Probabilistic Relational PCA

Wu-Jun Li Dit-Yan Yeung Zhihua Zhang
Dept. of Comp. Sci. and Eng. School of Comp. Sci. and Tech.
Hong Kong University of Science and Technology Zhejiang University
Hong Kong, China Zhejiang 310027, China
{liwujun,dyyeung}@cse.ust.hk zhzhang@cs.zju.edu.cn
Abstract

One crucial assumption made by both principal component analysis (PCA) and
probabilistic PCA (PPCA) is that the instances are independent and identically
distributed (i.i.d.). However, this common i.i.d. assumption is unreasonable for
relational data. In this paper, by explicitly modeling covariance between instances
as derived from the relational information, we propose a novel probabilistic di-
mensionality reduction method, callpcbbabilistic relational PCAPRPCA), for
relational data analysis. Although the i.i.d. assumption is no longer adopted in
PRPCA, the learning algorithms for PRPCA can still be devised easily like those
for PPCA which makes explicit use of the i.i.d. assumption. Experiments on real-
world data sets show that PRPCA can effectively utilize the relational information
to dramatically outperform PCA and achieve state-of-the-art performance.

1 Introduction

Using a low-dimensional embedding to summarize a high-dimensional data set has been widely
used for exploring the structure in the data. The methods for discovering such low-dimensional
embedding are often referred to as dimensionality reduction (DR) methods. Principal component
analysis (PCA) [13] is one of the most popular DR methods with great success in many applications.
As a more recent development, probabilistic PCA (PPCA) [21] provides a probabilistic formula-
tion of PCA [13] based on a Gaussian latent variable model [1]. Compared with the original non-
probabilistic derivation of PCA in [12], PPCA possesses a number of practical advantages. For ex-
ample, PPCA can naturally deal with missing values in the data; the expectation-maximization (EM)
algorithm [9] used to learn the parameters in PPCA may be more efficient for high-dimensional data;
it is easy to generalize the single model in PPCA to the mixture model case; furthermore, PPCA as
a probabilistic model can naturally exploit Bayesian methods [2].

Like many existing DR methods, both PCA and PPCA are based on some assumptions about the
data. One assumption is that the data should be represented as feature vectors all of the same
dimensionality. Data represented in this form are sometimes referredfat data[10]. Another

one is the so-called i.i.d. assumption, which means that the instances are assumed to be independent
and identically distributed (i.i.d.).

However, the data in many real-world applications, such as web pages and research papers, contain
relations or links between (some) instances in the data in addition to the textual content informa-
tion which is represented in the form of feature vectors. Data of this sort, referredetatasnal

datat [10, 20], can be found in such diverse application areas as web mining [3, 17, 23, 24], bioinfor-
matics [22], social network analysis [4], and so @n one hand, the link structure among instances

1In this paper, we use document classification as a running example for relational data analysis. Hence, for
convenience of illustration, the specific term ‘textual content information’ is used in the paper to refer to the
feature vectors describing the instances. However, the algorithms derived in this paper can be applied to any
relational data in which the instance feature vectors can represent any attribute information.



cannot be exploited easily when traditional DR methods such as PCA are applied to relational data.
Very often, the useful relational information is simply discarded. For example, a citation/reference
relation between two papers provides very strong evidence for them to belong to the same topic even
though they may bear low similarity in their content due to the sparse nature of the bag-of-words
representation, but the relational information is not exploited at all when applying PCA or PPCA.
One possible use of the relational information in PCA or PPCA is to first convert the link structure
into the format of flat data by extracting some additional features from the links. However, as ar-
gued in [10], this approach fails to capture some important structural information in theQtetiae

other hand, the i.i.d. assumption underlying PCA and PPCA is unreasonable for relational data. In
relational data, the attributes of the connected (linked) instances arecoftetatedand the class

label of one instance may have an influence on that of a linked instance. For example, in biology,
interacting proteins are more likely to have the same biological functions than those without inter-
action. Therefore, PCA and PPCA, or more generally most existing DR methods based on the i.i.d.
assumption, are not suitable for relational data analysis.

