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Abstract

We describe, analyze, and experiment with a new framework for empirical loss
minimization with regularization. Our algorithmic framework alternates between
two phases. On each iteration we first perform anunconstrainedgradient descent
step. We then cast and solve an instantaneous optimization problem that trades off
minimization of a regularization term while keeping close proximity to the result
of the first phase. This yields a simple yet effective algorithm for both batch penal-
ized risk minimization and online learning. Furthermore, the two phase approach
enables sparse solutions when used in conjunction with regularization functions
that promote sparsity, such asℓ1. We derive concrete and very simple algorithms
for minimization of loss functions withℓ1, ℓ2, ℓ22, and ℓ∞ regularization. We
also show how to construct efficient algorithms for mixed-normℓ1/ℓq regulariza-
tion. We further extend the algorithms and give efficient implementations for very
high-dimensional data with sparsity. We demonstrate the potential of the proposed
framework in experiments with synthetic and natural datasets.

1 Introduction

Before we begin, we establish notation for this paper. We denote scalars by lower case letters and
vectors by lower case bold letters, e.g.w. The inner product of vectorsu andv is denoted〈u,v〉.
We use‖x‖p to denote thep-norm of the vectorx and‖x‖ as a shorthand for‖x‖2.

The focus of this paper is an algorithmic framework for regularized convex programming to mini-
mize the following sum of two functions:

f(w) + r(w) , (1)

where bothf andr are convex bounded below functions (so without loss of generality we assume
they are intoR+). Often, the functionf is an empirical loss and takes the form

∑

i∈S ℓi(w) for
a sequence of loss functionsℓi : R

n → R+, and r(w) is a regularization term that penalizes
for excessively complex vectors, for instancer(w) = λ‖w‖p. This task is prevalent in machine
learning, in which a learning problem for decision and prediction problems is cast as a convex
optimization problem. To that end, we propose a general and intuitive algorithm to minimize Eq. (1),
focusing especially on derivations for and the use of non-differentiable regularization functions.

Many methods have been proposed to minimize general convex functions such as that in Eq. (1).
One of the most general is the subgradient method [1], which is elegant and very simple. Let∂f(w)
denote the subgradient set off at w, namely,∂f(w) = {g | ∀v : f(v) ≥ f(w) + 〈g,v − w〉}.
Subgradient procedures then minimize the functionf(w) by iteratively updating the parameter vec-
tor w according to the update rulewt+1 = wt − ηtg

f
t , whereηt is a constant or diminishing step

size andgf
t ∈ ∂f(wt) is an arbitrary vector from the subgradient set off evaluated atwt. A slightly

more general method than the above is the projected gradient method, which iterates

wt+1 = ΠΩ

(

wt − ηtg
f
t

)

= argmin
w∈Ω

{

∥

∥

∥
w − (wt − ηtg

f
t )
∥

∥

∥

2

2

}
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whereΠΩ(w) is the Euclidean projection ofw onto the setΩ. Standard results [1] show that the
(projected) subgradient method converges at a rate ofO(1/ε2), or equivalently that the errorf(w)−
f(w⋆) = O(1/

√
T ), given some simple assumptions on the boundedness of the subdifferential set

andΩ (we have omitted constants dependent on‖∂f‖ or dim(Ω)). Using the subgradient method to
minimize Eq. (1) gives simple iterates of the formwt+1 = wt − ηtg

f
t − ηtg

r
t , whereg

r
t ∈ ∂r(wt).

A common problem in subgradient methods is that ifr or f is non-differentiable, the iterates of the
subgradient method are very rarely at the points of non-differentiability. In the case of regularization
functions such asr(w) = ‖w‖1, however, these points (zeros in the case of theℓ1-norm) are often
the true minima of the function. Furthermore, withℓ1 and similar penalties, zeros are desirable
solutions as they tend to convey information about the structure of the problem being solved [2, 3].

