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Abstract

One crucial assumption made by both principal component analysis (PCA) and
probabilistic PCA (PPCA) is that the instances are independent and identically
distributed (i.i.d.). However, this common i.i.d. assumption is unreasonable for
relational data. In this paper, by explicitly modeling covariance between instances
as derived from the relational information, we propose a novel probabilistic di-
mensionality reduction method, calledprobabilistic relational PCA(PRPCA), for
relational data analysis. Although the i.i.d. assumption is no longer adopted in
PRPCA, the learning algorithms for PRPCA can still be devised easily like those
for PPCA which makes explicit use of the i.i.d. assumption. Experiments on real-
world data sets show that PRPCA can effectively utilize the relational information
to dramatically outperform PCA and achieve state-of-the-art performance.

1 Introduction

Using a low-dimensional embedding to summarize a high-dimensional data set has been widely
used for exploring the structure in the data. The methods for discovering such low-dimensional
embedding are often referred to as dimensionality reduction (DR) methods. Principal component
analysis (PCA) [13] is one of the most popular DR methods with great success in many applications.
As a more recent development, probabilistic PCA (PPCA) [21] provides a probabilistic formula-
tion of PCA [13] based on a Gaussian latent variable model [1]. Compared with the original non-
probabilistic derivation of PCA in [12], PPCA possesses a number of practical advantages. For ex-
ample, PPCA can naturally deal with missing values in the data; the expectation-maximization (EM)
algorithm [9] used to learn the parameters in PPCA may be more efficient for high-dimensional data;
it is easy to generalize the single model in PPCA to the mixture model case; furthermore, PPCA as
a probabilistic model can naturally exploit Bayesian methods [2].

Like many existing DR methods, both PCA and PPCA are based on some assumptions about the
data. One assumption is that the data should be represented as feature vectors all of the same
dimensionality. Data represented in this form are sometimes referred to asflat data[10]. Another
one is the so-called i.i.d. assumption, which means that the instances are assumed to be independent
and identically distributed (i.i.d.).

However, the data in many real-world applications, such as web pages and research papers, contain
relations or links between (some) instances in the data in addition to the textual content informa-
tion which is represented in the form of feature vectors. Data of this sort, referred to asrelational
data1 [10, 20], can be found in such diverse application areas as web mining [3, 17, 23, 24], bioinfor-
matics [22], social network analysis [4], and so on.On one hand, the link structure among instances

1In this paper, we use document classification as a running example for relational data analysis. Hence, for
convenience of illustration, the specific term ‘textual content information’ is used in the paper to refer to the
feature vectors describing the instances. However, the algorithms derived in this paper can be applied to any
relational data in which the instance feature vectors can represent any attribute information.
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cannot be exploited easily when traditional DR methods such as PCA are applied to relational data.
Very often, the useful relational information is simply discarded. For example, a citation/reference
relation between two papers provides very strong evidence for them to belong to the same topic even
though they may bear low similarity in their content due to the sparse nature of the bag-of-words
representation, but the relational information is not exploited at all when applying PCA or PPCA.
One possible use of the relational information in PCA or PPCA is to first convert the link structure
into the format of flat data by extracting some additional features from the links. However, as ar-
gued in [10], this approach fails to capture some important structural information in the data.On the
other hand, the i.i.d. assumption underlying PCA and PPCA is unreasonable for relational data. In
relational data, the attributes of the connected (linked) instances are oftencorrelatedand the class
label of one instance may have an influence on that of a linked instance. For example, in biology,
interacting proteins are more likely to have the same biological functions than those without inter-
action. Therefore, PCA and PPCA, or more generally most existing DR methods based on the i.i.d.
assumption, are not suitable for relational data analysis.

In this paper, a novel probabilistic DR method calledprobabilistic relational PCA(PRPCA) is pro-
posed for relational data analysis. By explicitly modeling the covariance between instances as de-
rived from the relational information, PRPCA seamlessly integrates relational information and tex-
tual content information into a unified probabilistic framework. Two learning algorithms, one based
on a closed-form solution and the other based on an EM algorithm [9], are proposed to learn the
parameters of PRPCA. Although the i.i.d. assumption is no longer adopted in PRPCA, the learning
algorithms for PRPCA can still be devised easily like those for PPCA which makes explicit use of
the i.i.d. assumption. Extensive experiments on real-world data sets show that PRPCA can effec-
tively utilize the relational information to dramatically outperform PCA and achieve state-of-the-art
performance.