In this paper, a novel probabilistic DR method calfgdbabilistic relational PCAPRPCA) is pro-

posed for relational data analysis. By explicitly modeling the covariance between instances as de-
rived from the relational information, PRPCA seamlessly integrates relational information and tex-
tual content information into a unified probabilistic framework. Two learning algorithms, one based
on a closed-form solution and the other based on an EM algorithm [9], are proposed to learn the
parameters of PRPCA. Although the i.i.d. assumption is no longer adopted in PRPCA, the learning
algorithms for PRPCA can still be devised easily like those for PPCA which makes explicit use of
the i.i.d. assumption. Extensive experiments on real-world data sets show that PRPCA can effec-
tively utilize the relational information to dramatically outperform PCA and achieve state-of-the-art
performance.

2 Notation

We use boldface uppercase letters, sucliKaso denote matrices, and boldface lowercase letters,
such asz, to denote vectors. Thih row and thejth column of a matrixK are denoted b¥;.
andK,, respectively.K;; denotes the element at tii row andjth column ofK. z; denotes the

ith element ofz. K7 is the transpose dkK, andK ! is the inverse oK. K > 0 means thakK

is positive semi-definite (psd) afdd > 0 means thaK is positive definite (pd)tr(-) denotes the
trace of a matrix andtr(-) £ exp(tr(-)). P ® Q denotes the Kronecker product [11]BfandQ.

| - | denotes the determinant of a matrl, is the identity matrix of sizex x n. e is a vector of 1s,
the dimensionality of which depends on the context. We ovetldéd for both multivariate normal
distributions and matrix variate normal distributions [1{:}. denotes the expectation operation and
cov(-) denotes the covariance operation.

Note that in relational data, there exist batbntentand link observations. As in [21]{t, }}_,
denotes a set of observdedimensional data (content) vectors, the ¢ matrix W denotes the
principal axes (or called factor loadingg) denotes the data sample mean, and= W7 (t,, — )
denotes the correspondiggrincipal components (or called latent variablesy.of We further use
thed x N matrix T to denote the content matrix wiffi,,, = t,,, and theg x N matrix X to denote

the latent variables of" with X,,, = W7 (t,, — u). For relational data, th&/ x N matrix A
denotes the adjacency (link) matrix of tAéinstances. In this paper, we assume that the links are
undirected. For those data with directed links, we will convert the directed links into undirected
links which can keep the original physical meaning of the links. This will be described in detail in
Section 4.1.1, and an example will be given in Section 5. HeAge= 1 if there exists a relation
between instancesandj, and otherwised,;; = 0. Moreover, we always assume that there exist no
self-links, i.e.,A;; = 0.

3 Probabilistic PCA

To set the stage for the next section which introduces our PRPCA model, we first briefly present
the derivation for PPCA [21], which was originally based on (vector-based) multivariate normal
distributions, from the perspective of matrix variate normal distributions [11].



If we useY to denote the Gaussian noise process and assum®¥ thatl the latent variable matrix
X follow these distributions:
Y ~ Ny n(0,0°I; @ Iy), X ~ Ny n(0,I;, @ Iy), (1)

we can express a generative model as follolWs: WX + pe” + Y.

Based on some properties of matrix variate normal distributions in [11], we get the following results:

T|X ~Nyn(WX + pe’ 0?1 @ Iy), T~ Nyn (pe”,( WWT +0°1;) @ Iy) . (2)

LetC = WWT + 521, The corresRPndlng log-likelihood of the observation matriis then
L=Inp(T) =~ [dln(Qw) +1n|C| + tr(C™ S)} 3)

where§ = (T=pel)(T-pel)T _ 3oy (Tenp)(Ten = ™ \We can see tha is just the sample

covariance matrix of the content observatlons Itis easy to see that this log-likelihood form is the
same as that in [21]. Using matrix notations, the graphical model of PPCA based on matrix variate
normal distributions is shown in Figure 1(a).
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Figure 1: Graphical models of PPCA and PRPCA, in whihis the observation matrixX is the latent
variable matrixu, W ando? are the parameters to learn, and the other quantities are kept constant.

4 Probabilistic Relational PCA

PPCA assumes that all the observations are independent and identically distributed. Although this
i.i.d. assumption can make the modeling process much simpler and has achieved great success in
many traditional applications, this assumption is however very unreasonable for relational data [10].
In relational data, the attributes of connected (linked) instances areauftexiated.