There has been a significant amount of work related to minimizing Eq. (1), especially when the
functionr is a sparsity-promoting regularizer. We can hardly do justice to the body of prior work,
and we provide a few references here to the research we believe is most directly related. The ap-
proach we pursue below is known as “forward-backward splitting” or a composite gradient method
in the optimization literature and has been independently suggested by [4] in the context of sparse
signal reconstruction, wheref(w) = ‖y − Aw‖2, though they note that the method can apply to
general convexf . [5] give proofs of convergence for forward-backward splitting in Hilbert spaces,
though without establishing strong rates of convergence. The motivation of their paper is signal
reconstruction as well. Similar projected-gradient methods, when the regularization functionr is no
longer part of the objective function but rather cast as a constraint so thatr(w) ≤ λ, are also well
known [1]. [6] give a general and efficient projected gradient method forℓ1-constrained problems.
There is also a body of literature on regret analysis for online learning and online convex program-
ming with convex constraints upon which we build [7, 8]. Learning sparse models generally is of
great interest in the statistics literature, specifically in the context of consistency and recovery of
sparsity patterns throughℓ1 or mixed-norm regularization across multiple tasks [2, 3, 9].

In this paper, we describe a general gradient-based framework, which we call FOBOS, and analyze
it in batch and online learning settings. The paper is organized as follows. In the next section, we
begin by introducing and formally defining the method, giving some simple preliminary analysis.
We follow the introduction by giving in Sec. 3 rates of convergence for batch (offline) optimization.
We then provide bounds for online convex programming and give a convergence rate for stochastic
gradient descent. To demonstrate the simplicity and usefulness of the framework, we derive in Sec. 4
algorithms for several different choices of the regularizing functionr. We extend these methods to
be efficient in very high dimensional settings where the input data is sparse in Sec. 5. Finally,
we conclude in Sec. 6 with experiments examining various aspects of the proposed framework, in
particular the runtime and sparsity selection performance of the derived algorithms.

2 Forward-Looking Subgradients and Forward-Backward Splitting

In this section we introduce our algorithm, laying the framework for its strategy for online or batch
convex programming. We originally named the algorithm Folos as an abbreviation for FOrward-
LOoking Subgradient. Our algorithm is a distillation of known approaches for convex program-
ming, in particular the Forward-Backward Splitting method. In order not to confuse readers of the
early draft, we attempt to stay close to the original name and use the acronym FOBOS rather than
Fobas. FOBOS is motivated by the desire to have the iterateswt attain points of non-differentiability
of the functionr. The method alleviates the problems of non-differentiability in cases such as
ℓ1-regularization by taking analytical minimization steps interleaved with subgradient steps. Put
informally, FOBOS is analogous to theprojectedsubgradient method, but replaces or augments the
projection step with an instantaneous minimization problem for which it is possible to derive a
closed form solution. FOBOS is succinct as each iteration consists of the following two steps:

wt+ 1
2

= wt − ηtg
f
t (2)

wt+1 = argmin
w

{

1

2

∥

∥

∥
w − wt+ 1

2

∥

∥

∥

2

+ ηt+ 1
2

r(w)

}

. (3)

In the above,gf
t is a vector in∂f(wt) andηt is the step size at time stept of the algorithm. The

actual value ofηt depends on the specific setting and analysis. The first step thus simply amounts
to an unconstrained subgradient step with respect to the functionf . In the second step we find a
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new vector that interpolates between two goals: (i) stay close to the interim vectorwt+ 1
2
, and (ii)

attain a low complexity value as expressed byr. Note that the regularization function is scaled by
an interim step size, denotedηt+ 1

2
. The analyses we describe in the sequel determine the specific

value ofηt+ 1
2
, which is eitherηt or ηt+1. A key property of the solution of Eq. (3) is the necessary

condition for optimality and gives the reason behind the name FOBOS. Namely, the zero vector must
belong to subgradient set of the objective at the optimumwt+1, that is,

0 ∈ ∂

{

1

2

∥

∥

∥
w − wt+ 1

2

∥

∥

∥

2

+ ηt+ 1
2

r(w)

}∣

∣

∣

∣

w=wt+1

.

