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A Exact Formulation of the Sufficient Conditions

In this section, we give a mathematically rigorous formulation of the sufficient conditions discussed
in the main paper. For that we will need some additional notation.

First of all, it will be convenient to define a scaled version of our distance measure
dD(Ak(S1), Ak(S2)) between clusterings. Formally, define the random variable

dm
D (Ak(S1), Ak(S2)) :=

√
mdD(Ak(S1), Ak(S2)) =

√
m Pr

x∼D

(

argmax
i

f
θ̂,i(x) 6= argmax

i
f

θ̂
′
,i
(x)

)

,

whereθ, θ′ ∈ Θ are the solutions returned byAk(S1), Ak(S2), andS1, S2 are random samples, each
of sizem, drawn i.i.d from the underlying distributionD. The scaling by the square root of the
sample size will allow us to analyze the non-trivial asymptotic behavior of these distance measures,
which without scaling simply converge to zero in probability asm→ ∞.

For someǫ > 0 and a setS ⊆ Rn, letBǫ(S) be theǫ-neighborhood ofS, namely

Bǫ(S) :=

{

x ∈ X : inf
y∈S

‖x − y‖2 ≤ ǫ

}

.

In this paper, when we talk about neighborhoods in general, we will always assume they are uniform
(namely, contain anǫ-neighborhood for some positiveǫ).

We will also need to define the following variant ofdm
D (Ak(S1), Ak(S2)), where we restrict our-

selves to the mass in some subset ofRn. Formally, we define the restricted distance between two
clusterings, with respect to a setB ∈ Rn, as

dm
D (Ak(S1), Ak(S2), B) :=

√
m Pr

x∼D

(

argmax
i

f
θ̂,i(x) 6= argmax

i
f

θ̂
′
,i
(x) ∧ x ∈ B

)

. (1)

In particular,dm
D (Ak(S1), Ak(S2), Br/

√
m(∪i,jFθ0,i,j)) refers to the mass which switches clusters,

and is also inside anr/
√
m-neighborhood of the limit cluster boundaries (where the boundaries are

defined with respect tofθ0
(·)). Once again, whenS1, S2 are random samples, we can think of it as

a random variable with respect to drawing and clusteringS1, S2.

Conditions. The following conditions shall be assumed to hold:

1. Consistency Condition:̂θ converges in probability (over drawing and clustering a sample
of sizem, m → ∞) to someθ0 ∈ Θ. Furthermore, the association of clusters to indices
{1, . . . , k} is constant in some neighborhood ofθ0.

2. Central Limit Condition:
√
m(θ̂ − θ0) converges in distribution to a multivariate zero

mean Gaussian random variableZ.
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3. Regularity Conditions:

(a) fθ(x) is Sufficiently Smooth:For anyθ in some neighborhood ofθ0, and anyx in
some neighborhood of the cluster boundaries∪i,jFθ0,i,j , fθ(x) is twice continuously
differentiable with respect toθ, with a non-zero first derivative and uniformly bounded
second derivative for anyx. Bothfθ0

(x) and(∂/∂θ)fθ0
(x) are twice differentiable

with respect to anyx ∈ X , with a uniformly bounded second derivative.
(b) Limit Cluster Boundaries are Reasonably Nice:For any two clustersi, j, Fθ0,i,j is

either empty, or a compact, non-self-intersecting, orientablen−1 dimensional hyper-
surface inRn with finite positive volume, a boundary (edge), and with a neighborhood
contained inX in which the underlying density functionp(·) is continuous. Moreover,
the gradient∇(fθ0,i(·) − fθ0,j(·)) has positive magnitude everywhere onFθ0,i,j .

(c) Intersections of Cluster Boundaries are Relatively Negligible:For any two distinct
non-empty cluster boundariesFθ0,i,j , Fθ0,i′,j′ , we have that

1

ǫ

∫

Bǫ(Fθ0,i,j∪F
θ0,i′,j′ )∩Bδ(Fθ0,i,j)∩Bδ(F

θ0,i′,j′ )

1dx ,
1

ǫ

∫

Bǫ(∂Fθ0,i,j)

1dx

converge to0 asǫ, δ → 0 (in any manner), where∂Fθ0,i is the edge ofFθ0,i,j .
(d) Minimal Parametric Stability: It holds for someδ > 0 that

Pr
`

d
m
D (Ak(S1), Ak(S2)) 6= d

m
D (Ak(S1), Ak(S2), Br/

√
m (∪i,jFθ0,i,j))

´

= O(r−3−δ) + o(1),

whereo(1) → 0 asm→ ∞. Namely, the mass ofD which switches between clusters
is with high probability inside thin strips around the limit cluster boundaries, and this
high probability increases at least polynomially as the width of the strips increase (see
below for a further discussion of this).

The regularity assumptions are relatively mild, and can usually be inferred based on the consistency
and central limit conditions, as well as the the specific clustering framework that we are considering.
For example, condition3c and the assumptions onFθ0,i,j in condition3b are fulfilled in a cluster-
ing framework where the clusters are separated by hyperplanes. As to condition3d, suppose our
clustering framework is such that the cluster boundaries depend onθ̂ in a smooth manner. Then the
asymptotic normality of̂θ, with varianceO(1/m), and the compactness ofX , will generally imply
that the cluster boundaries obtained from clustering a sample are contained with high probability
inside strips of widthO(1/

√
m) around the limit cluster boundaries. More specifically, the asymp-

totic probability of this happening for strips of widthr/
√
m will be exponentially high inr, due

to the asymptotic normality of̂θ. As a result, the mass which switches between clusters, when we
compare two independent clusterings, will be in those strips with probability exponentially high in
r. Therefore, condition3d will hold by a large margin, since only polynomially high probability is
required there.

B Proofs - General Remarks

The proofs will use the additional notation and the sufficient conditions, as presented in Sec.A.

Throughout the proofs, we will sometimes use the stochastic order notationOp(·) andop(·) (cf.
[8]), defined as follows. Let{Xm} and{Ym} be sequences of random vectors, defined on the same
probability space. We writeXm = Op(Ym) to mean that for eachǫ > 0 there exists a real number
M such thatPr(‖Xm‖ ≥M‖Ym‖) < ǫ if m is large enough. We writeXm = op(Ym) to mean that
Pr(‖Xm‖ ≥ ǫ‖Ym‖) → 0 for eachǫ > 0. Notice that{Ym} may also be non-random. For example,
Xm = op(1) means thatXm → 0 in probability. When we write for exampleXm = Ym + op(1),
we mean thatXm − Ym = op(1).

C Proof of Proposition 1

By condition3a,fθ(x) has a first order Taylor expansion with respect to anyθ̂ close enough toθ0,
with a remainder term uniformly bounded for anyx:

f
θ̂
(x) = fθ0

(x) +

(

∂

∂θ
fθ0

(x)

)⊤
(θ̂ − θ0) + o(‖θ̂ − θ0‖). (2)
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By the asymptotic normality assumption,
√
m‖θ̂ − θ0‖ = Op(1), hence‖θ̂ − θ0‖ = Op(1/

√
m).

