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Abstract

We prove strong noise-tolerance properties of a potential-based boosting algo-
rithm, similar to MadaBoost (Domingo and Watanabe, 2000) and SmoothBoost
(Servedio, 2003). Our analysis is in the agnostic framework of Kearns, Schapire
and Sellie (1994), giving polynomial-time guarantees in presence of arbitrary
noise. A remarkable feature of our algorithm is that it can be implemented with-
out reweighting examples, by randomly relabeling them instead. Our boosting
theorem gives, as easy corollaries, alternative derivations of two recent nontriv-
ial results in computational learning theory: agnostically learning decision trees
(Gopalan et al, 2008) and agnostically learning halfspaces (Kalai et al, 2005).
Experiments suggest that the algorithm performs similarly to MadaBoost.

1 Introduction

Boosting procedures attempt to improve the accuracy of general machine learning algorithms,
through repeated executions on reweighted data. Aggressive reweighting of data may lead to poor
performance in the presence of certain types of noise [1]. This has been addressed by a number of
“robust” boosting algorithms, such as SmoothBoost [2, 3] and MadaBoost [4] as well as boosting
by branching programs [5, 6]. Some of these algorithms are potential-based boosters, i.e., natu-
ral variants on AdaBoost [7], while others are perhaps less practical but have stronger theoretical
guarantees in the presence of noise.

The present work gives a simple potential-based boosting algorithm with guarantees in the (arbi-
trary noise) agnostic learning setting [8, 9]. A unique feature of our algorithm, illustrated in Figure
1, is that it does not alter the distribution on unlabeled examples but rather it alters the labels. This
enables us to prove a strong boosting theorem in which the weak learner need only succeed for one
distribution on unlabeled examples. To the best of our knowledge, earlier weak-to-strong boosting
theorems have always relied on the ability of the weak learner to succeed under arbitrary distribu-
tions. The utility of our boosting theorem is demonstrated by re-deriving two non-trivial results
in computational learning theory, namely agnostically learning decision trees [10] and agnostically
learning halfspaces [11], which were previously solved using very different techniques.

The main contributions of this paper are, first, giving the first provably noise-tolerant analysis of a
potential-based boosting algorithm, and, second, giving a distribution-specific boosting theorem that
does not require the weak learner to learn over all distributions on x ∈ X . This is in contrast to recent
work by Long and Servedio, showing that convex potential boosters cannot work in the presence of
random classification noise [12]. The present algorithm circumvents that impossibility result in two
ways. First, the algorithm has the possibility of negating the current hypothesis and hence is not
technically a standard potential-based boosting algorithm. Second, weak agnostic learning is more
challenging than weak learning with random classification noise, in the sense that an algorithm
which is a weak-learner in the random classification noise setting need not be a weak-learner in the
agnostic setting.

Related work. There is a substantial literature on robust boosting algorithms, including algorithms
already mentioned, MadaBoost, SmoothBoost, as well as LogitBoost [13], BrownBoost [14], Nad-
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Simplified Boosting by Relabeling Procedure
Inputs: (x1, y1), . . . , (xm, ym) ∈ X × {−1, 1}, T ≥ 1, and weak learner W .
Output: classifier h : X → {−1, 1}.

1. Let H0 = 0

2. For t = 1, . . . , T :
(a) For i = 1, . . . ,m:

• wti = min{1, exp(−Ht−1(xi)yi)}
• With probability wti , set ỹti = yi, otherwise pick ỹti ∈ {−1, 1} randomly

(b) gt = W
(
(x1, ŷ

t
1), . . . , (xm, ŷtm)

)
.