2 Notation

We use boldface uppercase letters, such asK, to denote matrices, and boldface lowercase letters,
such asz, to denote vectors. Theith row and thejth column of a matrixK are denoted byKi∗
andK∗j , respectively.Kij denotes the element at theith row andjth column ofK. zi denotes the
ith element ofz. KT is the transpose ofK, andK−1 is the inverse ofK. K � 0 means thatK
is positive semi-definite (psd) andK � 0 means thatK is positive definite (pd).tr(·) denotes the
trace of a matrix andetr(·) , exp(tr(·)). P⊗Q denotes the Kronecker product [11] ofP andQ.
| · | denotes the determinant of a matrix.In is the identity matrix of sizen × n. e is a vector of 1s,
the dimensionality of which depends on the context. We overloadN (·) for both multivariate normal
distributions and matrix variate normal distributions [11].〈·〉 denotes the expectation operation and
cov(·)denotes the covariance operation.

Note that in relational data, there exist bothcontentand link observations. As in [21],{tn}N
n=1

denotes a set of observedd-dimensional data (content) vectors, thed × q matrix W denotes theq
principal axes (or called factor loadings),µ denotes the data sample mean, andxn = WT (tn − µ)
denotes the correspondingq principal components (or called latent variables) oftn. We further use
thed×N matrixT to denote the content matrix withT∗n = tn, and theq×N matrixX to denote
the latent variables ofT with X∗n = WT (tn − µ). For relational data, theN × N matrix A
denotes the adjacency (link) matrix of theN instances. In this paper, we assume that the links are
undirected. For those data with directed links, we will convert the directed links into undirected
links which can keep the original physical meaning of the links. This will be described in detail in
Section 4.1.1, and an example will be given in Section 5. Hence,Aij = 1 if there exists a relation
between instancesi andj, and otherwiseAij = 0. Moreover, we always assume that there exist no
self-links, i.e.,Aii = 0.

3 Probabilistic PCA

To set the stage for the next section which introduces our PRPCA model, we first briefly present
the derivation for PPCA [21], which was originally based on (vector-based) multivariate normal
distributions, from the perspective of matrix variate normal distributions [11].
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If we useΥ to denote the Gaussian noise process and assume thatΥ and the latent variable matrix
X follow these distributions:

Υ ∼ Nd,N (0, σ2Id ⊗ IN ), X ∼ Nq,N (0, Iq ⊗ IN ), (1)

we can express a generative model as follows:T = WX + µeT + Υ.

Based on some properties of matrix variate normal distributions in [11], we get the following results:
T | X ∼ Nd,N (WX + µeT , σ2Id ⊗ IN ), T ∼ Nd,N

(
µeT , (WWT + σ2Id)⊗ IN

)
. (2)

Let C = WWT + σ2Id. The corresponding log-likelihood of the observation matrixT is then

L = ln p(T) = −N

2

[
d ln(2π) + ln |C|+ tr(C−1S)

]
, (3)

whereS = (T−µeT )(T−µeT )T

N =
PN

n=1(T∗n−µ)(T∗n−µ)T

N . We can see thatS is just the sample
covariance matrix of the content observations. It is easy to see that this log-likelihood form is the
same as that in [21]. Using matrix notations, the graphical model of PPCA based on matrix variate
normal distributions is shown in Figure 1(a).

T

X

Iq

W σ2

IN
µ

T

X

Iq

W σ2

∆−1

µ

(a) Model of PPCA (b) Model of PRPCA
Figure 1: Graphical models of PPCA and PRPCA, in whichT is the observation matrix,X is the latent
variable matrix,µ, W andσ2 are the parameters to learn, and the other quantities are kept constant.

4 Probabilistic Relational PCA

PPCA assumes that all the observations are independent and identically distributed. Although this
i.i.d. assumption can make the modeling process much simpler and has achieved great success in
many traditional applications, this assumption is however very unreasonable for relational data [10].
In relational data, the attributes of connected (linked) instances are oftencorrelated.

In this section, a probabilistic relational PCA model, called PRPCA, is proposed to integrate both
the relational information and the content information seamlessly into a unified framework by elim-
inating the i.i.d. assumption. Based on our reformulation of PPCA using matrix variate notations as
presented in the previous section, we can obtain PRPCA just by introducing some relatively simple
(but very effective) modifications. A promising property is that the computation needed for PRPCA
is as simple as that for PPCA even though we have eliminated the restrictive i.i.d. assumption.