Therefore, we get from Eq. (2) that

√
m
(

f
θ̂
(x) − fθ0

(x)
)

=

(

∂

∂θ
fθ0

(x)

)⊤
(
√
m(θ̂ − θ0)) + op(1), (3)

where the remainder termop(1) does not depend onx. By regularity condition3aand compactness
of X , (∂/∂θ)fθ0

(·) is a uniformly bounded vector-valued function fromX to the Euclidean space
in which Θ resides. As a result, the mappingθ̂ 7→ ((∂/∂θ)fθ0

(·))⊤θ̂ is a mapping fromΘ, with
the metric induced by the Euclidean space in which it resides, to the space of all uniformly bounded
Rk-valued functions onX . We can turn the latter space into a metric space by equipping it with
the obvious extension of the supremum norm (namely, for any two functionsf(·), g(·), ‖f − g‖ :=
supx∈X ‖f(x)−g(x)‖∞, where‖ ·‖∞ is the infinity norm in Euclidean space). With this norm, the
mapping above is a continuous mapping between two metric spaces. We also know that

√
m(θ̂−θ0)

converges in distribution to a multivariate Gaussian random variableZ. By the continuous mapping
theorem [8] and Eq. (3), this implies that

√
m(f

θ̂
(·)−fθ0

(·)) converges in distribution to a Gaussian
processG(·), where

G(·) :=

(

∂

∂θ
fθ0

(·)
)⊤

Z. (4)

D Proof of Thm. 1

D.1 A High Level Description of the Proof

The full proof of Thm. 1 is rather long and technical, mostly due to the many technical subtleties
that need to be taken care of. Since these might obscure the main ideas, we present here separately
a general overview of the proof, without the finer details.

The purpose of the stability estimatorη̂k
m,q, scaled by

√
m, boils down to trying to assess the

”expected” value of the random variabledm
D (Ak(S1), Ak(S2)): we estimateq instantiations of

dm
D (Ak(S1), Ak(S2)), and take their average. Our goal is to show that this average, takingm → ∞,

is likely to be close to the valuêinstab(Ak,D) as defined in the theorem. The most straightforward
way to go about it is to prove that̂instab(Ak,D) actually equalslimm→∞ Edm

D (Ak(S1), Ak(S2)),
and then use some large deviation bound to prove that

√
m η̂k

m,q is indeed close to it with high
probability, if q is large enough. Unfortunately, computinglimm→∞ Edm

D (Ak(S1), Ak(S2)) is prob-
lematic. The reason is that the convergence tools at our disposal deals with convergence in dis-
tribution of random variables, but convergence in distribution does not necessarily imply conver-
gence of expectations. In other words, we can try and analyze the asymptotic distribution of
dm
D (Ak(S1), Ak(S2)), but the expected value of this asymptotic distribution is not necessarily the

same aslimm→∞ Edm
D (Ak(S1), Ak(S2)). As a result, we will have to take a more indirect route.

Here is the basic idea: instead of analyzing the asymptotic expectation ofdm
D (Ak(S1), Ak(S2)), we

analyze the asymptotic expectation of a different random variable,dm
D (Ak(S1), Ak(S2), B), which

was formally defined in Eq. (1). Informally, recall thatdm
D (Ak(S1), Ak(S2)) is the mass of the un-

derlying distributionD which switches between clusters, when we draw and cluster two indepen-
dent samples of sizem. Thendm

D (Ak(S1), Ak(S2), B) measures the subset of this mass, which
lies inside someB ⊆ Rn. In particular, following the notation of Sec.A, we will pick B to be
dm
D (Ak(S1), Ak(S2), Br/

√
m(∪i,jFθ0,i,j)) for somer > 0. In words, this constitutes strips of width

r/
√
m around the limit cluster boundaries. Writing the above expression forB asBr/

√
m, we have

that if r be large enough, thendm
D (Ak(S1), Ak(S2), Br/

√
m) is equal todm

D (Ak(S1), Ak(S2)) with
very high probability over drawing and clustering a pair of samples, for any large enough sample
sizem. Basically, this is because the fluctuations of the cluster boundaries, based on drawing and
clustering a random sample of sizem, cannot be too large, and therefore the mass which switches
clusters is concentrated around the limit cluster boundaries, ifm is large enough.

The advantage of the ’surrogate’ random variabledm
D (Ak(S1), Ak(S2), Br/

√
m) is that it isbounded

for any finite r, unlike dm
D (Ak(S1), Ak(S2)). With bounded random variables, convergence in

distribution does imply convergence of expectations, and as a result we are able to calcu-
late limm→∞ Edm

D (Ak(S1), Ak(S2), Br/
√

m) explicitly. This will turn out to be very close to
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înstab(Ak,D) as it appears in the theorem (in fact, we can make it arbitrarily close tôinstab(Ak,D) by
makingr large enough). Using the fact thatdm

D (Ak(S1), Ak(S2), Br/
√

m) and dm
D (Ak(S1), Ak(S2))

are equal with very high probability, we show that conditioned on a highly probable event,√
m η̂k

m,q is an unbiased estimator ofdm
D (Ak(S1), Ak(S2), Br/

√
m), based onq instantiations, for

any sample sizem. As a result, using large deviation bounds, we get that
√
m η̂k

m,q is close to
dm
D (Ak(S1), Ak(S2), Br/

√
m), with a high probability which does not depend onm. Therefore, as

m → ∞,
√
m η̂k

m,q will be close tolimm→∞ Edm
D (Ak(S1), Ak(S2), Br/

√
m) with high probability.

By picking r to scale appropriately withq, our theorem follows.

For convenience, the proof is divided into two parts: in Subsec.D.2, we calculate
limm→∞ Edm

D (Ak(S1), Ak(S2), Br/
√

m) explicitly, while Subsec.D.3 executes the general plan out-
lined above to prove our theorem.

A few more words are in order about the calculation oflimm→∞ Edm
D (Ak(S1), Ak(S2), Br/

√
m)

in Subsec.D.2, since it is rather long and involved in itself. Our goal is to perform this calcu-
lation without going through an intermediate step of explicitly characterizing the distribution of
dm
D (Ak(S1), Ak(S2), Br/

√
m). This is because the distribution might be highly dependent on the spe-

cific clustering framework, and thus it is unsuitable for the level of generality which we aim at (in
other words, we do not wish to assume a specific clustering framework). The idea is as follows:
recall thatdm

D (Ak(S1), Ak(S2), Br/
√

m) is the mass of the underlying distributionD, inside strips of
width r/

√
m around the limit cluster boundaries, which switches clusters when we draw and cluster

two independent samples of sizem. For anyx ∈ X , letAx be the event thatx switched clusters.
Then we can writedm

D (Ak(S1), Ak(S2), Br/
√

m), by Fubini’s theorem, as:

Edm
D (Ak(S1), Ak(S2), Br/

√
m) =

√
mE

∫

Br/
√

m

1(Ax)p(x)dx =

∫

Br/
√

m

√
mPr(Ax)p(x)dx.