(c) ht = argmax
g∈{gt,− sign(Ht−1)}

∑
i

wtiyig(xi). /* possibly take negated hypothesis */

(d) γt = 1
m

∑m
i=1 w

t
iyih

t(xi)
(e) Ht(x) = Ht−1(x) + γtht(x)

3. Output h = sign(HT ) as hypothesis.

Figure 1: Simplified Boosting by Relabeling Procedure. Each epoch, the algorithm runs the weak
learner on relabeled data 〈(xi, ỹti)〉mi=1. In traditional boosting, on each epoch, Ht is a linear com-
bination of weak hypotheses. For our agnostic analysis, we also need to include the negated current
hypothesis, − sign(Ht−1) : X → {−1, 1}, as a possible weak classifier. ∗In practice, to avoid
adding noise, each example would be replaced with three weighted examples: (xi, yi) with weight
wti , and (xi,±1) each with weight (1− wti)/2.

aBoost [15] and others [16, 17], including extensive experimentation [18, 15, 19]. These are all sim-
ple boosting algorithms whose output is a weighted majority of classifiers. Many have been shown
to have formal boosting properties (weak to strong PAC-learning) in a noiseless setting, or partial
boosting properties in noisy settings. There has also been a line of work on boosting algorithms that
provably boost from weak to strong learners either under agnostic or random classification noise,
using branching programs [17, 20, 5, 21, 6]. Our results are stronger than those in the recent work
of Kalai, Mansour, Verbin [6], for two main reasons. First, we propose a simple potential-based
algorithm that can be implemented efficiently. Second, since we don’t change the distribution over
unlabeled examples, we can boost distribution-specific weak learners. In recent work, using a simi-
lar idea of relabeling, Kalai, Kanade and Mansour[22] proved that the class of DNFs is learnable in
a one-sided error agnostic learning model. Their algorithm is essentially a simpler form of boosting.

Experiments. Our boosting procedure is quite similar to MadaBoost. The main differences are: (1)
there is the possibility of using the negation of the current hypothesis at each step, (2) examples are
relabeled rather than reweighted, and (3) the step size is slightly different. The goal of experiments
was to understand how significant these differences may be in practice. Preliminary experimental
results, presented in Section 5, suggest that all of these modifications are less important in practice
than theory. Hence, the present simple analysis can be viewed as a theoretical justification for the
noise-tolerance of MadaBoost and SmoothBoost.

1.1 Preliminaries

In the agnostic setting, we consider learning with respect to a distribution overX×Y . For simplicity,
we will takeX be to finite or countable and Y = {−1, 1}. Formally, learning is with respect to some
class of functions, C, where each c ∈ C is a binary classifier c : X → {−1, 1}. There is an arbitrary
distribution µ over X and an arbitrary target function f : X → [−1, 1]. Together these determine
an arbitrary joint distribution D = 〈µ, f〉 over X × {−1, 1} where D(x, y) = µ(x) 1+yf(x)

2 , i.e.,
f(x) = ED[y|x]. The error and correlation1 of a classifier h : X → {−1, 1} with respect to D, are

1This quantity is typically referred to as edge in the boosting literature. However, cor(h,D) = 2 edge(h,D)
according to the standard notation, hence we use the notation cor.
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respectively defined as,

err(h,D) = Pr
(x,y)∼D

[h(x) 6= y]

cor(h,D) = E
(x,y)∼D

[h(x)y] = E
x∼µ

[h(x)f(x)] = 1− 2 err(h,D)

We will omit D when understood from context. The goal of the learning algorithm is to achieve
error (equivalently correlation) arbitrarily close to that of the best classifier in C, namely,

err(C) = err(C,D) = inf
c∈C

err(c,D); cor(C) = cor(C,D) = sup
c∈C

cor(c,D)

A γ-weakly accurate classifier [23] for PAC (noiseless) learning is simply one whose correlation is
at least γ (for some γ ∈ (0, 1)). A different definition of weakly accurate classifier is appropriate in
the agnostic setting. Namely, for some γ ∈ (0, 1), h : X → {−1, 1} is said to be γ-optimal for C
(and D) if,

cor(h,D) ≥ γ cor(C,D)
Hence, if the labels are totally random then a weak hypothesis need not have any correlation over
random guessing. On the other hand, in a noiseless setting, where cor(C) = 1, this is equivalent
to a γ-weakly accurate hypothesis. The goal is to boost from an algorithm capable of outputting
γ-optimal hypotheses to one which outputs a nearly 1-optimal hypothesis, even for small γ.

