition of the identity term means this model automatically learns the trade-
off between using the low dimensional space and a classical vector space model. This is
important because the diagonal of the W matrix gives the specificity of picking out when a
word co-occurs in both documents (indeed, setting W = I is equivalent to cosine similar-
ity using tf-idf). The matrix I is full rank and therefore cannot be approximated with the
low-rank model U>V , so our model combines both terms in the approximation.

However, the efficiency and memory footprint are as favorable as LSI. Typically, one caches the
N -dimensional representation for each document to use at query time.

For higher degree polynomials, e.g. k = 3 one can perform a similar approximation. Indeed, Wijk

is approximated with
W ijk =

∑
l

UliVljYlk

where U, V and Y are N ×D. When adding the diagonal preserving term and the lower order terms
from the k = 2 polynomial, we obtain

f3
LR(q, d) =

N∑
i=1

(Uq)i(V d)i(Y d)i + f2
LR(q, d).

Clearly, we can approximate any degree k polynomial using a product of k linear embeddings in
such a scheme. Note that at test time one can again cache theN -dimensional representation for each
document by computing the product between the V and Y terms and are then still left with only N
multiplications per document for the embedding term at query time.

Interestingly, one can view this model as a “product of experts”: the document is projected twice i.e.
by two experts V and Y and the training will force them to focus on different aspects.
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2.1 Training

Training such models could take many forms. In this paper we will adopt the typical “learning
to rank” setup [17, 20]. Suppose we are given a set of tuples R (labeled data), where each tuple
contains a query q, a relevant document d+ and an non-relevant (or lower ranked) document d−. We
would like to choose W such that f(q, d+) > f(q, d−), that is d+ should be ranked higher than d−.
We thus employ the margin ranking loss [17] which has already been used in several IR methods
before [20, 5, 14], and minimize:∑

(q,d+,d−)∈R

max(0, 1− f(q, d+) + f(q, d−)). (5)

We train this using stochastic gradient descent, (see, e.g. [5]): iteratively, one picks a random tuple
and makes a gradient step for that tuple. We choose the (fixed) learning rate which minimizes the
training error. Convergence (or early stopping) is assessed with a validation set. Stochastic training
is highly scalable and is easy to implement for our model. For example, for k = 2, one makes the
following updates:

U ← U + λV (d+ − d−)q>, if 1− f2
LR(q, d+) + f2

LR(q, d−) > 0

V ← V + λUq(d+ − d−)>, if 1− f2
LR(q, d+) + f2

LR(q, d−) > 0.

Clearly, it is important to exploit the sparsity of q and d when calculating these updates. In our
experiments we initialized the matrices U and V randomly using a normal distribution with mean
zero and standard deviation one. The gradients for k = 3 are similar.

Note that researchers have also explored optimizing various alternative loss functions other than
the ranking loss including optimizing normalized discounted cumulative gain (NDCG) and mean
average precision (MAP) [5, 4, 6, 28]. In fact, one could use those optimization strategies to train our
models instead of optimizing the ranking loss. One could also just as easily use them in unsupervised
learning, such as in LSI, as well, e.g. by stochastic gradient descent on the reconstruction error.

3 Prior Work

Joachims et al. [20] trained a SVM with hand-designed features based on the title, body, search
engines rankings and the URL. Burges et al. [5] proposed a neural network method using a similar
set of features (569 in total). As described before, in contrast, we limited ourselves to body text (not
using title, URL, etc.) and trained on millions of features based on these words.

The authors of [15] used a model similar to the naive full rank model (1), but for the task of im-
age retrieval, and [13] also used a related (regression-based) method for advert placement. These
techniques are implemented in related software to these two publications, PAMIR1 and Vowpal
Wabbit2. When the memory usage is too large, the latter bins the features randomly into a reduced
space (hence with random collisions), a technique called Hash Kernels [25]. In all cases, the task
of document retrieval, and the use of low-rank approximation or polynomial features is not studied.
The current work generalizes and extends the Supervised Semantic Indexing approach [1] to general
polynomial models.