Sincewt+ 1
2

= wt−ηtg
f
t , the above property amounts to0 ∈ wt+1−wt +ηtg

f
t +ηt+ 1

2
∂r(wt+1).

This property implies that so long as we choosewt+1 to be the minimizer of Eq. (3), we are guar-
anteed to obtain a vectorg

r
t+1 ∈ ∂r(wt+1) such that0 = wt+1 − wt + ηtg

f
t + ηt+ 1

2
g

r
t+1. We can

understand this as an update scheme where the new weight vectorwt+1 is a linear combination of
the previous weight vectorwt, a vector from the subgradient set off at wt, and a vector from the
subgradient ofr evaluated at the yet to be determinedwt+1. To recap, we can writewt+1 as

wt+1 = wt − ηt g
f
t − ηt+ 1

2
g

r
t+1, (4)

whereg
f
t ∈ ∂f(wt) andg

r
t+1 ∈ ∂r(wt+1). Solving Eq. (3) withr above has two main ben-

efits. First, from an algorithmic standpoint, it enables sparse solutions at virtually no additional
computational cost. Second, the forward-looking gradient allows us to build on existing analyses
and show that the resulting framework enjoys the formal convergence properties of many existing
gradient-based and online convex programming algorithms.

3 Convergence and Regret Analysis ofFOBOS

In this section we build on known results while using the forward-looking property of FOBOS to
provide convergence rate and regret analysis. To derive convergence rates we setηt+ 1

2
properly. As

we show in the sequel, it is sufficient to setηt+ 1
2

to ηt or ηt+1, depending on whether we are doing
online or batch optimization, in order to obtain convergence and low regret bounds. We provide
proofs of all theorems in this paper, as well as a few useful technical lemmas, in the appendices,
as the main foci of the paper are the simplicity of the method and derived algorithms and their
experimental usefulness. The overall proof techniques all rely on the forward-looking property in
Eq. (4) and moderately straightforward arguments with convexity and subgradient calculus.

Throughout the section we denote byw
⋆ the minimizer off(w)+r(w). The first bounds we present

rely only on the assumption that‖w⋆‖ ≤ D, though they are not as tight as those in the sequel. In
what follows, define‖∂f(w)‖ , sup

g∈∂f(w) ‖g‖. We begin by deriving convergence results under
the fairly general assumption [10, 11] that the subgradients are bounded as follows:

‖∂f(w)‖2 ≤ Af(w) + G2, ‖∂r(w)‖2 ≤ Ar(w) + G2 . (5)
For example, any Lipschitz loss (such as the logistic or hinge/SVM) satisfies the above withA = 0
andG equal to the Lipschitz constant; least squares satisfies Eq. (5) withG = 0 andA = 4.
Theorem 1. Assume the following hold: (i) the norm of any subgradient from∂f and the norm of
any subgradient from∂r are bounded as in Eq. (5), (ii) the norm ofw

⋆ is less than or equal toD,
(iii) r(0) = 0, and (iv) 1

2ηt ≤ ηt+1 ≤ ηt. Then for a constantc ≤ 4 with w1 = 0 andηt+ 1
2

= ηt+1,

T
∑

t=1

[ηt ((1 − cAηt)f(wt) − f(w⋆)) + ηt ((1 − cAηt)r(wt) − r(w⋆))] ≤ D2 + 7G2
T
∑

t=1

η2
t .

The proof of the theorem is in Appendix A. We also provide in the appendix a few useful corollaries.
We provide one corollary below as it underscores that the rate of convergence≈

√
T .

Corollary 2 (Fixed step rate).Assume that the conditions of Thm. 1 hold and that we runFOBOS
for a predefinedT iterations withηt = D√

7TG
and that(1 − cA D√

7TG
) > 0. Then

min
t∈{1,...,T}

f(wt) + r(wt) ≤
1

T

T
∑

t=1

f(wt) + r(wt) ≤
3DG

√
T
(

1 − cAD
G
√

7T

) +
f(w⋆) + r(w⋆)

1 − cAD
G
√

7T
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Bounds of the form we present above, where the point minimizing f(wt) + r(wt) converges rather
than the last pointwT , are standard in subgradient optimization. This occurs since there is no way
to guarantee a descent direction when using arbitrary subgradients (see, e.g., [12, Theorem 3.2.2]).