Let D be a distribution over X × {−1, 1}. Let w : X × {−1, 1} → [0, 1] be a weighting function.
We now define the distributionD relabeled by w, RD,w. Procedurally, one can think of generating a
sample from RD,w by drawing an example (x, y) from D, then with probability w(x, y), outputting
(x, y) directly, and with probability 1−w(x, y), outputting (x, y′) where y′ is uniformly random in
{−1, 1}. Formally,

RD,w(x, y) = D(x, y)
(
w(x, y) +

1− w(x, y)
2

)
+D(x,−y)

(
1− w(x,−y)

2

)
Note that D and RD,w have the same marginal distributions over unlabeled examples x ∈ X . Also,
observe that, for any D, w, and h : X → R,

E
(x,y)∼RD,w

[h(x)y] = E
(x,y)∼D

[h(x)yw(x, y)] (1)

This can be seen by the procedural interpretation above. When (x, y) is returned directly, which
happens with probability w(x, y), we get a contribution of h(x)y, but E[h(x)y′] = 0 for uniform
y′ ∈ {−1, 1}.
It is possible to describe traditional supervised learning and active (query) learning in the same
framework. A general (m, q)-learning algorithm is given m unlabeled examples 〈x1, . . . , xm〉, and
may make q label queries to a query oracle L : X → {−1, 1}, and it outputs a classifier h : X →
{−1, 1}. The queries may be active, meaning that queries may only be made to training examples
xi, or membership queries meaning that arbitrary examples x ∈ X may be queried. The active query
setting where q = m is the standard supervised learning setting where all m labels may be queried.
One can similarly model semi-supervised learning.

Since our boosting procedure does not change the distribution over unlabeled examples, it offers
two advantages: (1) Agnostic weak learning may be defined with respect to a single distribution µ
over unlabeled examples, and (2) The weak learning algorithms may be active (or use membership
queries). In particular, the agnostic weak learning hypothesis for C and µ is that for any f : X →
[−1, 1], given examples from D = 〈µ, f〉, the learner will output a γ-optimal classifier for C. The
advantages of this new definition are: (a) it is not with respect to every distribution on unlabeled
examples (the algorithm may only have guarantees for certain distributions), and (b) it is more
realistic as it does not assume noiseless data. Finding such a weak learner may be quite challenging
since it has to succeed in the agnostic model (where no assumption is made on f ), however it may
be a bit easier in the sense that the learning algorithm need only handle one particular µ.
Definition 1. A learning algorithm is a (γ, ε0, δ) agnostic weak learner for C and µ over X if,
for any f : X → [−1, 1], with probability ≥ 1 − δ over its random input, the algorithm outputs
h : X → [−1, 1] such that, if D = 〈µ, f〉,

cor(h,D) = E
x∼µ

[h(x)f(x)] ≥ γ
(

sup
c∈C

E
x∼µ

[c(x)f(x)]
)
− ε0
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The ε0 parameter typically decreases quickly with the size of training data, e.g., O(m−1/2). To see
why it is necessary, consider a class C = {c1, c2} consisting of only two classifiers, and one of them
has correlation 0 and the other has minuscule positive correlation. Then, one cannot even identify
which one has better correlation to within O(m−1/2) using m examples. Note that δ can easily
made exponentially small (boosting confidence) using standard techniques.

Lastly, we define sign(z) to be 1 if z ≥ 0 and −1 if z < 0.

2 Formal boosting procedure and main results

The formal boosting procedure we analyze is given in Figure 2.

AGNOSTIC BOOSTER
Inputs: 〈x1, . . . , xTm+s〉, T, s ≥ 1, label oracle L : X → {−1, 1}, (m, q)-learner W .
Output: classifier h : X → {−1, 1}.
1. Let H0 = 0
2. Query the labels of the first s examples to get y1 = L(x1), . . . , ys = L(xs).
3. For t = 1, . . . , T :

a) Define wt(x, y) = −φ′(Ht−1(x)y) = min{1, exp(−Ht−1(x)y)}
Define Lt : X → {−1, 1} by:

i) On input x ∈ X , let y = L(x).
ii) With probability wt(x, y), return y.
iii) Otherwise return −1 or 1 with equal probability.