Another related area of research is in distance metric learning [27, 19, 12]. Methods like LMNN
[27] also learn a model similar to the naive full rank model (1), i.e. with the full matrix W (but
not with our improvements of this model that make it tractable for word features). They impose the
constraint during the optimization that W be a positive semidefinite matrix. Their method has con-
siderable computational cost. For example, even after considerable optimization of the algorithm,
it still takes 3.5 hours to train on 60,000 examples and 169 features (a pre-processed version of
MNIST). This would hence not be scalable for large-scale text ranking experiments. Nevertheless,
[7] compared LMNN [27], LEGO [19] and MCML [12] to a stochastic gradient method with a full
matrix W (identical to the model (1)) on a small image ranking task and reported in fact that the
stochastic method provides both improved results and efficiency. Our method, on the other hand,
both outperforms models like (1) and is feasible for word features, when (1) is not.

1http://www.idiap.ch/pamir/
2http://hunch.net/˜vw/
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A tf-idf vector space model and LSI [8] are two standard baselines we will also compare to. We
already mentioned pLSA [18] and LDA [2]; both have scalability problems and are not reported to
generally outperform LSA and TF-IDF [11]. Query Expansion, often referred to as blind relevance
feedback, is another way to deal with synonyms, but requires manual tuning and does not always
yield a consistent improvement [29].

Several authors [23, 21] have proposed interesting nonlinear versions of unsupervised LSI using
neural networks and showed they outperform LSI or pLSA. However, in the case of [23] we note
their method is rather slow, and a dictionary size of only 2000 was used. A supervised method
for LDA (sLDA) [3] has also been proposed where a set of auxiliary labels are trained on jointly
with the unsupervised task. This provides supervision at the document level (via a class label or
regression value) which is not a task of learning to rank, whereas here we study supervision at
the (query,documents) level. The authors of [10] proposed “Explicit Semantic Analysis” which
represents the meaning of texts in a high-dimensional space of concepts by building a feature space
derived from the human-organized knowledge from an encyclopedia, e.g. Wikipedia. In the new
space, cosine similarity is applied. Our method could be applied to such feature representations so
that they are not agnostic to a particular supervised task as well.

As we will also evaluate our model over cross-language retrieval, we also briefly mention methods
previously applied to this problem. These include first applying machine translation and then a
conventional retrieval method such as LSI [16], a direct method of applying LSI for this task called
CL-LSI [9], or using Kernel Canonical Correlation Analysis, KCCA [26]. While the latter is a
strongly performing method, it also suffers from scalability problems.

4 Experimental Study

Learning a model of term correlations over a large vocabulary is a considerable challenge that re-
quires a large amount of training data. Standard retrieval datasets like TREC3 or LETOR [22]
contain only a few hundred training queries, and are hence too small for that purpose. Moreover,
some datasets only provide pre-processed features like tf, idf or BM25, and not the actual words.
Click-through from web search engines could provide valuable supervision. However, such data is
not publicly available.

We hence conducted experiments on Wikipedia and used links within Wikipedia to build a large-
scale ranking task. We considered several tasks: document-document and query-document retrieval
described in Section 4.1, and cross-language document-document retrieval described in Section 4.2.

In these experiments we compared our approach, Polynomial Semantic Indexing (PSI), to the fol-
lowing methods: tf-idf + cosine similarity (TFIDF), Query Expansion (QE), LSI4, αLSI + (1 − α)
TFIDF, and the margin ranking perceptron and Hash Kernels with hash size h using model (1).
Query Expansion involves applying TFIDF and then adding mean vector β

∑E
i=1 dri

of the top
E retrieved documents multiplied by a weighting β to the query, and applying TFIDF again. For
all methods, hyperparameters such as the embedding dimension N ∈ {50, 100, 200, 500, 1000},
h ∈ {1M, 3M, 6M}, α, β and E were chosen using a validation set.