We next derive regret bounds for FOBOS in online settings in which we are given a sequence of
functionsft : R

n → R. The goal is for the sequence of predictionswt to attain low regret when
compared to a single optimal predictorw

⋆. Formally, letft(w) denote the loss suffered on the
tth input loss function when using a predictorw. The regret of an online algorithm which uses
w1, . . . ,wt, . . . as its predictors w.r.t a fixed predictorw

⋆ while using a regularization functionr is

Rf+r(T ) =

T
∑

t=1

[ft(wt) + r(wt) − (ft(w
⋆) + r(w⋆))] .

Ideally, we would like to achieve 0 regret to a stationaryw
⋆ for arbitrary length sequences.

To achieve an online bound for a sequence of convex functionsft, we modify arguments of [7]. We
begin with a slightly different assignment forηt+ 1

2
: specifically, we setηt+ 1

2
= ηt. We have the

following theorem, whose proof we provide in Appendix B.

Theorem 3. Assume that‖wt − w
⋆‖ ≤ D for all iterations and the norm of the subgradient sets

∂ft and∂r are bounded above byG. Letc > 0 an arbitrary scalar. Then the regret bound ofFOBOS

with ηt = c/
√

t satisfiesRf+r(T ) ≤ GD +
(

D2

2c + 7G2c
)√

T .

For slightly technical reasons, the assumption on the boundedness ofwt and the subgradients is not
actually restrictive (see Appendix A for details). It is possible to obtain anO(log T ) regret bound
for FOBOSwhen the sequence of loss functionsft(·) or the functionr(·) is strongly convex, similar
to [8], by using the curvature offt or r. While we can extend these results to FOBOS, we omit the
extension for lack of space (though we do perform some experiments with such functions). Using
the regret analysis for online learning, we can also give convergence rates for stochastic FOBOS,
which areO(

√
T ). Further details are given in Appendix B and the long version of this paper [13].

4 Derived Algorithms

We now give a few variants of FOBOS by considering different regularization functions. The em-
phasis of the section is on non-differentiable regularization functions that lead to sparse solutions.
We also give simple extensions to apply FOBOS to mixed-norm regularization [9] that build on the
first part of this section. For lack of space, we mostly give the resulting updates, skipping techni-
cal derivations. We would like to note that some of the following results were tacitly given in [4].
First, we make a few changes to notation. To simplify our derivations, we denote byv the vector
wt+ 1

2
= wt − ηtg

f
t and letλ̃ denoteηt+ 1

2
· λ. Using this notation the problem given in Eq. (3) can

be rewritten asminw
1
2‖w − v‖2 + λ̃ r(w). Lastly, we let[z]+ denotemax {0, z}.

FOBOS with ℓ1 regularization: The update obtained by choosingr(w) = λ ‖w‖1 is simple and
intuitive. The objective is decomposable into a sum of 1-dimensional convex problems of the form
minw

1
2 (w − v)2 + λ̃|w|. As a result, the components of the optimal solutionw

⋆ = wt+1 are
computed fromwt+ 1

2
as

wt+1,j = sign
(

wt+ 1
2
,j

)[

|wt+ 1
2
,j | − λ̃

]

+
= sign

(

wt,j − ηtg
f
t,j

)[∣

∣

∣
wt,j − ηtg

f
t,j

∣

∣

∣
− ληt+ 1

2

]

+
(6)

Note that this update leads to sparse solutions: whenever the absolute value of a component ofwt+ 1
2

is smaller thañλ, the corresponding component inwt+1 is set to zero. Eq. (6) gives a simple online
and offline method for minimizing a convexf with ℓ1 regularization. [10] recently proposed and
analyzed the same update, terming it the “truncated gradient,” though the analysis presented here
stems from a more general framework. This update can also be implemented very efficiently when
the support ofgf

t is small [10], but we defer details to Sec. 5, where we describe a unified view that
facilitates an efficient implementation for all the regularization functions discussed in this paper.