(5)

The heart of the proof is LemmaD.5, which considers what happens to the integral above inside a
single strip near one of the limit cluster boundariesFθ0,i,j . The main body of the proof then shows
how the result of LemmaD.5 can be combined to give the asymptotic value of Eq. (5) when we
take the integral over all ofBr/

√
m. The bottom line is that we can simply sum the contributions

from each strip, because the intersection of these different strips is asymptotically negligible. All
the other lemmas in Subsec.D.2 develop technical results needed for our proof.

Finally, let us describe the proof of LemmaD.5 in a bit more detail. It starts with an expression
equivalent to the one in Eq. (5), and transforms it to an expression composed of a constant value,
and a remainder term which converges to0 asm → ∞. The development can be divided into a
number of steps. The first step is rewriting everything using the asymptotic Gaussian distribution
of the cluster association functionf

θ̂
(x) for eachx, plus remainder terms (Eq. (13)). Since we are

integrating overx, special care is given to show that the convergence to the asymptotic distribution
is uniform for allx in the domain of integration. The second step is to rewrite the integral (which is
over a strip around the cluster boundary) as a double integral along the cluster boundary itself, and
along a normal segment at any point on the cluster boundary (Eq. (14)). Since the strips become
arbitrarily small asm → ∞, the third step consists of rewriting everything in terms of a Taylor
expansion around each point on the cluster boundary (Eq. (16), Eq. (17) and Eq. (18)). The fourth
and final step is a change of variables, and after a few more manipulations we get the required result.

D.2 Part 1: Auxiliary Result

As described in the previous subsection, we will need an auxiliary result (PropositionD.1 below),
characterizing the asymptotic expected value ofdm

D (Ak(S1), Ak(S2), Br/
√

m(∪i,jFθ0,i,j)).
Proposition D.1. Let r > 0. Assuming the set of conditions from Sec.A holds,
limm→∞ Edm

D (Ak(S1), Ak(S2), Br/
√

m(∪i,jFθ0,i,j)) is equal to

2

(

1√
π
− h(r)

)

∑

1≤i<j≤k

∫

Fθ0,i,j

p(x)
√

Var(Gi(x) −Gj(x))

‖∇(fθ0,i(x) − fθ0,j(x))‖ dx,

whereh(r) = O(exp(−r2)).
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To prove this result, we will need several technical lemmas.

Lemma D.1. LetS be a hypersurface inRn which fulfill the regularity conditions3band3cfor any
Fθ0,i,j , and letg(·) be a continuous real function onX . Then for anyǫ > 0,

1

ǫ

∫

Bǫ(S)

g(x)dx =
1

ǫ

∫

S

∫ ǫ

−ǫ

g(x + ynx)dydx + o(1), (6)

wherenx is a unit normal vector toS at x, ando(1) → 0 asǫ→ 0.

Proof. Let B′
ǫ(S) be a strip aroundS, composed of all points which are on some normal toS and

close enough toS:

B′
ǫ(S) := {y ∈ R

n : ∃x ∈ S,∃y ∈ [−ǫ, ǫ],y = x + ynx}.

SinceS is orientable, then for small enoughǫ > 0, B′
ǫ(S) is diffeomorphic toS × [−ǫ, ǫ]. In

particular, the mapφ : S × [−ǫ, ǫ] 7→ B′
ǫ(S), defined by

φ(x, y) = x + ynx

will be a diffeomorphism. LetDφ(x, y) be the Jacobian ofφ at the point(x, y) ∈ S × [−ǫ, ǫ]. Note
thatDφ(x, 0) = 1 for everyx ∈ S.

We now wish to claim that asǫ→ 0,

1

ǫ

∫

Bǫ(S)

g(x)dx =
1

ǫ

∫

B′
ǫ(S)

g(x)dx + o(1). (7)

To see this, we begin by noting thatB′
ǫ(S) ⊆ Bǫ(S). Moreover, any point inBǫ(S) \B′

ǫ(S) has the
property that its projection to the closest point inS is not a normal toS, and thus must beǫ-close
to the edge ofS. As a result of regularity condition3c for S, and the fact thatg(·) is continuous
and hence uniformly bounded in the volume of integration, we get that the integration ofg(·) over
Bǫ \B′

ǫ is asymptotically negligible (asǫ→ 0), and hence Eq. (7) is justified.

By the change of variables theorem from multivariate calculus, followed by Fubini’s theorem, and
using the fact thatDφ is continuous and equals1 onS × {0},

1

ǫ

∫

B′
ǫ(S)

g(x)dx =
1

ǫ

∫

S×[−ǫ,ǫ]

g(x + ynx)Dφ(x, y)dxdy

=
1

ǫ

∫ ǫ

−ǫ

(
∫

S

g(x + ynx)Dφ(x, y)dx

)

dy

=
1

ǫ

∫ ǫ

−ǫ

(
∫

S

g(x + ynx)dx

)

dy + o(1),

whereo(1) → 0 asǫ→ 0. Combining this with Eq. (7) yields the required result.

Lemma D.2. Let (gm : X 7→ R)∞m=1 be a sequence of integrable functions, such thatgm(x) → 0
uniformly for allx asm→ ∞. Then for anyi, j ∈ {1, . . . , k}, i 6= j,

∫

Br/
√

m(Fθ0,i,j)

√
mgm(x)p(x)dx → 0

asm→ ∞

Proof. By the assumptions on(gm(·))∞m=1, there exists a sequence of positive constants(bm)∞m=1,
converging to0, such that

∣

∣

∣

∣

∣

∫

Br/
√

m(Fθ0,i,j)

√
mgm(x)p(x)dx

∣

∣

∣

∣

∣

≤ bm

∫

Br/
√

m(Fθ0,i,j)

√
mp(x)dx.
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For large enoughm, p(x) is bounded and continuous in the volume of integration. Applying
LemmaD.1 with ǫ = r/

√
m, we have that asm→ ∞,

bm
√
m

∫

Br/
√

m(Fθ0,i,j)

p(x)dx = bm
√
m

∫

Fθ0,i,j

∫ r/
√

m

−r/
√

m

p(x + ynx)dydx + o(1)

≤ bm
√
m

C√
m

+ o(1) = bmC + o(1)

for some constantC dependant onr and the upper bound onp(·). Sincebm converge to0, we have
that the expression in the lemma converges to0 as well.