b) Let gt = W (〈xs+(t−1)m+1, . . . , xs+tm〉, Lt)
c) Let

i) αt =
1
s

s∑
i=1

gt(xi)wt(xi, yi)

ii) βt =
1
s

s∑
i=1

− sign(Ht−1(xi))wt(xi, yi)

d) If αt ≥ βt,
ht = gt; γt = αt;

Else,
ht = − sign(Ht−1); γt = βt;

e) Ht(x) = Ht−1(x) + γtht(x)
4. Output h = sign(Hτ ) where τ is chosen so as to minimize empirical error on
〈(x1, y1), . . . , (xs, ys)〉

Figure 2: Formal Boosting by Relabeling Procedure.

Theorem 1. If W is a (γ, ε0, δ) weak learner with respect to C and µ, s = 200
γ2ε2 log

(
1
δ

)
, T = 29

γ2ε2 ,
Algorithm AGNOSTIC BOOSTER (Figure 2) with probability at least 1 − 4δT outputs a hypothesis
h satisfying:

cor(h,D) ≥ cor(C,D)− ε0
γ
− ε

Recall that ε0 is intended to be very small, e.g., O(m−1/2). Also note that the number of calls to
the query oracle L is s plus T times the number of calls made by the weak learner (if the weak
learner is active, then so is the boosting algorithm). We show that two recent non-trivial results,
viz. agnostically learning decision trees and agnostically learning halfspaces follow as corollaries to
Theorem 1. The two results are stated below:

Theorem 2 ([10]). Let C be the class of binary decision trees on {−1, 1}n with at most t leaves,
and let U be the uniform distribution on {−1, 1}n. There exists an algorithm that when given
t, n, ε, δ > 0, and a label oracle for an arbitrary f : {−1, 1}n → [−1, 1], makes q = poly(nt/(εδ))
membership queries and, with probability ≥ 1 − δ, outputs h : {−1, 1}n → {−1, 1} such that for
Uf = 〈U , f〉, err(h,Uf ) ≤ err(C,Uf ) + ε.
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Theorem 3 ([11]). For any fixed ε > 0, there exists a univariate polynomial p such that the following
holds: Let n ≥ 1, C be the class of halfspaces in n dimensions, let U be the uniform distribution
on {−1, 1}n, and f : {−1, 1}n → [−1, 1] be an arbitrary function. There exists a polynomial-
time algorithm that, when given m = p(n log(1/δ)) labeled examples from Uf = 〈U , f〉, outputs a
classifier h : {−1, 1}n → {−1, 1} such that err(h,Uf ) ≤ err(C,Uf ) + ε. (The algorithm makes no
queries.)

Note that a related theorem was shown for halfspaces over log-concave distributions over X = Rn.
The boosting approach here similarly generalizes to that case in a straightforward manner. This
illustrates how, from the point of view of designing provably efficient agnostic learning algorithms,
the current boosting procedure may be useful.

3 Analysis of Boosting Algorithm

This section is devoted to the analysis of algorithm AGNOSTIC BOOSTER (see Fig 2). As is standard,
the boosting algorithm can be viewed as minimizing a convex potential function. However, the proof
is significantly different than the analysis of AdaBoost [7], where they simply use the fact that the
potential is an upper-bound on the error rate.

Our analysis has two parts. First, we define a conservative relabeling, such as the one we use, to
be one which never relabels/downweights examples that the booster currently misclassifies. We
show that for a conservative reweighting, either the weak learner will make progress, returning a
hypothesis correlated with the relabeled distribution or − sign(Ht−1) will be correlated with the
relabeled distribution.

Second, if we find a hypothesis correlated with the relabeled distribution, then the potential on round
t will be noticeably lower than that of round t − 1. This is essentially a simple gradient descent
analysis, using a bound on the second derivative of the potential. Since the potential is between 0
and 1, it can only drop so many rounds. This implies that sign(Ht) must be a near-optimal classifier
for some t (though the only sure way we have of knowing which one to pick is by testing accuracy
on held-out data).