For each method, we measured the ranking loss (the percentage of tuples in R that are incorrectly
ordered), precision P (n) at position n = 10 (P@10) and the mean average precision (MAP), as
well as their standard deviations. For computational reasons, MAP and P@10 were measured by
averaging over a fixed set of 1000 test queries, and the true test links and random subsets of 10,000
documents were used as the database, rather than the whole testing set. The ranking loss is measured
using 100,000 testing tuples.

4.1 Document Retrieval

We considered a set of 1,828,645 English Wikipedia documents as a database, and split the
24,667,286 links randomly into two portions, 70% for training (plus validation) and 30% for test-

3http://trec.nist.gov/
4We use the SVDLIBC software http://tedlab.mit.edu/˜dr/svdlibc/ and the cosine distance

in the latent concept space.
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Table 1: Document-document ranking results on Wikipedia (limited dictionary size of 30,000
words). Polynomial Semantic Indexing (PSI) outperforms all baselines, and performs better with
higher degree k = 3.

Algorithm Rank-Loss MAP P@10
TFIDF 1.62% 0.329±0.010 0.163±0.006
QE 1.62% 0.330±0.010 0.163±0.006
LSI 4.79% 0.158±0.006 0.098±0.005
αLSI + (1− α)TFIDF 1.28% 0.346±0.011 0.170±0.007
Margin Ranking Perceptron using (1) 0.41% 0.477±0.011 0.212±0.007
PSI (k = 2) 0.30% 0.517±0.011 0.229±0.007
PSI (k = 3) 0.14% 0.539±0.011 0.236±0.007

Table 2: Empirical results for document-document ranking on Wikipedia (unlimited dictionary size).

Algorithm Rank-Loss MAP P@10
TFIDF 0.842% 0.432±0.012 0.1933±0.007
QE 0.842% 0.432±0.012 0.1933±0.007
αLSI + (1− α)TFIDF 0.721% 0.433±0.012 0.193±0.007
Hash Kernels using (1) 0.347% 0.485±0.011 0.215±0.007
PSI (k = 2) 0.158% 0.547±0.012 0.239±0.008
PSI (k = 3) 0.099% 0.590±0.012 0.249±0.008

Table 3: Empirical results for document-document ranking in two train/test setups: partitioning into
train+test sets of links, or into train+test sets of documents with no cross-links (limited dictionary
size of 30,000 words). The two setups yield. similar results.

Algorithm Testing Setup Rank-Loss MAP P@10
PSI (k = 2) Partitioned links 0.407% 0.506±0.012 0.225±0.007
PSI (k = 2) Partitioned docs+links 0.401% 0.503±0.010 0.225±0.006

Table 4: Empirical results for query-document ranking on Wikipedia where query has n keywords
(this experiment uses a limited dictionary size of 30,000 words). For each n we measure the ranking
loss, MAP and P@10 metrics.

n = 5 n = 10 n = 20
Algorithm Rank MAP P@10 Rank MAP P@10 Rank MAP P@10
TFIDF 21.6% 0.047 0.023 14.0% 0.083 0.035 9.14% 0.128 0.054
αLSI + (1− α)TFIDF 14.2% 0.049 0.023 9.73% 0.089 0.037 6.36% 0.133 0.059
PSI (k = 2) 4.37% 0.166 0.083 2.91% 0.229 0.100 1.80% 0.302 0.130

ing.5 We then considered the following task: given a query document q, rank the other documents
such that if q links to d then d is highly ranked.