Lemma D.3. Let (Xm) and (Ym) be a sequence of real random variables, such thatXm, Ym are
defined on the same probability space, andXm −Ym converges to0 in probability. Assume thatYm

converges in distribution to a continuous random variableY . Then|Pr(Xm ≤ c) − Pr(Ym ≤ c)|
converges to0 uniformly for all c ∈ R.

Proof. We will use the following standard fact (see for example section 7.2 of [4]): for any two real
random variablesA,B, anyc ∈ R and anyǫ > 0, it holds that

Pr(A ≤ c) ≤ Pr(B ≤ c+ ǫ) + Pr(|A−B| > ǫ).

From this inequality, it follows that for anyc ∈ R and anyǫ > 0,

|Pr(Xm ≤ c) − Pr(Ym ≤ c)| ≤
(

Pr(Ym ≤ c+ ǫ) − Pr(Ym ≤ c)
)

+
(

Pr(Ym ≤ c) − Pr(Ym ≤ c− ǫ)
)

+ Pr(|Xm − Ym| ≥ ǫ). (8)

We claim that the r.h.s of Eq. (8) converges to0 uniformly for all c, from which the lemma follows.
To see this, we begin by noticing thatPr(|Xm − Ym| ≥ ǫ) converges to0 for anyǫ by definition of
convergence in probability. Next,Pr(Ym ≤ c′) converges toPr(Y ≤ c′) uniformly for all c′ ∈ R,
sinceY is continuous (see section 1 of [6]). Moreover, sinceY is a continuous random variable, we
have that its distribution function is uniformly continuous, hencePr(Y ≤ c+ ǫ) − Pr(Y ≤ c) and
Pr(Y ≤ c) − Pr(Y ≤ c − ǫ) converges to0 asǫ → 0, uniformly for all c. Therefore, by letting
m→ ∞, andǫ→ 0 at an appropriate rate compared tom, we have that the l.h.s of Eq. (8) converges
to 0 uniformly for all c.

Lemma D.4. Pr(
〈

a,
√
m(f

θ̂
(x) − fθ0

(x))
〉

< b) converges toPr(〈a,G(x)〉 < b) uniformly for
anyx ∈ X , anya 6= 0 in some bounded subset ofRk, and anyb ∈ R.

Proof. By Eq. (3),

√
m
(

f
θ̂
(x) − fθ0

(x)
)

=

(

∂

∂θ
fθ0

(x)

)⊤
(
√
m(θ̂ − θ0)) + op(1).

Where the remainder term does not depend onx. Thus, for anya in a bounded subset ofRk,

〈

a,
√
m
(

f
θ̂
(x) − fθ0

(x)
)〉

=

〈

a

(

∂

∂θ
fθ0

(x)

)⊤
,
√
m(θ̂ − θ0)

〉

+ op(1), (9)

Where the convergence in probability is uniform for all boundeda andx ∈ X .

We now need to use a result which tells us when is a convergence in distribution uniform. Using thm.
4.2 in [6], we have that if a sequence of random vectors(Xm)∞m=1 in Euclidean space converge to a
random variableX in distribution, thenPr(〈y, Xm〉 < b) converges toPr(〈y, X〉 < b) uniformly
for any vectory andb ∈ R. We note that a stronger result (Thm. 6 in [2]) apparently allows us to
extend this to cases whereXm andX reside in some infinite dimensional, separable Hilbert space
(for example, ifΘ is a subset of an infinite dimensional reproducing kernel Hilbert space in kernel
clustering). Therefore, recalling that

√
m(θ̂ − θ0) converges in distribution to a random normal

vectorZ, we have that uniformly for allx,a, b,
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Pr

(〈

a

(

∂

∂θ
fθ0

(x)

)⊤
,
√
m(θ̂ − θ0)

〉

< b

)

= Pr

(〈

a

(

∂

∂θ
fθ0

(x)

)⊤
, Z

〉

< b

)

+ o(1)

= Pr (〈a, G(x)〉 < b) + o(1) (10)

Here we think ofa((∂/∂θ)fθ0
(x))⊤ as the vectory to which we apply the theorem. By regularity

condition3a, and assuminga 6= 0, we have that
〈

a((∂/∂θ)fθ0
(x))⊤, Z

〉

is a continuous real ran-
dom variable for anyx, unlessZ = 0 in which case the lemma is trivial. Therefore, the conditions
of LemmaD.3 apply: the two sides of Eq. (9) give us two sequences of random variables which
converge in probability to each other, and by Eq. (10) we have convergence in distribution of one of
the sequences to a fixed continuous random variable. Therefore, using LemmaD.3, we have that

Pr
(〈

a,
√
m
(

f
θ̂
(x) − fθ0

(x)
)〉

< b
)

= Pr

(〈

a

(

∂

∂θ
fθ0

(x)

)⊤
,
√
m(θ̂ − θ0)

〉

< b

)

+ o(1),

(11)
where the convergence is uniform for any boundeda 6= 0, b andx ∈ X .

Combining Eq. (10) and Eq. (11) gives us the required result.

Lemma D.5. Fix some two clustersi, j. Assuming the expression below is integrable, we have that

2

∫

Br/
√

m(Fθ0,i,j)

√
mPr(f

θ̂,i(x) − f
θ̂,j(x) < 0)Pr(f

θ̂,i(x) − f
θ̂,j > 0)p(x)dx

= 2

(

1√
π
− h(r)

)
∫

Fθ0,i,j

p(x)
√

Var(Gi(x) −Gj(x))

‖∇(fθ0,i(x) − fθ0,j(x))‖ dx + o(1)

whereo(1) → 0 asm→ ∞ andh(r) = O(exp(−r2)).

Proof. Definea ∈ Rk asai = 1, aj = −1, and0 for any other entry. Applying LemmaD.4, witha
as above, we have that uniformly for allx in some small enough neighborhood aroundFθ0,i,j :

Pr(f
θ̂,i(x) − f

θ̂,j(x) < 0)

= Pr
(√

m(f
θ̂,i(x) − fθ0,i(x)) −√

m(f
θ̂,j(x) − fθ0,j(x)) <

√
m(fθ0,j(x) − fθ0,i(x))

)

= Pr(Gi(x) −Gj(x) <
√
m(fθ0,j(x) − fθ0,i(x))) + o(1).

whereo(1) converges uniformly to0 asm→ ∞.