The potential function we consider, as in MadaBoost, is defined by φ : R→ R,

φ(z) =
{

1− z if z ≤ 0
e−z if z > 0

Define the potential of a (real-valued) hypothesisH with respect to a distributionD overX×{−1, 1}
as:

Φ(H,D) = E
(x,y)∼D

[φ(yH(x))] (2)

Note that Φ(H0,D) = Φ(0,D) = 1. We will show that the potential decreases every round of
the algorithm. Notice that the weights in the boosting algorithm correspond to the derivative of the
potential, because −φ′(z) = min{1, exp(−z)} ∈ [0, 1]. In other words, the weak learning step is
essentially a gradient descent step.

We next state a key fact about agnostic learning in Lemma 1.
Definition 2. Let h : X → {−1, 1} be a hypothesis. Then weighting function w : X × {−1, 1} →
[0, 1] is called conservative for h if w(x,−h(x)) = 1 for all x ∈ X .

Note that, if the hypothesis is sign(Ht(x)), then a weighting function defined by −φ′(Ht(x)y) is
conservative if and only if φ′(z) = −1 for all z < 0. We first show that relabeling according to a
conservative weighting function is good in the sense that, if h is far from optimal according to the
original distribution, then after relabeling by w it is even further from optimal.
Lemma 1. For any distribution D over X × {−1, 1}, classifiers c, h : X → {−1, 1}, and any
weighting function w : X × {−1, 1} → [0, 1] conservative for h,

cor(c,RD,w)− cor(h,RD,w) ≥ cor(c,D)− cor(h,D)
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Proof. By the definition of correlation and eq. (1), cor(c,RD,w) = ED[c(x)yw(x, y)]. Hence,

cor(c,RD,w)− cor(h,RD,w) = cor(c,D)− cor(h,D)− E
(x,y)∼D

[(c(x)− h(x))y(1− w(x, y))]

Finally, consider two cases. In the first case, when 1 − w(x, y) > 0, we have h(x)y = 1 while
c(x)y ≤ 1. The second case is 1 − w(x, y) = 0. In either case, (c(x) − h(x))y(1 − w(x, y)) ≤ 0.
Thus the above equation implies the lemma.

We will use Lemma 1 to show that the weak learner will return a useful hypothesis. The case in
which the weak learner may not return a useful hypothesis is when cor(C, RD,w) = 0, when the
optimal classifier on the reweighted distribution has no correlation. This can happen, but in this case
it means that either our current hypothesis is close to optimal, or h = sign(Ht−1) is even worse
than random guessing, and hence we can use its negation as a weak agnostic learner.

We next explain how a γ-optimal classifier on the reweighted distribution decreases the potential.
We will use the following property linear approximation of φ.

Lemma 2. For any x, δ ∈ R, |φ(x+ δ)− φ(x)− φ′(x)δ| ≤ δ2/2.

Proof. This follows from Taylor’s theorem and the fact the function φ is differentiable everywhere,
and that the left and right second derivatives exist everywhere and are bounded by 1.

Let ht : X → {−1, 1} be the weak hypothesis that the algorithm finds on round t. This may
either be the hypothesis returned by the weak learner W or − sign(Ht−1). The following lemma
lower bounds the decrease in potential caused by adding γtht to Ht−1. We will apply the following
Lemma on each round of the algorithm to show that the potential decreases on each round, as long
as the weak hypothesis ht has non-negligible correlation and γt is suitably chosen.

Lemma 3. Consider any function H : X → R, hypothesis h : X → [−1, 1], γ ∈ R,
and distribution D over X × {−1, 1}. Let D′ = RD,w be the distribution D relabeled by
w(x, y) = −φ′(yH(x)). Then,

Φ(H,D)− Φ(H + γh,D) ≥ γ cor(h,D′)− γ2

2

Proof. For any (x, y) ∈ X × {−1, 1}, using Lemma 2 we know that:

φ(H(x)y)− φ((H(x) + γh(x))y) ≥ γh(x)y(−φ′(H(x)y))− γ2

2

In the step above we use the fact that h(x)2y2 ≤ 1. Taking expectation over (x, y) from D,

Φ(H,D)− φ(H + γh,D) ≥ E
(x,y)∼D

[h(x)y(−φ′(H(x)y))]− γ2

2

= E
(x,y)∼D′

[h(x)y]− γ2

2

In the above we have used Eq. (1). We are done, by definition of cor(h,D′).