In our first experiment we constrained all methods to use only the top 30,000 most frequent words.
This allowed us to compare to a margin ranking perceptron using model (1) which would otherwise
not fit in memory. For our approach, Polynomial Semantic Indexing (PSI), we report results for
degrees k = 2 and k = 3. Results on the test set are given in Table 1. Both variants of our method
PSI strongly outperform the existing techniques. The margin rank perceptron using (1) can be seen
as a full rank version of PSI for k = 2 (with W unconstrained) but is outperformed by its low-
rank counterpart – probably because it has too much capacity. Degree k = 3 outperforms k = 2,
indicating that the higher order nonlinearities captured provide better ranking scores. For LSI and
PSI embedding dimension N = 200 worked best, but other values gave similar results. In terms
of other techniques, LSI is slightly better than TFIDF but QE in this case does not improve much
over TFIDF, perhaps because of the difficulty of this task (there may too often be many irrelevant
documents in the top E documents initially retrieved for QE to help).

5We removed links to calendar years as they provide little information while being very frequent.
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Table 5: The closest five words in the document embedding space to some example query words.

kitten cat cats animals species dogs
vet veterinarian veterinary medicine animals animal
ibm computer company technology software data
nyc york new manhattan city brooklyn
c++ programming windows mac unix linux
xbox console game games microsoft windows
beatles mccartney lennon song band harrison
britney spears album music pop her

In our second experiment we no longer constrained methods to a fixed dictionary size, so all 2.5
million words are used. In this setting we compare to Hash Kernels which can deal with these
dictionary sizes. The results, given in Table 2 show the same trends, indicating that the dictionary
size restriction in the previous experiment did not bias the results in favor of any one algorithm.
Note also that as a page has on average just over 3 test set links to other pages, the maximum P@10
one can achieve in this case is 0.31.

In some cases, one might be worried that our experimental setup has split training and testing data
only by partitioning the links, but not the documents, hence performance of our model when new
unseen documents are added to the database might be in question. We therefore also tested an
experimental setup where the test set of documents is completely separate from the training set of
documents, by completely removing all training set links between training and testing documents.
In fact, this does not alter the performance significantly, as shown in Table 3.

Query-Document Ranking So far, our evaluation uses whole Wikipedia articles as queries. One
might wonder if the reported improvements also hold in a setup where queries consist of only a few
keywords. We thus also tested our approach in this setup. We used the same setup as before but we
constructed queries by keeping only n random words from query documents in an attempt to mimic
a “keyword search”. Table 4 reports the results for keyword queries of length n = 5, 10 and 20. PSI
yields similar improvements as in the document-document retrieval case over the baselines.

Word Embedding The document embedding V d in equation (3) (similarly for the query embed-
ding Uq) can be viewed as V d =

∑
i V·idi, in which each column V·i is the embedding of the word

di. It is natural that semantically similar words are more likely to have similar embeddings. Table
5 shows a few examples. The first column contains query words, on the right are the 5 words with
smallest Euclidean distance in the embedded space. We can see that they are quite relevant.

4.2 Cross Language Document Retrieval

Cross Language Retrieval [16] is the task of retrieving documents in a target language E given a
query in a different source language F . For example, Google provides such a service6. This is
an interesting case for word-based learning to rank models which can naturally deal with this task
without the need for machine translation as they directly learn the correspondence between the two
languages from bi-lingual labeled data in the form of tuples R. The use of a non-symmetric low-
rank model like (3) also naturally suits this task (however in this case adding the identity does not
make sense). We therefore also provide a case study in this setting.

We thus considered the same set of 1,828,645 English Wikipedia documents and a set of 846,582
Japanese Wikipedia documents, where 135,737 of the documents are known to be about the same
concept as a corresponding English page (this information can be found in the wiki mark-up pro-
vided in a Wikipedia dump.) For example, the page about “Microsoft” can be found in both English
and Japanese, and they are cross-referenced. These pairs are referred to as “mates” in the literature
(see, e.g. [9]).

We then consider a cross language retrieval task that is analogous to the task in Section 4.1: given
a Japanese query document qJap that is the mate of the English document qEng , rank the English

6http://translate.google.com/translate_s
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Table 6: Cross-lingual Japanese document-English document ranking (limited dictionary size of
30,000 words).

