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1 Second order approximation of a submanifold
in Euclidean space

Given an m-dimensional submanifold M isometrically embedded in Rs, we want
to approximate M up to second-order around a given point p ∈M .

Proposition 1 Let x1, . . . , xm be the coordinates associated with an orthonor-
mal basis of the tangent space at TpM . Then in Cartesian coordinates z of Rs,
the manifold can be approximated up to second order as

z(x) = (x1, . . . , xm, fm+1(x), . . . , fs(x)),

where f i(x) =
∑m
α,β=1 Πi

αβx
αxβ and Πi

αβ is the second fundamental form of M
at p. If M is a hypersurface, then we have z(x) = (x1, . . . , xs−1, fs(x)), and fs

is given as

fs(x) =
s−1∑
i=1

κi(xi)2,

if the coordinates xα are aligned with the principal directions and κi are the
principal curvatures of M at p.

Proof: Let γ(t) be a geodesic on M with γ(0) = p. Then we can do a Taylor
expansion of γ around p with respect to the ambient space Rs,

γ(t) = γ(0) + γ′(0)t+
1
2
γ′′(0)t2 +O(t3).

We have γ′(0) ∈ TpM and, since M is isometrically embedded, ‖γ′(0)‖TpM =
‖γ′(0)‖TpRs = ‖γ′(0)‖Rs .
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That means parametrization by arclength is the same in M and Rs. Now
if γ(t) is parameterized by arclength which is equivalent to ‖γ′(t)‖Rs = 1, then
we have

0 =
∂

∂t
‖γ′(t)‖2Rs = 2 〈γ′′(t), γ′(t)〉Rs .

However, we even know by the relation between extrinsic and intrinsic derivative,
see [1, p. 140], that

γ′′ = Dtγ
′ + Π(γ′, γ′),

where Π : TpM × TpM → NpM is the second fundamental form or extrinsic
curvature of M , NpM is the normal space of M (the subspace orthogonal to
the tangent space TpM in Rs) and Dtγ

′ = M∇γ′γ′. Since γ is a geodesic, we
have Dtγ

′ = 0 (the intrinsic acceleration is zero) and get

γ′′ = Π(γ′, γ′).

Note, that γ′′ ∈ NpM . Plugging this into the Taylor expansion of the geodesic,
we obtain

γ(t) = γ(0) + γ′(0)t+
t2

2
Π(γ′, γ′) +O(t3),

where γ′(0) ∈ TpM and Π(γ′, γ′) ∈ NpM . We deduce that, if we introduce
orthonormal coordinates xi for the subspace p+TpM with origin at p ∈M and
extend this to a full Cartesian coordinate system of Rs, we get the local second
order approximation of M as

(x1, . . . , xm, fm+1(x), . . . , fs(x)),

where f i(x) =
∑m
α,β=1 Πi

αβx
αxβ and Πi

αβ is the second fundamental form de-
scribed in the local coordinate system (note that Πi

αβ = 0 if i ≤ m since
Π( ∂

∂xα ,
∂
∂xβ

) ∈ NpM).
For a hypersurface M the normal space NpM is one-dimensional, Π(X,Y ) =

h(X,Y )N , where N is the normal vector at p and h : TpM × TpM → R. Thus
in coordinates h is just a (s− 1)× (s− 1)- symmetric matrix with eigenvalues
κi, i = 1, . . . , s− 1 and thus in the basis formed by the eigenvectors we get

h(X,Y ) =
s−1∑
α=1

καX
αY α,

and thus we get the second-order approximation (x1, . . . , xs−1, fs(x)) with fs(x) =∑s−1
α=1 καx

α xα. �

2 Representation of the second derivative of Ψ
using the second-order approximation of the
input manifold

As above, assume that M is an m-dimensional submanifold in Rs.
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Proposition 2 Using a second-order approximation of M centered at p ∈ M ,
we get in Cartesian coordinates z = (x1, . . . , xm, fm+1(x), . . . , fs(x)) that

gαβ(0) = δαβ ,
MΓ

α

βγ(0) = 0.

Furthermore, we have at p ∈M ,[ ∂2Ψµ

∂xβ∂xα
− ∂Ψµ

∂xγ
MΓ

γ

βα

]
=
[ ∂2Ψµ

∂zβ∂zα
+

s∑
r=m+1

∂Ψµ

∂zr
Πr
βα

]
.

Proof: The function i : Rm → Rs defined as

(x1, . . . , xm) 7→ i(x) = (x1, . . . , xm, fm+1(x), . . . , fs(x)),

can be seen as the embedding of the second order approximation of M into Rs.
The induced metric is given as

gαβ =
s∑
r=1

∂ir

∂xα
∂ir

∂xβ
=

{
1 +

∑s
k=m+1

(
∂fk

∂xα

)2

, if α = β,∑s
k=m+1

∂fk

∂xα
∂fk

∂xβ
, if α 6= β.

Since the functions fk are all quadratic in the coordinates xα, we immediately
see that gαβ(0) = δαβ . Moreover, we have

∂gαβ
∂xγ

=

{
2
∑s
k=m+1

∂2fk

∂xγ∂xα
∂fk

∂xα , if α = β,∑s
k=m+1

(
∂2fk

∂xγ∂xα
∂fk

∂xβ
+ ∂fk

∂xα
∂2fk

∂xγ∂xβ

)
, if α 6= β.

Again, since f i are quadratic functions in xα we have ∂gαβ
∂xγ = 0 at the origin.

Now, the Christoffel symbols in local coordinates xα are given as [1, p. 70]

Γγαβ =
1
2
gγρ(∂αgβρ + ∂βgαρ − ∂ρgαβ),

and with the previous result, we also obtain Γγαβ = 0 at the origin. Moreover,
we have

∂2Ψµ

∂xβ∂xα
=

∂2Ψµ

∂zr∂zu
∂zr

∂xα
∂zu

∂xβ
+
∂Ψµ

∂zr
∂2zr

∂xα∂xβ
,

and

∂zr

∂xα
=

{ 1, if r = α,
0, if r ≤ m and r 6= α,
∂fr

∂xα , if r > m,

∂2zr

∂xβ∂xα
=

{
0, if r ≤ m,
Πr
αβ , if r > m,
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and thus, we obtain at x = 0,

∂2Ψµ

∂xβ∂xα
=

∂2Ψµ

∂zr∂zu
∂zr

∂xα
∂zu

∂xβ
+
∂Ψµ

∂zr
∂2zr

∂xα∂xβ

=
∂2Ψµ

∂zβ∂zα
+

s∑
r=m+1

∂Ψµ

∂zr
Πr
βα.

For a hypersurface M we have Πr
βα = Nrhβα, where h is the so called shape

operator. If the coordinates xα are aligned with the principal directions (the
eigenvectors of hβα), we get Πr

βα = 0 if r < s and Πs
βα = καδαβ . �

References

[1] J. M. Lee. Riemannian Manifolds - An introduction to curvature. Springer,
New York, 1997.

4