In this section, a probabilistic relational PCA model, called PRPCA, is proposed to integrate both
the relational information and the content information seamlessly into a unified framework by elim-
inating the i.i.d. assumption. Based on our reformulation of PPCA using matrix variate notations as
presented in the previous section, we can obtain PRPCA just by introducing some relatively simple
(but very effective) modifications. A promising property is that the computation needed for PRPCA
is as simple as that for PPCA even though we have eliminated the restrictive i.i.d. assumption.

4.1 Model Formulation

Assume that the latent variable mat¥has the following distribution:
X ~Nyn(0,I, ® ®). 4
According to Corollary 2.3.3.1 in [11], we can get cov(X= ® (i € {1,...,q}), which means

that® actually reflects the covariance between the instances. From (1), we can see that tev(X
Iy for PPCA, which also coincides with the i.i.d. assumption of PPCA.

Hence, to eliminate the i.i.d. assumption for relational data, one direct way is to use a non-identity
covariance matrix@® for the distribution ofX in (4). This ® should reflect the physical meaning
(semantics) of the relations between instances, which will be discussed in detail later. Similarly, we
can also change tHgy in (1) to ® for Y to eliminate the i.i.d. assumption for the noise process.

4.1.1 Relational Covariance Construction

Because the covariance matdxin PRPCA is constructed from the relational information in the
data, we refer to it agelational covariancéhere.

The goal of PCA and PPCA is to find those principal axes onto which the retained variance under
projection is maximal [13, 21]. For one specil the retained variance is[XX7]. If we rewrite

spftr[— 1XXT sp{ — Ltr[XXT . .
p(X)in (1) asp(X) = = p{éi);ﬁf{ e p{@;)tqj[fff( 1} we have the following observation:
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Observation 1 For PPCA, the larger the retained variance Xf, i.e., the moreX approaches the
destination point, the lower is the probability densityXagiven by the prior.

Here, thedestination pointefers to the point where the goal of PPCA is achieved, i.e., the retained
variance is maximal. Moreover, we use the retained varianceresaaurdgo define the gap between

two different points. The smaller is the gap between the retained variance of two points, the more
they approach each other.

Because the design principle of PRPCA is similar to that of PPCA, our working hypothesis here is
that Observation 1 can also guide us to design the relational covariance of PRPCA. Its effectiveness
will be empirically verified in Section 5.

In PRPCA, we assume that the attributes of two linked instances are positively corrfeldtetbr

this assumption, thileal goalof PRPCA should be to make the latent representations of two in-
stances as close as possible if there exists a relation (link) between them. Henoeatheeo
define the gap between two points refers to the closeness of the linked instances, i.e., the summation
of the Euclidean distances between the linked instances. Based on Observation 1, tbe apere
proaches the destination point, the lower should be the probability densitygaten by the prior.
Hence, under the latent space represent3ipthe closer the linked instances are, the lower should
be the probability density a&X given by the prior. We will prove that if we s@ = A~! where

A 2 41y + (In + A)T(Iy + A) with v being typically a very small positive number to make
A > 0, we can get an appropriate prior for PRPCA. Note that = 1 if there exists a relation
between instanceisandj, and otherwised;; = 0. BecauseA” = A, we can also expresA as

A =~Iy+ (IN + A)(IN + A)

Let D denote a diagonal matrix whose diagonal eleménts= Zj A;;. Itis easy to prove that
(AA);; = D;;. LetB = AA — D, which means thaB;; = (AA),; if i # j andB;; = 0. We can
getA = (1+9)Ix+2A+AA = (14+9)Iy+D+(2A+B). BecauseB;; = S r_, A Ay, fori #

j, we can see thaB;; is the number of paths, each with path length 2, from instaneénstancej

in the original adjacency grapA. Because the attributes of two linked instances are positively
correlated,B;; actually reflects the degree of correlation between instaacel instancg. Let us
take the paper citation graph as an example to illustrate this. The existence of a citation relation
between two papers often implies that they are about the same topic. Ifpeipes paperk and
paperk cites paperj, it is highly likely that papet and papeyj are about the same topic. If there
exists another paper# k linking both papet and papey as well, the confidence that papeand
paper; are about the same topic will increase. Hence, the ldBggis, the stronger is the correlation

between instanceand instancg. Becauses;; = Zszl AirAg; = AT ;A.;, B;; can also be seen
as the similarity between the link vectors of instane®d instancg. ThereforeB canbeseenasa
weight matrix (corresponding to a weight graph) derived from the original adjacency Mataxd
B is also consistent with the physical meaning underlying