4.1 Model Formulation

Assume that the latent variable matrixX has the following distribution:

X ∼ Nq,N (0, Iq ⊗Φ). (4)

According to Corollary 2.3.3.1 in [11], we can get cov(Xi∗) = Φ (i ∈ {1, . . . , q}), which means
thatΦ actually reflects the covariance between the instances. From (1), we can see that cov(Xi∗) =
IN for PPCA, which also coincides with the i.i.d. assumption of PPCA.

Hence, to eliminate the i.i.d. assumption for relational data, one direct way is to use a non-identity
covariance matrixΦ for the distribution ofX in (4). ThisΦ should reflect the physical meaning
(semantics) of the relations between instances, which will be discussed in detail later. Similarly, we
can also change theIN in (1) toΦ for Υ to eliminate the i.i.d. assumption for the noise process.

4.1.1 Relational Covariance Construction

Because the covariance matrixΦ in PRPCA is constructed from the relational information in the
data, we refer to it asrelational covariancehere.

The goal of PCA and PPCA is to find those principal axes onto which the retained variance under
projection is maximal [13, 21]. For one specificX, the retained variance istr[XXT ]. If we rewrite

p(X) in (1) asp(X) =
exp{tr[− 1

2XXT ]}
(2π)qN/2 =

exp{− 1
2 tr[XXT ]}

(2π)qN/2 , we have the following observation:
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Observation 1 For PPCA, the larger the retained variance ofX, i.e., the moreX approaches the
destination point, the lower is the probability density atX given by the prior.

Here, thedestination pointrefers to the point where the goal of PPCA is achieved, i.e., the retained
variance is maximal. Moreover, we use the retained variance as ameasureto define the gap between
two different points. The smaller is the gap between the retained variance of two points, the more
they approach each other.

Because the design principle of PRPCA is similar to that of PPCA, our working hypothesis here is
that Observation 1 can also guide us to design the relational covariance of PRPCA. Its effectiveness
will be empirically verified in Section 5.

In PRPCA, we assume that the attributes of two linked instances are positively correlated.2 Under
this assumption, theideal goalof PRPCA should be to make the latent representations of two in-
stances as close as possible if there exists a relation (link) between them. Hence, themeasureto
define the gap between two points refers to the closeness of the linked instances, i.e., the summation
of the Euclidean distances between the linked instances. Based on Observation 1, the moreX ap-
proaches the destination point, the lower should be the probability density atX given by the prior.
Hence, under the latent space representationX, the closer the linked instances are, the lower should
be the probability density atX given by the prior. We will prove that if we setΦ = ∆−1 where
∆ , γIN + (IN + A)T (IN + A) with γ being typically a very small positive number to make
∆ � 0, we can get an appropriate prior for PRPCA. Note thatAij = 1 if there exists a relation
between instancesi andj, and otherwiseAij = 0. BecauseAT = A, we can also express∆ as
∆ = γIN + (IN + A)(IN + A).

Let D̃ denote a diagonal matrix whose diagonal elementsD̃ii =
∑

j Aij . It is easy to prove that

(AA)ii = D̃ii. LetB = AA− D̃, which means thatBij = (AA)ij if i 6= j andBii = 0. We can
get∆ = (1+γ)IN +2A+AA = (1+γ)IN +D̃+(2A+B). BecauseBij =

∑N
k=1 AikAkj for i 6=

j, we can see thatBij is the number of paths, each with path length 2, from instancei to instancej
in the original adjacency graphA. Because the attributes of two linked instances are positively
correlated,Bij actually reflects the degree of correlation between instancei and instancej. Let us
take the paper citation graph as an example to illustrate this. The existence of a citation relation
between two papers often implies that they are about the same topic. If paperi cites paperk and
paperk cites paperj, it is highly likely that paperi and paperj are about the same topic. If there
exists another papera 6= k linking both paperi and paperj as well, the confidence that paperi and
paperj are about the same topic will increase. Hence, the largerBij is, the stronger is the correlation
between instancei and instancej. BecauseBij =

∑N
k=1 AikAkj = AT

∗iA∗j , Bij can also be seen
as the similarity between the link vectors of instancei and instancej. Therefore,B can be seen as a
weight matrix (corresponding to a weight graph) derived from the original adjacency matrixA, and
B is also consistent with the physical meaning underlyingA.