Using all the above lemmas, we will show that the algorithm AGNOSTIC BOOSTER returns a hy-
pothesis with correlation (or error) close to that of the best classifier from C. We are now ready to
prove the main theorem.

Proof of Theorem 1. Suppose ∃c ∈ C such that cor(c,D) > cor(sign(Ht−1),D) + ε0
γ + ε, then

applying Lemma 1 to Ht−1 and setting wt(x, y) = −φ′(Ht−1(x)y), we get that

cor(c,RD,wt) > cor(sign(Ht−1), RD,wt) +
ε0
γ

+ ε (3)

In this case we want to show that the algorithm successfully finds ht with cor(ht, RD,wt) ≥ γε
3 .
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Let gt be the hypothesis returned by the weak learner W . From Step 3c) in the algorithm:

αt =
1
s

s∑
i=1

g(xi)wt(xi, yi); βt =
1
s

s∑
i=1

− sign(Ht−1)(xi)wt(xi, yi)

When s = 200
γ2ε2 log

(
1
δ

)
, by Chernoff-Hoeffding bounds we know that αt and βt are within an

additive γε
20 of cor(gt, RD,wt) and cor(− sign(Ht−1), RD,wt) respectively with probability at least

1−2δ. As defined in Step 3d) in the algorithm, let γt = max(αt, βt). We allow the algorithm to fail
with probability 3δ at this stage, possibly caused by the weak-learner and the estimation of αt, βt.

Consider two cases: First that cor(c,RD,wt) ≥ ε0
γ + ε

2 , in this case by the weak learning assumption,
cor(gt, RD,wt) ≥ γε

2 . In the second case, if this does not hold, then cor(− sign(Ht−1), RD,wt) ≥ ε
2

using (3). Thus, even after taking into account the fact that the empirical estimates may be off from
the true correlations by γε

20 , we get that cor(ht, RD,wt) ≥ γε
3 and that |γt − cor(ht, RD,wt)| ≤ γε

20 .
Using this and Lemma 3, we get that by setting Ht = Ht−1 + γtht the potential decreases by at
least γ

2ε2

29 .

When t = 0 and H0 = 0, Φ(H0,D) = 1. Since for any H : X → R, Φ(H,D) > 0; we can
have at most T = 29

γ2ε2 rounds. This guarantees that when the algorithm is run for T rounds, on

some round t the hypothesis sign(Ht) will have correlation at least sup
c∈C

cor(c,D) − ε0
γ
− 2ε

3
. For

s = 200
γ2ε2 log

(
1
δ

)
the empirical estimate of the correlation of the constructed hypothesis on each

round is within an additive ε
6 of its true correlation, allowing a further failure probability of δ each

round. Thus the final hypothesis Hτ which has the highest empirical correlation satisfies,

cor(Hτ ,D) ≥ sup
c∈C

cor(c,D)− ε0
γ
− ε

Since there is a failure probability of at most 4δ on each round, the algorithm succeeds with proba-
bility at least 1− 4Tδ.

4 Applications

We show that recent agnostic learning analyses can be dramatically simplified using our boosting
algorithm. Both of the agnostic algorithms are distribution-specific, meaning that they only work on
one (or a family) of distributions µ over unlabeled examples.

4.1 Agnostically Learning Decision Trees

Recent work has shown how to agnostically learn polynomial-sized decision trees using member-
ship queries, by an L1 gradient-projection algorithm [10]. Here, we show that learning decision
trees is quite simple using our distribution-specific boosting theorem and the Kushilevitz-Mansour
membership query parity learning algorithm as a weak learner [24].
Lemma 4. Running the KM algorithm, using q = poly(n, t, 1/ε0) queries, and outputting the parity
with largest magnitude of estimated Fourier coefficient, is a (γ = 1/t, ε0) agnostic weak learner for
size-t decision trees over the uniform distribution.

The proof of this Lemma is simple using results in [24] and is given in Appendix A. Theorem 2 now
follows easily from Lemma 4 and Theorem 1.