Letting G = 2A + B,® we can find thaG actually combines the original graph reflected Ay
and the derived graph reflected Byto get a new graph, and puts a weight;; + B;; on the edge
between instancéand instancg in the new graph. The new weight graph reflecteddys also

consistent with the physical meaning underlyiAg Letting. = D — G, whereD is a diagonal
matrix whose diagonal elements;; = Zj G;; andL is called the Laplacian matrix [6] d&, we

can getA = (14+)Iy+D+D—L. If we define another diagonal matiix £ (1++)Iy+D+D,
we can gelA = D — L. Then we have

XAXT ZD’LZHX*’L - 7ZZG’L]||X*’L _X*j||2- (5)

i=1 j=1

2Links with other physical meanings, such as the directed links in web graphs [25], can be transformed into
links satisfying the assumption in PRPCA via some preprocessing strategies. One such strategy to preprocess
the WebKB data set [8] will be given as an example in Section 5.

3This means that we put a 2:1 ratio betwegnand B. Other ratios can be obtained by settidg =
YIn + (aIy + A)(aly + A) = 7Iy + ®Iny + 2aA + B. Preliminary results show that PRPCA is not
sensitive toa as long asx is not too large, but we omit the detailed results here because they are out of the
scope of this paper.



exp{tr[f %XAXT]} . exp{f %tr[XAXT]}

. _ 71 o
Letting® = A~ ", we can gep(X) = G AT T ami | A

The first terme\L1 Dyi||X,]|? in (5) can be treated as a measure of weighted variance of all the
instances in the latent space. We can see that the |&)geis, the more weight will be put on
instancei, which is reasonable becausk; mainly reflects the degree of instancen the graph.

It is easy to see that, for those latent representations having a fixed value of weighted variance
Zf;l D;||X..||2, the closer the latent representations of two linked entities are, the larger is their
contribution totr[XAX7”], and subsequently the less is their contributionp®). This means

that under the latent space representalgnthe closer the linked instances are, the lower is the
probabiligy density aX given by the prior. Hence, we can get an appropriate prioXfdy setting
d=A""in(4).

4.1.2 Model

With the constructed relational covarian®ethe generative model of PRPCA is defined as follows:
Y~ Nyn(0,0°T,0®), X~N,n0,I,0®), T=WX+pe’ +7,

where® = A™!.
We can further obtain the following results:

T| X~ Nyn(WX + pe” 0’I; @ ®), T~Ngy(pe',(WWT +5I)0@). (6)

The graphical model of PRPCA is illustrated in Figure 1(b), from which we can see that the differ-
ence between PRPCA and PPCA lies solely in the difference bet#eamdI. Comparing (6) to

(2), we can find that the observations of PPCA are sampled independently while those of PRPCA
are sampled with correlation. In fact, PPCA may be seen as a degenerate case of PRPCA as detailed
below in Remark 1:

Remark 1 When the i.i.d. assumption holds, i.e., dll; = 0, PRPCA degenerates to PPCA by
settingy = 0. Note that the only role that plays is to makeA - 0. Hence, in our implementation,
we always sety to a very small positive value, such a8=6. Actually, we may even setto 0,
becauseA does not have to be pd. Whex = 0, we sayT follows a singular matrix variate
normal distribution [11], and all the derivations for PRPCA are still correct. In our experiment,
we find that the performance under= 0 is almost the same as that under= 10-5. Further
deliberation is out of the scope of this paper.

As in PPCA, we seC = WWT + 521,;. Then the log-likelihood of the observation matfixin
PRPCA s N
L1 =Inp(T) = 5 dIn(27) + In|C| + tr(C™'H)| +c, @)

wherec = —g In |®| can be seen as a constant independent of the parampet®¥sandos?, and
H = (T-pe)AT—peh)”
~ .

It is interesting to compare (7) with (3). We can find that to learn the paraniéfesdo?, the

only difference between PRPCA and PPCA lies in the difference betfeandS. Hence, all the
learning techniques derived previously for PPCA are also potentially applicable to PRPCA simply
by substitutingS with H.

4.2 Learning

By setting the gradient of, with respect tqu to 0, we can get the maximum-likelihood estimator

(MLE) for p as follows: p = ;AA‘;

As in PPCA [21], we devise two methods to leAWiando? in PRPCA, one based on a closed-form
solution and the other based on EM.