Letting G = 2A + B,3 we can find thatG actually combines the original graph reflected byA
and the derived graph reflected byB to get a new graph, and puts a weight2Aij + Bij on the edge
between instancei and instancej in the new graph. The new weight graph reflected byG is also
consistent with the physical meaning underlyingA. Letting L , D − G, whereD is a diagonal
matrix whose diagonal elementsDii =

∑
j Gij andL is called the Laplacian matrix [6] ofG, we

can get∆ = (1+γ)IN +D̃+D−L. If we define another diagonal matrix̂D , (1+γ)IN +D̃+D,
we can get∆ = D̂− L. Then we have

tr[X∆XT ] =
N∑

i=1

D̂ii‖X∗i‖2 − 1
2

N∑
i=1

N∑
j=1

Gij‖X∗i −X∗j‖2. (5)

2Links with other physical meanings, such as the directed links in web graphs [25], can be transformed into
links satisfying the assumption in PRPCA via some preprocessing strategies. One such strategy to preprocess
the WebKB data set [8] will be given as an example in Section 5.

3This means that we put a 2:1 ratio betweenA andB. Other ratios can be obtained by setting∆ =
γIN + (αIN + A)(αIN + A) = γIN + α2IN + 2αA + B. Preliminary results show that PRPCA is not
sensitive toα as long asα is not too large, but we omit the detailed results here because they are out of the
scope of this paper.
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LettingΦ = ∆−1, we can getp(X) =
exp{tr[− 1

2X∆XT ]}
(2π)qN/2 |∆ |−q/2 =

exp{− 1
2 tr[X∆XT ]}

(2π)qN/2 |∆ |−q/2 .

The first term
∑N

i=1 D̂ii‖X∗i‖2 in (5) can be treated as a measure of weighted variance of all the
instances in the latent space. We can see that the largerD̂ii is, the more weight will be put on
instancei, which is reasonable becausêDii mainly reflects the degree of instancei in the graph.
It is easy to see that, for those latent representations having a fixed value of weighted variance∑N

i=1 D̂ii‖X∗i‖2, the closer the latent representations of two linked entities are, the larger is their
contribution totr[X∆XT ], and subsequently the less is their contribution top(X). This means
that under the latent space representationX, the closer the linked instances are, the lower is the
probability density atX given by the prior. Hence, we can get an appropriate prior forX by setting
Φ = ∆−1 in (4).

4.1.2 Model

With the constructed relational covarianceΦ, the generative model of PRPCA is defined as follows:

Υ ∼ Nd,N (0, σ2Id ⊗Φ), X ∼ Nq,N (0, Iq ⊗Φ), T = WX + µeT + Υ,

whereΦ = ∆−1.

We can further obtain the following results:

T | X ∼ Nd,N (WX + µeT , σ2Id ⊗Φ), T ∼ Nd,N

(
µeT , (WWT + σ2Id)⊗Φ

)
. (6)

The graphical model of PRPCA is illustrated in Figure 1(b), from which we can see that the differ-
ence between PRPCA and PPCA lies solely in the difference betweenΦ andIN . Comparing (6) to
(2), we can find that the observations of PPCA are sampled independently while those of PRPCA
are sampled with correlation. In fact, PPCA may be seen as a degenerate case of PRPCA as detailed
below in Remark 1:

Remark 1 When the i.i.d. assumption holds, i.e., allAij = 0, PRPCA degenerates to PPCA by
settingγ = 0. Note that the only role thatγ plays is to make∆ � 0. Hence, in our implementation,
we always setγ to a very small positive value, such as10−6. Actually, we may even setγ to 0,
because∆ does not have to be pd. When∆ � 0, we sayT follows a singular matrix variate
normal distribution [11], and all the derivations for PRPCA are still correct. In our experiment,
we find that the performance underγ = 0 is almost the same as that underγ = 10−6. Further
deliberation is out of the scope of this paper.

As in PPCA, we setC = WWT + σ2Id. Then the log-likelihood of the observation matrixT in
PRPCA is

L1 = ln p(T) = −N

2

[
d ln(2π) + ln |C|+ tr(C−1H)

]
+ c, (7)

wherec = −d
2 ln |Φ| can be seen as a constant independent of the parametersµ, W andσ2, and

H = (T−µeT )∆(T−µeT )T

N .

It is interesting to compare (7) with (3). We can find that to learn the parametersW andσ2, the
only difference between PRPCA and PPCA lies in the difference betweenH andS. Hence, all the
learning techniques derived previously for PPCA are also potentially applicable to PRPCA simply
by substitutingS with H.

4.2 Learning

By setting the gradient ofL1 with respect toµ to 0, we can get the maximum-likelihood estimator

(MLE) for µ as follows:µ = T∆e

eT∆e
.