FOBOS with ℓ22 regularization: When r(w) = λ
2 ‖w‖2

2, we obtain a very simple optimization
problem,minw

1
2‖w − v‖2 + 1

2 λ̃‖w‖2. Differentiating the objective and setting the result equal to

4



zero, we havew⋆ − v + λ̃w
⋆ = 0, which, using the original notation, yields the update

wt+1 =
wt − ηtg

f
t

1 + λ̃
. (7)

Informally, the update simply shrinkswt+1 back toward the origin after each gradient-descent step.

FOBOS with ℓ2 regularization: A lesser used regularization function is theℓ2 norm of the weight
vector. By settingr(w) = λ̃‖w‖ we obtain the following problem:minw

1
2‖w − v‖2 + λ̃‖w‖.

The solution of the above problem must be in the direction ofv and takes the formw⋆ = sv where
s ≥ 0. The resulting second step of the FOBOSupdate withℓ2 regularization amounts to

wt+1 =

[

1 − λ̃

‖wt+ 1
2
‖

]

+

=

[

1 − λ̃

‖wt − ηtg
f
t ‖

]

+

(wt − ηtg
f
t ) .

ℓ2-regularization results in a zero weight vector under the condition that‖wt − ηtg
f
t ‖ ≤ λ̃. This

condition is rather more stringent for sparsity than the condition forℓ1, so it is unlikely to hold in
high dimensions. However, it does constitute a very important building block when using a mixed
ℓ1/ℓ2-norm as the regularization, as we show in the sequel.

FOBOS with ℓ∞ regularization: We now turn to a less explored regularization function, theℓ∞
norm ofw. Our interest stems from the recognition that there are settings in which it is desirable to
consider blocks of variables as a group (see below). We wish to obtain an efficient solution to

min
w

1

2
‖w − v‖2 + λ̃ ‖w‖∞ . (8)

A solution to the dual form of Eq. (8) is well established. Recalling that the conjugate of the
quadratic function is a quadratic function and the conjugate of theℓ∞ norm is theℓ1 barrier function,
we immediately obtain that the dual of the problem in Eq. (8) ismaxα − 1

2 ‖α − v‖2
2 s.t. ‖α‖1 ≤

λ̃. Moreover, the vector of dual variablesα satisfies the relationα = v − w. [6] describes a
linear time algorithm for finding the optimalα to this ℓ1-constrained projection, and the analysis
there shows the optimal solution to Eq. (8) iswt+1,j = sign(wt+ 1

2
,j)min{|wt+ 1

2
,j |, θ}. The optimal

solution satisfiesθ = 0 iff ‖wt+ 1
2
‖1 ≤ λ̃, and otherwiseθ > 0 and can be found inO(n) steps.

Mixed norms: We saw above that when using either theℓ2 or theℓ∞ norm as the regularizer we
obtain an all zeros vector if||wt+ 1

2
||2 ≤ λ̃ or ||wt+ 1

2
||1 ≤ λ̃, respectively. This phenomenon can

be useful. For example, in multiclass categorization problems each classs may be associated with
a different weight vectorws. The prediction for an instancex is a vector

〈

w
1,x
〉

, . . . ,
〈

w
k,x

〉

,
wherek is the number of classes, and the predicted class isargmaxj

〈

w
j ,x
〉

. Since all the weight
vectors operate over the same instance space, it may be beneficial to tie the weights corresponding
to the same input feature: we would to zero the row of weightsw1

j , . . . , wk
j simultaneously.