4.2 Agnostically Learning Halfspaces

In the case of learning halfspaces, the weak learner simply finds the degree-d term, χS(x) with
|S| ≤ d, with greatest empirical correlation 1

m

∑m
i=1 χS(xi)yi on a data set (x1, y1), . . . , (xm, ym).

The following lemma is useful in analyzing it.
Lemma 5. For any ε > 0, there exists d ≥ 1 such that the following holds. Let n ≥ 1, C be the class
of halfspaces in n dimensions, let U be the uniform distribution on {−1, 1}n, and f : {−1, 1}n →
[−1, 1] be an arbitrary function. Then there exists a set S ⊆ [n] of size |S| ≤ d = 20

ε40
such that

| cor(χS ,Uf )| ≥ (cor(C,Uf )− ε0)/nd.
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Using results from [25] the proofs of Lemma 5 and Theorem 3 are straightforward and are given in
Appendix B.

5 Experiments

We performed preliminary experiments with the new boosting algorithm presented here on 8 datasets
from UCI repository [26]. We converted multi-class problems into binary classification problems
by arbitrarily grouping classes, and ran Adaboost, Madaboost and Agnostic Boost on these datasets,
using stumps as weak learners. Since stumps can accept weighted examples, we passed the exact
weighted distribution to the weak learner.

Our experiments were performed with fractional relabeling, which means the following. Rather than
keeping the label with probability wt(x, y) and making it completely random with the remaining
probability, we added both (x, y) and (x,−y) with weights (1 + wt(x, y))/2 and (1− wt(x, y))/2
respectively. Experiments with random relabeling showed that random relabeling performs much
worse than fractional relabeling.

Table 1 summarizes the final test error on the datasets. In the case of pima and german datasets,
we observed overfitting and the reported test errors are the minimum test error observed for all the
algorithms. In all other cases the test error rate at the end of round 500 is reported. Only pendigits
had a test dataset, for the rest of the datasets we performed 10-fold cross validation. We also added
random classification noise of 5%, 10% and 20% to the datasets and ran the boosting algorithms on
the modified dataset.

Dataset No Added Noise 5% noise 10% Noise 20% Noise
Ada Mada Agn Ada Mada Agn Ada Mada Agn Ada Mada Agn

sonar 12.4 14.8 15.3 23.9 20.6 24.0 26.5 26.3 25.1 34.2 32.7 34.5
ionosphere 8.6 9.1 8.1 15.8 17.2 14.4 24.2 23.8 21.8 32 28.2 27.8

pima 23.7 23.0 23.6 26.1 24.9 25.7 27.6 26.4 26.7 34.3 34.5 34
german 23.1 23.6 23.1 28.5 27.7 27.5 29.0 29.5 30.0 35.0 34.5 35.1

waveform 10.4 10.2 10.3 14.9 15.0 13.9 20.1 19.2 19.1 27.9 27.3 27.1
magic 14.7 14.9 14.5 18.2 18.3 18.1 21.9 22.0 21.5 29.4 29.1 28.7
letter 17.4 18.2 18.3 20.9 21.4 21.5 24.6 24.9 25.2 31.4 31.8 31.6

pendigits 7.4 7.3 8.2 12.1 12.0 13.0 16.8 16.3 16.9 25.5 25.2 25.3

Table 1: Final test error rates of Adaboost, Madaboost and Agnostic Boosting on 8 datasets. The
first column reports error rates on the original datasets, and the next three report errors on datasets
with 5%, 10% and 20% classification noise added.

6 Conclusion

We show that potential-based agnostic boosting is possible in theory, and also that this may be
done without changing the distribution over unlabeled examples. We show that non-trivial agnostic
learning results, for learning decision trees and halfspaces, can be viewed as simple applications of
our boosting theorem combined with well-known weak learners. Our analysis can be viewed as a
theoretical justification of noise tolerance properties of algorithms like Madaboost and Smoothboost.
Preliminary experiments show that the performance of our boosting algorithm is comparable to that
of Madaboost and Adaboost. A more thorough empirical evaluation of our boosting procedure using
different weak learners is part of future research.
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