SinceGi(x)−Gj(x) has a zero mean normal distribution, we can rewrite the above (if Var(Gi(x)−
Gj(x)) > 0) as

Pr

(

Gi(x) −Gj(x)
√

Var(Gi(x) −Gj(x))
<

√
m(fθ0,j(x) − fθ0,i(x))
√

Var(Gi(x) −Gj(x))

)

+ o(1)

= Φ

(√
m(fθ0,j(x) − fθ0,i(x))
√

Var(Gi(x) −Gj(x))

)

+ o(1), (12)

whereΦ(·) is the cumulative standard normal distribution function. Notice that by some abuse of
notation, the expression is also valid in the case where Var(Gi(x) − Gj(x)) = 0. In that case,
Gi(x) − Gj(x) is equal to0 with probability1, and thusPr(Gi(x) − Gj(x) <

√
m(fθ0,j(x) −

fθ0,i(x))) is 1 if fθ0,j(x) − fθ0,i(x)) ≥ 0 and0 if fθ0,j(x) − fθ0,i(x)) < 0. This is equal to
Eq. (12) if we are willing to assume thatΦ(∞) = 1,Φ(0/0) = 1,Φ(−∞) = 0.
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Therefore, we can rewrite the l.h.s of the equation in the lemma statement as

2

∫

Br/
√

m(Fθ0,i,j)

√
mΦ

(√
m(fθ0,i(x) − fθ0,j(x))
√

Var(Gi(x) −Gj(x))

)

(

1 − Φ

(√
m(fθ0,i(x) − fθ0,j(x))
√

Var(Gi(x) −Gj(x))

))

+
√
mo(1)p(x)dx.

The integration of the remainder term can be rewritten aso(1) by LemmaD.2, and we get that the
expression can be rewritten as:

2

∫

Br/
√

m(Fθ0,i,j)

√
mΦ

(√
m(fθ0,i(x) − fθ0,j(x))
√

Var(Gi(x) −Gj(x))

)

(

1 − Φ

(√
m(fθ0,i(x) − fθ0,j(x))
√

Var(Gi(x) −Gj(x))

))

p(x)dx + o(1). (13)

One can verify that the expression inside the integral is a continuous function ofx, by the regularity
conditions and the expression forG(·) as proven in Sec.C (namely Eq. (4)). We can therefore apply
LemmaD.1, and again take all the remainder terms outside of the integral by LemmaD.2, to get
that the above can be rewritten as

2

∫

Fθ0,i,j

∫ r/
√

m

−r/
√

m

√
mΦ

(√
m(fθ0,i(x + ynx) − fθ0,j(x + ynx))
√

Var(Gi(x + ynx) −Gj(x + ynx))

)

(

1 − Φ

(√
m(fθ0,i(x + ynx) − fθ0,j(x + ynx))
√

Var(Gi(x + ynx) −Gj(x + ynx))

))

p(x)dydx + o(1), (14)

wherenx is a unit normal toFθ0,i,j atx.

Inspecting Eq. (14), we see thaty ranges over an arbitrarily small domain asm→ ∞. This suggests
that we can rewrite the above using Taylor expansions, which is what we shall do next.

Let us assume for a minute that Var(Gi(x) − Gj(x)) > 0 for some pointx ∈ Fθ0,i,j . One can
verify that by the regularity conditions and the expression forG(·) in Eq. (4), the expression

fθ0,i(·) − fθ0,j(·)
√

Var(Gi(·) −Gj(·))
(15)

is twice differentiable, with a uniformly bounded second derivative. Therefore, we can rewrite the
expression in Eq. (15) as its first-order Taylor expansion around eachx ∈ Fθ0,i,j , plus a remainder
term which is uniform for allx:

fθ0,i(x + ynx) − fθ0,j(x + ynx)
√

Var(Gi(x + ynx) −Gj(x + ynx))

=
fθ0,i(x) − fθ0,j(x)
√

Var(Gi(x) −Gj(x))
+ ∇

(

fθ0,i(x) − fθ0,j(x)
√

Var(Gi(x) −Gj(x))

)

ynx +O(y2).

Sincefθ0,i(x)− fθ0,j(x) = 0 for anyx ∈ Fθ0,i,j , the expression reduces after a simple calculation
to

∇(fθ0,i(x) − fθ0,j(x))
√

Var(Gi(x) −Gj(x))
ynx +O(y2).

Notice that∇(fθ0,i(x) − fθ0,j(x)) (the gradient offθ0,i(x) − fθ0,j(x)) has the same direction as
nx (the normal to the cluster boundary). Therefore, the expression above can be rewritten, up to a
sign, as

y

∥

∥

∥

∥

∥

∇(fθ0,i(x) − fθ0,j(x))
√

Var(Gi(x) −Gj(x))

∥

∥

∥

∥

∥

+O(y2).
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As a result, denotings(x) := ∇(fθ0,i(x) − fθ0,j(x))/
√

Var(Gi(x) −Gj(x)), we have that

Φ

(√
m(fθ0,i(x + ynx) − fθ0,j(x + ynx))
√

Var(Gi(x + ynx) −Gj(x + ynx))

)(

1 − Φ

(√
m(fθ0,i(x + ynx) − fθ0,j(x + ynx))
√

Var(Gi(x + ynx) −Gj(x + ynx))

))

(16)

= Φ
(√

m
(

‖s(x)‖y +O(y2)
)

)

(

1 − Φ
(√

m
(

‖s(x)‖y +O(y2)
)

)

)

= Φ
(√

m
(

‖s(x)‖y
)

)

(

1 − Φ
(√

m
(

‖s(x)‖y
)

)

)

+O(
√
my2). (17)

In the preceding development, we have assumed that Var(Gi(x) − Gj(x)) > 0. However, notice
that the expressions in Eq. (16) and Eq. (17), without the remainder term, are both equal (to zero)
even if Var(Gi(x) − Gj(x)) = 0 (with our previous abuse of notation thatΦ(−∞) = 0,Φ(∞) =
1). Moreover, sincey takes values in[−r/√m, r/√m], the remainder termO(

√
my2) is at most

O(
√
mr/m) = O(r/

√
m), so it can be rewritten aso(1) which converges to0 asm→ ∞.

In conclusion, and again using LemmaD.2 to take the remainder terms outside of the integral, we
can rewrite Eq. (14) as

2

∫

Fθ0,i,j

∫ r/
√

m

−r/
√

m

√
mΦ

(√
m‖s(x)‖y)

) (

1 − Φ
(√
m‖s(x)‖y)

))

p(x)dydx + o(1). (18)

We now perform a change of variables, lettingzx =
√
m‖s(x)‖y in the inner integral, and get

2

∫

Fθ0,i,j

∫ r‖s(x)‖

−r‖s(x)‖

1

‖s(x)‖Φ(zx) (1 − Φ(zx)) p(x)dzxdx + o(1),

which is equal by the mean value theorem to

2

(

∫

Fθ0,i,j

p(x)

‖s(x)‖dx
)(

∫ r‖s(x0)‖

−r‖s(x0)‖
Φ(zx0

) (1 − Φ(zx0
)) dzx0

)

+ o(1) (19)

for somex0 ∈ Fθ0,i,j .