Formally, letW represent ann×k matrix where thejth column of the matrix is the weight vectorw
j

associated with classj. Then theith row contains weight of theith feature for each class. The mixed
ℓr/ℓs-norm [9] of W is obtained by computing theℓs-norm of each row ofW and then applying
the ℓr-norm to the resultingn dimensional vector, for instance,‖W‖ℓ1/ℓ∞

=
∑n

j=1 maxj |Wi,j |.
In a mixed-norm regularized optimization problem, we seek the minimizer off(W ) + λ ‖W‖ℓr/ℓs

.
Given the specific variants of norms described above, the FOBOSupdate for theℓ1/ℓ∞ and theℓ1/ℓ2
mixed-norms is readily available. Let̄w

s be thesth row of W . Analogously to standard norm-based
regularization, we use the shorthandV = Wt+ 1

2
. For theℓ1/ℓp mixed-norm, we need to solve

min
W

1

2
‖W − V ‖2

Fr + λ̃ ‖W‖ℓ1/ℓp
≡ min

w̄1,...,w̄k

n
∑

i=1

(

1

2

∥

∥w̄
i − v̄

i
∥

∥

2

2
+ λ̃

∥

∥w̄
i
∥

∥

p

)

(9)

wherev̄i is theith row ofV . It is immediate to see that the problem given in Eq. (9) is decomposable
into n separate problems of dimensionk, each of which can be solved by the procedures described
in the prequel. The end result of solving these types of mixed-norm problems is a sparse matrix with
numerous zero rows. We demonstrate the merits of FOBOSwith mixed-norms in Sec. 6.
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5 Efficient implementation in high dimensions

In many settings, especially online learning, the weight vectorwt and the gradientsgf
t reside in a

very high-dimensional space, but only a relatively small number of the components ofg
f
t are non-

zero. Such settings are prevalent, for instance, in text-based applications: in text categorization,
the full dimension corresponds to the dictionary or set of tokens that is being employed while each
gradient is typically computed from a single or a few documents, each of which contains words
and bigrams constituting only a small subset of the full dictionary. The need to cope with gradient
sparsity becomes further pronounced in mixed-norm problems, as a single component of the gradient
may correspond to an entire row ofW . Updating the entire matrix because a few entries ofg

f
t are

non-zero is clearly undesirable. Thus, we would like to extend our methods to cope efficiently
with gradient sparsity. For concreteness, we focus in this section on the efficient implementation
of ℓ1, ℓ2, andℓ∞ regularization, since the extension to mixed-norms (as in the previous section) is
straightforward. We postpone the proof of the following proposition to Appendix C.

Proposition 4. Let wT be the end result of solving a succession ofT self-similar optimization
problems fort = 1, . . . , T ,

P.1 : wt = argmin
w

1

2
‖w − wt−1‖2 + λt‖w‖q . (10)

Letw⋆ be the optimal solution of the following optimization problem,

P.2 : w
⋆ = argmin

w

1

2
‖w − w0‖2 +

(

T
∑

t=1

λt

)

‖w‖q . (11)

For q ∈ {1, 2,∞} the vectorswT andw
⋆ are identical.

The algorithmic consequence of Proposition 4 is that it is possible to perform a lazy update on each
iteration by omitting the terms ofwt (or whole rows of the matrixWt when using mixed-norms) that
are outside the support ofg

f
t , the gradient of the loss at iterationt. We do need to maintain the step-

sizes used on each iteration and have them readily available on future rounds when we newly update
coordinates ofw or W . Let Λt denote the sum of the step sizes times regularization multipliers
ληt used from round1 through t. Then a simple algebraic manipulation yields that instead of

solving wt+1 = argmin
w

{

1
2 ‖w − wt‖2

2 + ληt‖w‖q

}

repeatedly whenwt is not changing, we

can simply cache the last timet0 thatw (or a coordinate inw or a row fromW ) was updated and,

when it is needed, solvewt+1 = argmin
w

{

1
2 ‖w − wt‖2

2 + (Λt − Λt0)‖w‖q

}

. The advantage of

the lazy evaluation is pronounced when using mixed-norm regularization as it lets us avoid updating
entire rows so long as the row index corresponds to a zero entry of the gradientg

f
t . In sum, at the

expense of keeping a time stampt for each entry ofw or row ofW and maintaining the cumulative
sumsΛ1,Λ2, . . ., we getO(k) updates ofw when the gradientgf

t has onlyk non-zero components.