4.2.1 Closed-Form Solution

Theorem 1 The log-likelihood in (7) is maximized when

2 1/2 2 Z?:qﬂ Ai
W = Uq(Aq - UMLIq) R, oML = W’

whereX; > Ay > -+ > )y are the eigenvalues &I, A, is ag¢ x ¢ diagonal matrix containing

the firstq largest eigenvaluedJ, is ad x ¢ matrix in which they column vectors are the principal
eigenvectors oH corresponding ta\,, andR is an arbitraryq x ¢ orthogonal rotation matrix.

The proof of Theorem 1 makes use of techniques similar to those in Appendix A of [21] and is
omitted here.

4.2.2 EM Algorithm

During the EM learning process, we tr§aV, 0%} as parameterX as missing data andl’, X} as
complete data. The EM algorithm operates by alternating between the E-step and M-step. Here we
only briefly describe the updating rules and their derivation can be found in a longer version which
can be downloaded froittp://www.cse.ust.hk/ ~liwujun.

In the E-step, the expectation of the complete-data log-likelihood with respect to the distribution of
the missing datX is computed. To compute the expectation of the complete-data log-likelihood,
we only need to compute the followirsyfficient statistics:

(X) = M-'WT(T — peT), (XAXT) = No?M ™ + (X)A(X)T, ®)

whereM = WTW + ¢%I,. Note that all these statistics are computed based on the parameter
values obtained from the previous iteration.

In the M-step, to maximize the expectation of the complete-data log-likelihood, the parameters
{W, o2} are updated as follows: -

—~ —y  tr(H-HWM 'W7T

W = HW (02T, + M~'WTHW) ", 52 = . ). 9)
Note that we usaV here to denote the old value akd for the updated new value.

4.3 Complexity Analysis

Suppose there aré nonzero elements ilA. We can see that the computation cost Hris
O(dN + dd). In many applications is typically a constant multiple oN. Hence, we can say
that the time complexity for computinf is O(dN). For the closed-form solution, we have to in-
vert ad x d matrix. Hence, the computation cost¥dN + d%). For EM, becausd is typically
larger than, we can see that the computation cosD{g/N + d?qT’), whereT is the number of EM
iterations. If the data are of very high dimensionality, EM will be more efficient than the closed-form
solution.

5 Experiments

Although PPCA possesses additional advantages when compared with the original non-probabilistic
formulation of PCA, they will get similar DR results when there exist no missing values in the data.

If the task is to classify instances in the low-dimensional embedding, the classifiers based on the
embedding results of PCA and PPCA are expected to achieve comparable results. Hence, in this
paper, we only adopt PCA as the baseline to study the performance of PRPCA. For the EM algorithm
of PRPCA, we use PCA to initializ&, o2 is initialized to10~6, andy = 10~%. Because the EM
algorithm and the closed-form solution achieve similar results, we only report the results of the EM
algorithm of PRPCA in the following experiments.

5.1 Data Sets and Evaluation Scheme

Here, we only briefly describe the data sets and evaluation scheme for space saving. More detailed
information about them can be found in the longer version.



We use three data sets to evaluate PRPCA. The first two data sets are Cora [16] and WebKB [8]. We
adopt the same strategy as that in [26] to preprocess these two data sets. The third data set is the
PoliticalBook data set used in [19]. For WebKB, according to the semantiasthbritative pages

and hub pageq25], we first preprocess the link structure of this data set as follows: if two web
pages are co-linked by or link to another common web page, we add a link between these two pages.
Then all the original links are removed. After preprocessing, all the directed links are converted into
undirected links.

The Cora data set contains four subsets: DS, HA, ML and PL. The WebKB data set also contains
four subsets: Cornell, Texas, Washington and Wisconsin. We adopt the same strategy as that in [26]
to evaluate PRPCA on the Cora and WebKB data sets. For the PoliticalBook data set, we use the
testing procedure of the latent Wishart process (LWP) model [15] for evaluation.

5.2 Convergence Speed of EM

We use the DS and Cornell data sets to illustrate the convergence speed of the EM learning procedure
of PRPCA. The performance on other data sets has similar characteristics, which is omitted here.
With ¢ = 50, the average classification accuracy based on 5-fold cross validation against the number
of EM iterationsT’ is shown in Figure 2. We can see that PRPCA achieves very promising and stable
performance after a very small number of iterations. Wé&set 5 in all our following experiments.