As in PPCA [21], we devise two methods to learnW andσ2 in PRPCA, one based on a closed-form
solution and the other based on EM.
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4.2.1 Closed-Form Solution

Theorem 1 The log-likelihood in (7) is maximized when

WML = Uq(Λq − σ2
MLIq)1/2R, σ2

ML =

∑d
i=q+1 λi

d− q
,

whereλ1 ≥ λ2 ≥ · · · ≥ λd are the eigenvalues ofH, Λq is a q × q diagonal matrix containing
the firstq largest eigenvalues,Uq is ad× q matrix in which theq column vectors are the principal
eigenvectors ofH corresponding toΛq, andR is an arbitraryq × q orthogonal rotation matrix.

The proof of Theorem 1 makes use of techniques similar to those in Appendix A of [21] and is
omitted here.

4.2.2 EM Algorithm

During the EM learning process, we treat{W, σ2} as parameters,X as missing data and{T,X} as
complete data. The EM algorithm operates by alternating between the E-step and M-step. Here we
only briefly describe the updating rules and their derivation can be found in a longer version which
can be downloaded fromhttp://www.cse.ust.hk/ ∼liwujun.

In the E-step, the expectation of the complete-data log-likelihood with respect to the distribution of
the missing dataX is computed. To compute the expectation of the complete-data log-likelihood,
we only need to compute the followingsufficient statistics:

〈X〉 = M−1WT (T− µeT ), 〈X∆XT 〉 = Nσ2M−1 + 〈X〉∆〈X〉T , (8)

whereM = WT W + σ2Iq. Note that all these statistics are computed based on the parameter
values obtained from the previous iteration.

In the M-step, to maximize the expectation of the complete-data log-likelihood, the parameters
{W, σ2} are updated as follows:

W̃ = HW(σ2Iq + M−1WT HW)−1, σ̃2 =
tr(H−HWM−1W̃T )

d
. (9)

Note that we useW here to denote the old value and̃W for the updated new value.

4.3 Complexity Analysis

Suppose there areδ nonzero elements in∆. We can see that the computation cost forH is
O(dN + dδ). In many applicationsδ is typically a constant multiple ofN . Hence, we can say
that the time complexity for computingH is O(dN). For the closed-form solution, we have to in-
vert ad × d matrix. Hence, the computation cost isO(dN + d3). For EM, becaused is typically
larger thanq, we can see that the computation cost isO(dN + d2qT ), whereT is the number of EM
iterations. If the data are of very high dimensionality, EM will be more efficient than the closed-form
solution.

5 Experiments

Although PPCA possesses additional advantages when compared with the original non-probabilistic
formulation of PCA, they will get similar DR results when there exist no missing values in the data.
If the task is to classify instances in the low-dimensional embedding, the classifiers based on the
embedding results of PCA and PPCA are expected to achieve comparable results. Hence, in this
paper, we only adopt PCA as the baseline to study the performance of PRPCA. For the EM algorithm
of PRPCA, we use PCA to initializeW, σ2 is initialized to10−6, andγ = 10−6. Because the EM
algorithm and the closed-form solution achieve similar results, we only report the results of the EM
algorithm of PRPCA in the following experiments.

5.1 Data Sets and Evaluation Scheme

Here, we only briefly describe the data sets and evaluation scheme for space saving. More detailed
information about them can be found in the longer version.
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We use three data sets to evaluate PRPCA. The first two data sets are Cora [16] and WebKB [8]. We
adopt the same strategy as that in [26] to preprocess these two data sets. The third data set is the
PoliticalBook data set used in [19]. For WebKB, according to the semantics ofauthoritative pages
andhub pages[25], we first preprocess the link structure of this data set as follows: if two web
pages are co-linked by or link to another common web page, we add a link between these two pages.
Then all the original links are removed. After preprocessing, all the directed links are converted into
undirected links.

The Cora data set contains four subsets: DS, HA, ML and PL. The WebKB data set also contains
four subsets: Cornell, Texas, Washington and Wisconsin. We adopt the same strategy as that in [26]
to evaluate PRPCA on the Cora and WebKB data sets. For the PoliticalBook data set, we use the
testing procedure of the latent Wishart process (LWP) model [15] for evaluation.

5.2 Convergence Speed of EM

We use the DS and Cornell data sets to illustrate the convergence speed of the EM learning procedure
of PRPCA. The performance on other data sets has similar characteristics, which is omitted here.
With q = 50, the average classification accuracy based on 5-fold cross validation against the number
of EM iterationsT is shown in Figure 2. We can see that PRPCA achieves very promising and stable
performance after a very small number of iterations. We setT = 5 in all our following experiments.