By regularity condition3b, it can be verified that‖s(x)‖ is positive or infinite for anyx ∈ Fθ0,i,j .
As a result, asr → ∞, we have that

∫ r‖s(x0)‖

−r‖s(x0)‖
Φ(zx0

) (1 − Φ(zx0
)) dzx0

−→
∫ ∞

−∞
Φ(zx0

)(1 − Φ(zx0
))dzx0

=
1√
π
.

and the convergence to1/
√
π is at a rate ofO(exp(−r2)). Combining this with Eq. (19) gives us

the required result.

Proof of PropositionD.1. We can now turn to prove PropositionD.1 itself. For anyx ∈ X , letAx

be the event (over drawing and clustering a sample pair) thatx switched clusters. For anyFθ0,i,j

and sample sizem, defineFm
θ0,i,j to be the subset ofFθ0,i,j , which is at a distance of at leastm−1/4

from any other cluster boundary (with respect toθ0). Formally,

Fm
θ0,i,j :=

{

x ∈ Fθ0,i,j : ∀ ({i′, j′} 6= {i, j}, Fθ0,i′,j′ 6= ∅) , inf
y∈F

θ0,i′,j′
‖x − y‖ ≥ m−1/4

}

.
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LettingS1, S2 be two independent samples of sizem, we have by Fubini’s theorem that

Edm
D (Ak(S1), Ak(S2), Br/

√
m(∪i,jFθ0,i,j))

=
√
mES1,S2

∫

Br/
√

m(∪i,jFθ0,i,j)

1(Ax)p(x)dx =

∫

Br/
√

m(∪i,jFθ0,i,j)

√
mPr(Ax)p(x)dx

=

∫

Br/
√

m(∪i,jF m
θ0,i,j)

√
mPr(Ax)p(x)dx +

∫

Br/
√

m(∪i,jFθ0,i,j\F m
θ0,i,j)

√
mPr(Ax)p(x)dx.

As to the first integral, notice that each point inFm
θ0,i,j is separated from any point in any other

Fm
θ0,i′,j′ by a distance of at least2m−1/4. Therefore, for large enoughm, Br/

√
m(Fm

θ0,i,j) are
disjoint for eachi, j, and we can rewrite the above as:

∑

1≤i<j≤k

∫

Br/
√

m(F m
θ0,i,j)

√
mPr(Ax)p(x)dx +

∫

Br/
√

m(∪i,jFθ0,i,j\F m
θ0,i,j)

√
mPr(Ax)p(x)dx.

As to the second integral, notice that the integration is over points which are at a distance of at most
r/
√
m from someFθ0,i,j , and also at a distance of at mostm−1/4 from some otherFθ0,i′,j′ . By

regularity condition3c, and the fact thatm−1/4 → 0, it follows that this integral converges to0 as
m→ ∞, and we can rewrite the above as:

∑

1≤i<j≤k

∫

Br/
√

m(F m
θ0,i,j)

√
mPr(Ax)p(x)dx + o(1) (20)

If there were only two clustersi, j, then

Pr(Ax) = 2Pr(f
θ̂,i(x) − f

θ̂,j(x) < 0)Pr(f
θ̂,i(x) − f

θ̂,j > 0).

This is simply by definition ofAx: the probability that under one clustering, based on a random
sample,x is more associated with clusteri, and that under a second clustering, based on another
independent random sample,x is more associated with clusterj.

In general, we will have more than two clusters. However, notice that any pointx inBr/
√

m(Fm
θ0,i,j)

(for somei, j) is much closer toFθ0,i,j than to any other cluster boundary. This is because its
distance toFθ0,i,j is on the order of1/

√
m, while its distance to any other boundary is on the order

ofm−1/4. Therefore, ifx does switch clusters, then it is highly likely to switch between clusteri and
clusterj. Formally, by regularity condition3d (which ensure that the cluster boundaries experience
at mostO(1/

√
m) fluctuations), we have that uniformly for anyx,

Pr(Ax) = 2Pr(f
θ̂,i(x) − f

θ̂,j(x) < 0)Pr(f
θ̂,i(x) − f

θ̂,j > 0) + o(1),

whereo(1) converges to0 asm→ ∞.

Substituting this back to Eq. (20), using LemmaD.2 to take the remainder term outside the integral,
and using the regularity condition3c in the reverse direction to transform integrals overFm

θ0,i,j

back intoFθ0,i,j with asymptotically negligible remainder terms, we get that the quantity we are
interested in can be written as
∑

1≤i<j≤k

2

∫

Br/
√

m(Fθ0,i,j)

√
mPr(f

θ̂,i(x) − f
θ̂,j(x) < 0)Pr(f

θ̂,i(x) − f
θ̂,j > 0)p(x)dx + o(1).

Now we can apply LemmaD.5 to each summand, and get the required result.

D.3 Part 2: Proof of Thm. 1

For notational convenience, we will denote

dm
D (r) := dm

D (Ak(S1), Ak(S2), Br/
√

m(∪i,jFθ0,i,j))
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whenever the omitted terms are obvious from context. If̂instab(Ak,D) = 0, the proof of the
theorem is straightforward. In this special case, by definition of̂instab(Ak,D) in Thm. 1 and
PropositionD.1, we have thatdm

D (r) converges in probability to0 for any r. By regularity con-
dition 3d, for any fixedq, 1

q

∑q
i=1 d

m
D (Ak(S

1
i ), Ak(S

2
i )) converges in probability to0 (because

dm
D (Ak(S

1
i ), Ak(S

2
i )) = dm

D (Ak(S
1
i ), Ak(S

2
i ), Br/

√
m(∪i,jFθ0,i,j)) with arbitrarily high probabil-

ity as r increases). Therefore,
√
m η̂k

m,q, which is a plug-in estimator of the expected value of
1
q

∑q
i=1 d

m
D (Ak(S

1
i ), Ak(S

2
i )), converges in probability to0 for any fixedq asm → ∞, and the the-

orem follows for this special case. Therefore, we will assume from now on that̂instab(Ak,D) > 0.

We need the following variant of Hoeffding’s bound, adapted to conditional probabilities.

Lemma D.6. Fix somer > 0. LetX1, . . . , Xq be real, nonnegative, independent and identically
distributed random variables, such thatPr(X1 ∈ [0, r]) > 0. For anyXi, let Yi be a random
variable on the same probability space, such thatPr(Yi = Xi|Xi ∈ [0, r]) = 1. Then for any
ν > 0,

Pr

(∣

∣

∣

∣

∣

1

q

q
∑

i=1

Xi − E[Y1|X1 ∈ [0, r]]

∣

∣

∣

∣

∣

≥ ν
∣

∣

∣
∀i,Xi ∈ [0, r]

)

≤ 2 exp

(

−2qν2

r2

)

.