6 Experiments

In this section we compare FOBOS to state-of-the-art optimizers to demonstrate its relative merits
and weaknesses. We perform more substantial experiments in the full version of the paper [13].

ℓ22 and ℓ1-regularized experiments: We performed experiments using FOBOS to solve bothℓ1
andℓ2-regularized learning problems. For theℓ2-regularized experiments, we compared FOBOS to
Pegasos [14], a fast projected gradient solver for SVM. Pegasos was originally implemented and
evaluated on SVM-like problems by using the the hinge-loss as the empirical loss function along
with an ℓ22 regularization term, but it can be straightforwardly extended to the binary logistic loss
function. We thus experimented with both

f(w) =

m
∑

i=1

[1 − yi 〈xi,w〉]+ (hinge) and f(w) =

m
∑

i=1

log
(

1 + e−yi〈xi,w〉
)

(logistic)

as loss functions. To generate data for our experiments, we chose a vectorw with entries distributed
normally with0 mean and unit variance, while randomly zeroing 50% of the entries in the vector.
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Figure 1: Comparison of FOBOSwith Pegasos on the problems of logistic regression (left and right)
and SVM (middle). The rightmost plot shows the performance of the algorithms without projection.

The examplesxi ∈ R
n were also chosen at random with entries normally distributed. To generate

target values, we setyi = sign(〈xi,w〉), and flipped the sign of 10% of the examples to add label
noise. In all experiments, we used1000 training examples of dimension400.

The graphs of Fig. 1 show (on a log-scale) the regularized empirical loss of the algorithms minus
the optimal value of the objective function. These results were averaged over20 independent runs
of the algorithms. In all experiments with the regularizer1

2λ ‖w‖2
2, we used step sizeηt = λ/t to

achieve logarithmic regret. The two left graphs of Fig. 1 show that FOBOS performs comparably
to Pegasos on the logistic loss (left figure) and hinge (SVM) loss (middle figure). Both algorithms
quickly approach the optimal value. In these experiments we let both Pegasos and FOBOS employ
a projection after each gradient step into a2-norm ball containingw⋆ (see [14]). However, in the
experiment corresponding to the rightmost plot of Fig. 1, we eliminated this additional projection
step and ran the algorithms with the logistic loss. In this case, FOBOSslightly outperforms Pegasos.
We hypothesize that the slightly faster rate of FOBOS is due to the explicitshrinkagethat FOBOS
performs in theℓ2 update (see Eq. (7)).

In the next experiment, whose results are given in Fig. 2, we solvedℓ1-regularized logistic regres-
sion problems. We compared FOBOS to a simple subgradient method, where the subgradient of
the λ ‖w‖1 term is simplyλ sign(w)), and a fast interior point (IP) method which was designed
specifically for solvingℓ1-regularized logistic regression [15]. On the left side of Fig. 2 we show the
objective function (empirical loss plus theℓ1 regularization term) obtained by each of the algorithms
minus the optimal objective value. We again used1000 training examples of dimension400. The
learning rate was set toηt ∝ 1/

√
t. The standard subgradient method is clearly much slower than

the other two methods even though we chose the initial step size for which the subgradient method
converged the fastest. Furthermore, the subgradient method doesnot achieve any sparsity along its
entire run. FOBOS quickly gets close to the optimal value of the objective function, but eventually
the specialized IP method’s asymptotically faster convergence causes it to surpass FOBOS. In order
to obtain a weight vectorwt such thatf(wt) − f(w⋆) ≤ 10−2, FOBOS works very well, though
the IP method enjoys faster convergence rate when the weight vector is very close to optimal solu-
tion. However, the IP algorithm was specifically designed to minimize empirical logistic loss with
ℓ1 regularization whereas FOBOSenjoys a broad range of applicable settings.