5.3 Visualization

We use the PoliticalBook data set to visualize the DR results of PCA and PRPCA. For the sake of
visualization,q is set to 2. The results are depicted in Figure 3. We can see that it is not easy to
separate the two classes in the latent space of PCA. However, the two classes are better separated
from each other in the latent space of PRPCA. Hence, better clustering or classification performance
can be expected when the examples are clustered or classified in the latent space of PRPCA.
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Figure 2: Convergence speed
of the EM learning procedure of
PRPCA.
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Figure 3: Visualization of data points in the latent spaces of PCA and
PRPCA for the PoliticalBook data set. The positive and negative examples
are shown as red crosses and blue circles, respectively.

5.4 Performance

The dimensionality of Cora and WebKB is moderately high, but the dimensionality of PoliticalBook
is very high. We evaluate PRPCA on these two different kinds of data to verify its effectiveness in
general settings.

Performance on Cora and WebKBThe average classification accuracy with its standard deviation
based on 5-fold cross validation against the dimensionality of the latent spaceq is shown in Figure 4.
We can find that PRPCA can dramatically outperform PCA on all the data sets under any dimen-
sionality, which confirms that the relational information is very informative and PRPCA can utilize
it very effectively.

We also perform comparison between PRPCA and those methods evaluated in [26]. The methods
include: SVM on content, which ignores the link structure in the data and applies SVM only on
the content information in the original bag-of-words representation;SVM on links, which ignores
the content information and treats the links as features, i.e, theith feature islink-to-pagei; SVM on
link-content, in which the content features and link features of the two methods above are combined
to give the feature representation;directed graph regularization (DGR), which is introduced in [25];
PLSI+PHITS, which is described in [7];link-content MF, which is the joint link-content matrix
factorization (MF) method in [26]. Note thatLink-content sup. MFin [26] is not adopted here
for comparison. Because during the DR procedure link-content sup. MF employs additional label
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Figure 4:Comparison between PRPCA and PCA on Cora and WebKB.

information which is not employed by other DR methods, it is unfair to directly compare it with
other methods. As in the link-content MF method, we setq = 50 for PRPCA. The results are shown
in Figure 5. We can see that PRPCA and link-content MF achieve the best performance among all
the evaluated methods. Compared with link-content MF, PRPCA performs slightly better on DS and
HA while performing slightly worse on ML and Texas, and achieves comparable performance on the
other data sets. We can conclude that the overall performance of PRPCA is comparable with that of
link-content MF. Unlike link-content MF which is transductive in nature, PRPCA naturally supports
inductive inference. More specifically, we can apply the learned transformation matrix of PRPCA
to perform DR for the unseen test data, while link-content MF can only perform DR for those data
available during the training phase. Very recently, another method proposed by us, calledrelation
regularized matrix factorization(RRMF) [14], has achieved better performance than PRPCA on the
Cora data set. However, similar to link-content MF, RRMF cannot be used for inductive inference
either.
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Figure 5:Comparison between PRPCA and other methods on Cora and WebKB.
Performance on PoliticalBookAs in mixed graph Gaussian process (XGP) [19] and LWP [15], we
randomly choose half of the whole data for training and the rest for testing. This subsampling pro-
cess is repeated for 100 rounds and the averagearea under the ROC curve(AUC) with its standard
deviation is reported in Table 1, where GPC is a Gaussian process classifier [18] trained on the origi-
nal feature representation, and relational Gaussian process (RGP) is the method in [5]. For PCA and
PRPCA, we first use them to perform DR, and then a Gaussian process classifier is trained based on
the low-dimensional representation. Here, we setq = 5 for both PCA and PRPCA. We can see that
on this data set, PRPCA also dramatically outperforms PCA and achieves performance comparable
with the state of the art. Note that RGP and XGP cannot learn a low-dimensional embedding for
the instances. Although LWP can also learn a low-dimensional embedding for the instances, the
computation cost to obtain a low-dimensional embedding for a test instance isO(N3) because it has
to invert the kernel matrix defined on the training data.

Table 1: Performance on the PoliticalBook data set. Results for GPC, RGP and XGP are taken from [19]
where the standard deviation is not reported.

GPC RGP XGP LWP PCA PRPCA

0.92 0.98 0.98 0.98± 0.02 0.92± 0.03 0.98± 0.02
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