Algorithm Rank-Loss MAP P@10
TFIDFEngEng(Google translated queries) 4.78% 0.319±0.009 0.259±0.008
TFIDFEngEng(ATLAS word-based translation) 8.27% 0.115±0.005 0.103±0.005
TFIDFEngEng(ATLAS translated queries) 4.83% 0.290±0.008 0.243±0.008
LSIEngEng(ATLAS translated queries) 7.54% 0.169±0.007 0.150±0.007
αLSIEngEng(ATLAS)+(1− α)TFIDFEngEng(ATLAS) 3.71% 0.300±0.008 0.253±0.008
CL-LSIJapEng 9.29% 0.190±0.007 0.161±0.007
αCL-LSIJapEng+(1− α)TFIDFEngEng(ATLAS) 3.31% 0.275±0.009 0.212±0.008
PSIEngEng(ATLAS) 1.72% 0.399±0.009 0.325±0.009
PSIJapEng 0.96% 0.438±0.009 0.351±0.009
αPSIJapEng + (1− α)TFIDFEngEng(ATLAS) 0.75% 0.493±0.009 0.377±0.009
αPSIJapEng + (1− α)PSIEngEng(ATLAS) 0.63% 0.524±0.009 0.386±0.009

documents so that the documents linked to qEng appear above the others. The document qEng is
removed and not considered during training or testing. The dataset is split into train/test as before.

The first type of baseline we considered is based on machine translation. We used a machine trans-
lation tool on the Japanese query, and then applied TFIDF or LSI. We considered three methods
of machine translation: Google’s API7 or Fujitsu’s ATLAS8 was used to translate each query doc-
ument, or we translated each word in the Japanese dictionary using ATLAS and then applied this
word-based translation to a query. We also compared to CL-LSI [9] trained on all 90,000 Jap-Eng
pairs from the training set.

For PSI, we considered two cases: (i) apply the ATLAS machine translation tool first, and then use
PSI trained on the task in Section 4.1, e.g. the model given in equation (3) (PSIEngEng), which was
trained on English queries and English target documents; or (ii) train PSI directly with Japanese
queries and English target documents using the model using (3) without the identity, which we call
PSIJapEng . We use degree k = 2 for PSI (trying k = 3 would have been interesting, but we have
not performed this experiment). The results are given in Table 6. The dictionary size was again
limited to the 30,000 most frequent words in both languages for ease of comparison with CL-LSI.

TFIDF using the three translation methods gave relatively similar results. Using LSI or CL-
LSI slightly improved these results, depending on the metric. Machine translation followed by
PSIEngEng outperformed all these methods, however the direct PSIJapEng which required no ma-
chine translation tool at all, improved results even further. We conjecture that this is because trans-
lation mistakes generate noisy features which PSIJapEng circumvents.

However, we also considered combining PSIJapEng with TFIDF or PSIEngEng using a mixing
parameter α and this provided further gains at the expense of requiring a machine translation tool.

Note that many cross-lingual experiments, e.g. [9], typically measure the performance of finding a
“mate”, the same document in another language, whereas our experiment tries to model a query-
based retrieval task. We also performed an experiment in the mate-finding setting. In this case, PSI
achieves a ranking error of 0.53%, and CL-LSI achieves 0.81%.

5 Conclusion

We described a versatile, powerful set of discriminatively trained models for document ranking
based on polynomial features over words, which was made feasible with a low-rank (but diagonal
preserving) approximation. Many generalizations are possible: adding more features into our model,
using other choices of loss function and exploring the use of the same models for tasks other than
document retrieval, for example applying these models to ranking images rather than text, or to
classification, rather than ranking, tasks.

7http://code.google.com/p/google-api-translate-java/
8http://www.fujitsu.com/global/services/software/translation/atlas/
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