Proof. Define an auxiliary set of random variablesZ1, . . . , Zq, such thatPr(Zi ≤ a) = Pr(Xi ≤
a|Xi ∈ [0, r]) for anyi, a. In words,Xi andZi have the same distribution conditioned on the event
Xi ∈ [0, r]. Also, we have thatYi has the same distribution conditioned onXi ∈ [0, r]. Therefore,
E[Y1|X1 ∈ [0, r]] = E[X1|X1 ∈ [0, r]], and as a resultE[Y1|X1 ∈ [0, r]] = E[Z1]. Therefore, the
probability in the lemma above can be written as

Pr

(∣

∣

∣

∣

∣

1

q

q
∑

i=1

Zi − E[Zi]

∣

∣

∣

∣

∣

≥ ν

)

,

whereZi are bounded in[0, r] with probability1. Applying the regular Hoeffding’s bound gives us
the required result.

We now turn to the proof of the theorem. LetAm
r be the event that for all subsample pairs{S1

i , S
2
i },

dm
D (Ak(S

1
i ), Ak(S

2
i ), Br/

√
m(∪i,jFθ0,i,j)) = dm

D (Ak(S
1
i ), Ak(S

2
i )). Namely, this is the event that for

all subsample pairs, the mass which switches clusters when we compare the two resulting clusterings
is always in anr/

√
m-neighborhood of the limit cluster boundaries.

Sincep(·) is bounded, we have thatdm
D (r) is deterministically bounded byO(r), with implicit

constants depending only onD andθ0. Using the law of total expectation, this implies that

∣

∣

∣

∣

E[dm
D (r)] − E[dm

D (r)|Am
r ]

∣

∣

∣

∣

=

∣

∣

∣

∣

Pr(Am
r )E[dm

D (r)|Am
r ] + (1 − Pr(Am

r ))E[dm
D (r)|¬Am

r ] − E[dm
D (r)|Am

r ]

∣

∣

∣

∣

=

∣

∣

∣

∣

(

1 − Pr(Am
r )

)(

E[dm
D (r)|¬Am

r ] − E[dm
D (r)|Am

r ]

)∣

∣

∣

∣

≤ (1 − Pr(Am
r ))O(r). (21)

For any two eventsA,B, we have by the law of total probability thatPr(A) = Pr(B) Pr(A|B) +
Pr(Bc) Pr(A|Bc). From this it follows thatPr(A) ≤ Pr(B) + Pr(A|Bc). As a result, for any
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ǫ > 0,

Pr
(∣

∣

∣

√
m η̂k

m,q − înstab(Ak,D)
∣

∣

∣
> ǫ
)

≤ Pr

(∣

∣

∣

∣

∣

1

q

q
∑

i=1

dm
D (Ak(S

1
i ), Ak(S

2
i )) − înstab(Ak,D)

∣

∣

∣

∣

∣

>
ǫ

2

)

+ Pr

(

[
∣

∣

∣

√
m η̂k

m,q − înstab(Ak,D)
∣

∣

∣
> ǫ
]
∣

∣

∣

[
∣

∣

∣

∣

∣

1

q

q
∑

i=1

dm
D (Ak(S

1
i ), Ak(S

2
i )) − înstab(Ak,D)

∣

∣

∣

∣

∣

≤ ǫ

2

])

.

(22)

We will assume w.l.o.g thatǫ/2 < înstab(Ak,D). Otherwise, we can upper bound

Pr
(
∣

∣

∣

√
m η̂k

m,q − înstab(Ak,D)
∣

∣

∣
> ǫ
)

in the equation above by replacingǫ with some smaller quan-

tity ǫ′ for which ǫ′/2 < înstab(Ak,D,).
We start by analyzing the conditional probability, forming the second summand in Eq. (22). Recall
that η̂k

m,q, after clustering theq subsample pairs{S1
i , S

2
i }q

i=1, uses an additional i.i.d sampleS3

of sizem to empirically estimate
∑

q d
m
D (Ak(S

1
i ), Ak(S

2
i ))/

√
mq ∈ [0, 1]. This is achieved by

calculating the average percentage of instances inS3 which switches between clusterings. Thus,
conditioned on the event appearing in the second summand of Eq. (22), η̂k

m,q is simply an empirical
average ofm i.i.d random variables in[0, 1], whose expected value, denoted asv, is a strictly positive
number in the range of(înstab(Ak,D)± ǫ/2)/

√
m. Thus, the second summand of Eq. (22) refers to

an event where this empirical average is at a distance of at leastǫ/(2
√
m) from its expected value.

We can therefore apply a large deviation result to bound this probability. Since the expectation itself
is a (generally decreasing) function of the sample sizem, we will need something a bit stronger than
the regular Hoeffding’s bound. Using a relative entropy version of Hoeffding’s bound [5], we have
that the second summand in Eq. (22) is upper bounded by:

exp

(

−mDkl

[

v + ǫ/2√
m

∣

∣

∣

∣

∣

∣

∣

∣

v√
m

])

+ exp

(

−mDkl

[

max

{

0,
v − ǫ/2√

m

} ∣

∣

∣

∣

∣

∣

∣

∣

v√
m

])

, (23)

whereDkl[p||q] := −p log(p/q)−(1−p) log((1−p)/(1−q)) for anyq ∈ (0, 1) and anyp ∈ [0, 1].
Using the fact thatDkl[p||q] ≥ (p− q)2/2max{p, q}, we get that Eq. (23) can be upper bounded by
aquantity which converges to0 asm→ ∞. As a result, the second summand in Eq. (22) converges
to 0 asm→ ∞.

As to the first summand in Eq. (22), using the triangle inequality and switching sides allows us to
upper bound it by:

Pr

(

∣

∣

∣

∣

1

q

q
∑

i=1

dm
D (Ak(S

1
i ), Ak(S

2
i )) − E[dm

D (r)|Am
r ]

∣

∣

∣

∣

≥ ǫ

2
−
∣

∣

∣

∣

E[dm
D (r)|Am

r ] − E[dm
D (r)]

∣

∣

∣

∣

−
∣

∣

∣

∣

Edm
D (r) − înstab(Ak,D)

∣

∣

∣

∣

)

(24)

By the definition of̂instab(Ak,D) as appearing in Thm. 1 , and PropositionD.1,

lim
m→∞

Edm
D (r) − înstab(Ak,D) = O(h(r)) = O(exp(−r2)). (25)

Using Eq. (25) and Eq. (21), we can upper bound Eq. (24) by

Pr

(∣

∣

∣

∣

∣

1

q

q
∑

i=1

dm
D (Ak(S

1
i ), Ak(S

2
i )) − E[dm

D (r)|Am
r ]

∣

∣

∣

∣

∣

≥ ǫ

2
− (1 − Pr(Am

r ))O(r) −O(exp(−r2)) − o(1)
)

, (26)
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whereo(1) → 0 asm → ∞. Moreover, by using the law of total probability and LemmaD.6, we
have that for anyν > 0,

Pr

(
∣

∣

∣

∣

∣

1

q

q
∑

i=1

dm
D (Ak(S

1
i ), Ak(S

2
i )) − E[dm

D (r)|Am
r ]

∣

∣

∣

∣

∣

> ν

)

≤ (1 − Pr(Am
r )) ∗ 1 + Pr(Am

r ) Pr

(∣

∣

∣

∣

∣

1

q

q
∑

i=1

dm
D (Ak(S

1
i ), Ak(S

2
i )) − E[dm

D (r)|Am
r ]

∣

∣

∣

∣

∣

> ν
∣

∣

∣
Am

r

)

≤ (1 − Pr(Am
r )) + 2Pr(Am

r ) exp

(

−2qν2

r2

)

. (27)

LemmaD.6 can be applied becausedm
D (Ak(S

1
i ), Ak(S

2
i )) = dm

D (r) for anyi, if Am
r occurs.