5.3 Visualization

We use the PoliticalBook data set to visualize the DR results of PCA and PRPCA. For the sake of
visualization,q is set to 2. The results are depicted in Figure 3. We can see that it is not easy to
separate the two classes in the latent space of PCA. However, the two classes are better separated
from each other in the latent space of PRPCA. Hence, better clustering or classification performance
can be expected when the examples are cluslg%rgd or classified in the IatPelgltD %E)Aace of PRPCA.
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Figure 2: Convergence speedFigure 3: Visualization of data points in the latent spaces of PCA and
of the EM learning procedure of PRPCA for the PoliticalBook data set. The positive and negative examples
PRPCA. are shown as red crosses and blue circles, respectively.

5.4 Performance

The dimensionality of Cora and WebKB is moderately high, but the dimensionality of PoliticalBook
is very high. We evaluate PRPCA on these two different kinds of data to verify its effectiveness in
general settings.

Performance on Cora and WebKBThe average classification accuracy with its standard deviation
based on 5-fold cross validation against the dimensionality of the latent gpaskown in Figure 4.

We can find that PRPCA can dramatically outperform PCA on all the data sets under any dimen-
sionality, which confirms that the relational information is very informative and PRPCA can utilize

it very effectively.

We also perform comparison between PRPCA and those methods evaluated in [26]. The methods
include: SVM on contentwhich ignores the link structure in the data and applies SVM only on
the content information in the original bag-of-words representa®/iy! on links, which ignores

the content information and treats the links as features, i.ethitfeature idink-to-page; SVM on
link-content, in which the content features and link features of the two methods above are combined
to give the feature representatiatirected graph regularization (DGR), which is introduced in [25];
PLSI+PHITS, which is described in [7]ink-content MF which is the joint link-content matrix
factorization (MF) method in [26]. Note thatink-content sup. MHAn [26] is not adopted here

for comparison. Because during the DR procedure link-content sup. MF employs additional label
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information which is not employed by other DR methods, it is unfair to directly compare it with
other methods. As in the link-content MF method, weget 50 for PRPCA. The results are shown

in Figure 5. We can see that PRPCA and link-content MF achieve the best performance among all
the evaluated methods. Compared with link-content MF, PRPCA performs slightly better on DS and
HA while performing slightly worse on ML and Texas, and achieves comparable performance on the
other data sets. We can conclude that the overall performance of PRPCA is comparable with that of
link-content MF. Unlike link-content MF which is transductive in nature, PRPCA naturally supports
inductive inference. More specifically, we can apply the learned transformation matrix of PRPCA
to perform DR for the unseen test data, while link-content MF can only perform DR for those data
available during the training phase. Very recently, another method proposed by us relaliieh
regularized matrix factorizatio(RRMF) [14], has achieved better performance than PRPCA on the
Cora data set. However, similar to link-content MF, RRMF cannot be used for inductive inference
either. 08 1
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Figure 5:Comparison between PRPCA and other methods on Cora and WebKB.
Performance on PoliticalBookAs in mixed graph Gaussian process (XGP) [19] and LWP [15], we
randomly choose half of the whole data for training and the rest for testing. This subsampling pro-
cess is repeated for 100 rounds and the aveaggge under the ROC cur@dUC) with its standard
deviation is reported in Table 1, where GPC is a Gaussian process classifier [18] trained on the origi-
nal feature representation, and relational Gaussian process (RGP) is the method in [5]. For PCA and
PRPCA, we first use them to perform DR, and then a Gaussian process classifier is trained based on
the low-dimensional representation. Here, wegset5 for both PCA and PRPCA. We can see that
on this data set, PRPCA also dramatically outperforms PCA and achieves performance comparable
with the state of the art. Note that RGP and XGP cannot learn a low-dimensional embedding for
the instances. Although LWP can also learn a low-dimensional embedding for the instances, the
computation cost to obtain a low-dimensional embedding for a test insta@¢@i$) because it has
to invert the kernel matrix defined on the training data.

Table 1: Performance on the PoliticalBook data set. Results for GPC, RGP and XGP are taken from [19]
where the standard deviation is not reported.

[GPC [ RGP | XGP | WP _ | _PCA | PRPCA |
[002 | 098 | 0.98 | 0.98L0.02 | 0.92%0.03 | 0.98£0.02 |
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