The middle plot in Fig. 2 shows the sparsity levels (fraction of non-zero weights) achieved by FOBOS
as a function of the number of iterations of the algorithm. Each line represents a different synthetic
experiment asλ is modified to give more or less sparsity to the solution vectorw

⋆. The results show
that FOBOSquickly selects the sparsity pattern ofw

⋆, and the level of sparsity persists throughout its
execution. We found this sparsity pattern common to non-stochastic versions of FOBOSwe tested.

Mixed-norm experiments: Our experiments with mixed-norm regularization (ℓ1/ℓ2 andℓ1/ℓ∞)
focus mostly on sparsity rather than on the speed of minimizing the objective. Our restricted focus
is a consequence of the relative paucity of benchmark methods for learning problems with mixed-
norm regularization. Our methods, however, as described in Sec. 4, are quite simple to implement,
and we believe could serve as benchmarks for other methods to solve mixed-norm problems.

Our experiments compared multiclass classification withℓ1, ℓ1/ℓ2, andℓ1/ℓ∞ regularization on
the MNIST handwritten digit database and the StatLog Landsat Satellite dataset [16]. The MNIST
database consists of 60,000 training examples and a 10,000 example test set with 10 classes. Each
digit is a 28 × 28 gray scale image represented as a784 dimensional vector. Linear classifiers
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do not perform well on MNIST. Thus, rather than learning weights for the original features, we
learn the weights for classifier with Gaussian kernels, where value of thejth feature for theith

example isxij = K(zi,zj) = e−
1
2
‖zi−zj‖2

. For the LandSat dataset we attempt to classify3 × 3
neighborhoods of pixels in a satellite image as a particular type of ground, and we expanded the
input 36 features into 1296 features by taking the product of all features.

In the left plot of Fig. 3, we show the test set error and row sparsity inW as a function of training
time (number of single-example gradient calculations) for theℓ1-regularized multiclass logistic loss
with 720 training examples. The green lines show results for using all 720 examples to calculate
the gradient, black using 20% of the examples, and blue using 10% of the examples to perform
stochastic gradient. Each used the same learning rateηt, and the reported results are averaged
over 5 independent runs with different training data. The righthand figure shows a similar plot
but for MNIST with 10000 training examples andℓ1/ℓ2-regularization. The objective value in
training has a similar contour to the test loss. It is interesting to note that very quickly, FOBOS
with stochastic gradient descent gets to its minimum test classification error, and as the training
set size increases this behavior is consistent. However, the deterministic version increases the level
of sparsity throughout its run, while the stochastic-gradient version has highly variable sparsity
levels and does not give solutions as sparse as the deterministic counterpart. The slowness of non-
stochastic gradient mitigates this effect for the larger sample size on MNIST in the right figure, but
for longer training times, we do indeed see similar behavior.

For comparison of the different regularization approaches, we report in Table 1 the test error as a
function of row sparsity of the learned matrixW . For the LandSat data, we see that using the block
ℓ1/ℓ2 regularizer yields better performance for a given level of structural sparsity. However, on
the MNIST data theℓ1 regularization and theℓ1/ℓ2 achieve comparable performance for each level
of structural sparsity. Moreover, for a given level of structural sparsity, theℓ1-regularized solution
matrix W attains significantly higher overall sparsity, roughly 90% of the entries of each non-zero
row are zero. The performance on the different datasets might indicate that structural sparsity is
effective only when the set of parameters indeed exhibit natural grouping.

% Non-zero ℓ1 Test ℓ1/ℓ2 Test ℓ1/ℓ∞ Test ℓ1 Test ℓ1/ℓ2 Test ℓ1/ℓ∞ Test
5 .43 .29 .40 .37 .36 .47
10 .30 .25 .30 .26 .26 .31
20 .26 .22 .26 .15 .15 .24
40 .22 .19 .22 .08 .08 .16

Table 1: LandSat (left) and MNIST (right) classification error versus sparsity
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