If m, r are such that

ǫ

2
− (1 − Pr(Am

r ))O(r) −O(exp(−r2)) − o(1) > 0, (28)

we can substitute this expression instead ofν in Eq. (27), and get that Eq. (26) is upper bounded by

(1 − Pr(Am
r )) + 2Pr(Am

r ) exp

(

−2q
(

ǫ
2 − (1 − Pr(Am

r ))O(r) −O(exp(−r2))) − o(1)
)2

r2

)

.

(29)

Let
gm(r) := Pr

S1,S2∼Dm
(dm

D (r) 6= dm
D (Ak(S1), Ak(S2))) , g(r) = lim

m→∞
gm(r)

By regularity condition3d, g(r) = O(r−3−δ) for someδ > 0. Also, we have thatPr(Am
r ) =

(1 − gm(r))q, and thereforelimm→∞ Pr(Am
r ) = (1 − g(r))q for any fixedq. In consequence, as

m→ ∞, Eq. (29) converges to

(1 − (1 − g(r)))
q
) + 2(1 − g(r))q exp

(

−2q
(

ǫ
2 − (1 − (1 − g(r))q)O(r) −O(exp(−r2))

)2

r2

)

.

(30)

Now we use the fact thatr can be chosen arbitrarily. In particular, letr = q1/(2+δ/2), whereδ > 0
is the same quantity appearing in condition3d. It follows that

1 − (1 − g(r))q ≤ qg(r) = O(q/r3+δ) = O
(

q1−
3+δ

2+δ/2

)

(1 − (1 − g(r))q)O(r) = qg(r)O(r) = O
(

q1−
2+δ

2+δ/2

)

= O(q−
δ

4+δ )

q/r2 = q1−
1

1+δ/4

exp(−r2) = exp(−q 1
1+δ/4 ).

It can be verified that the equations above imply the validness of Eq. (28) for large enoughm and q
(and hencer). Substituting these equations into Eq. (30), we get an upper bound

O
(

q1−
3+δ

2+δ/2

)

+ exp

(

−2q1−
1

1+δ/4

( ǫ

2
−O

(

q−
δ

4+δ

)

−O
(

exp(−q 1
1+δ/4 )

))2
)

.

Sinceδ > 0, it can be verified that the first summand asymptotically dominates the second summand
(asq → ∞), and can be bounded in turn byo(q−1/2).

Summarizing, we have that the first summand in Eq. (22) converges too(q−1/2) asm→ ∞, and the
second summand in Eq. (22) converge to0 asm→ ∞, for any fixedǫ > 0, and thusPr(|√m η̂k

m,q−
înstab(Ak,D)| > ǫ) converges too(q−1/2).
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E Proof of Thm. 2 and Thm. 3

The tool we shall use for proving Thm. 2 and Thm. 3 is the following general central limit the-
orem for Z-estimators (Thm. 3.3.1 in [8]). We will first quote the theorem and then explain the
terminology used.

Theorem E.1(Van der Vaart).LetΨm andΨ be random maps and a fixed map, respectively, from
a subsetΘ of some Banach space into another Banach space such that asm→ ∞,

‖√m(Ψm − Ψ)(θ̂) −√
m(Ψm − Ψ)(θ0)‖

1 +
√
m‖θ̂ − θ0‖

→ 0 (31)

in probability, and such that the sequence
√
m(Ψm − Ψ)(θ0) converges in distribution to a tight

random elementZ. Let θ 7→ Ψ(θ) be Fŕechet-differentiable atθ0 with an invertible derivative
Ψ̇θ0

, which is assumed to be a continuous linear operator1. If Ψ(θ0) = 0 andΨm(θ̂)/
√
m → 0

in probability, andθ̂ converges in probability toθ0, then
√
m(θ̂ − θ0) converges in distribution to

−Ψ̇−1
θ0
Z.

A Banach space is any complete normed vector space (possible infinite dimensional). A tight ran-
dom element essentially means that an arbitrarily large portion of its distribution lies in compact
sets. This condition is trivial whenΘ is a subset of Euclidean space. Fréchet-differentiability of a
functionf : U 7→ V at x ∈ U , whereU, V are Banach spaces, means that there exists a bounded
linear operatorA : U 7→ V such that

lim
h→0

‖f(x + h) − f(x) −A(h)‖W

‖h‖U
= 0.

This is equivalent to regular differentiability in finite dimensional settings.

It is important to note that the theorem is stronger than what we actually need, since we only consider
finite dimensional Euclidean spaces, while the theorem deals with possibly infinite dimensional
Banach spaces. In principle, it is possible to use this theorem to prove central limit theorems in
infinite dimensional settings, for example in kernel clustering where the associated reproducing
kernel Hilbert space is infinite dimensional. However, the required conditions become much less
trivial, and actually fail to hold in some cases (see below for further details).

We now turn to the proofs themselves. Since the proofs of Thm. 2 and Thm. 3 are almost identical,
we will prove them together, marking differences between them as needed. In order to allow uniform
notation in both cases, we shall assume thatφ(·) is the identity mapping in Bregman divergence
clustering, and the feature map fromX toH in kernel clustering.

With the assumptions that we made in the theorems, the only thing really left to show before applying
Thm.E.1 is that Eq. (31) holds. Notice that it is enough to show that

‖√m(Ψi
m − Ψi)(θ̂) −√

m(Ψi
m − Ψi)(θ0)‖

1 +
√
m‖θ̂ − θ0‖

→ 0

for anyi ∈ {1, . . . , k}. We will prove this in a slightly more complicated way than necessary, which
also treats the case of kernel clustering whereH is infinite-dimensional. By Lemma 3.3.5 in [8],
sinceX is bounded, it is sufficient to show that for anyi, there is someδ > 0 such that

{ψi
θ̂,h

(·) − ψi
θ0,h(·)}‖θ̂−θ0‖≤δ,h∈X

is aDonsker class, where

ψi
θ,h(x) =

{〈θi − φ(x), φ(h)〉 x ∈ Cθ,i

0 otherwise.

Intuitively, a set of real functions{f(·)} fromX (with any probability distributionD) to R is called
Donsker if it satisfies a uniform central limit theorem. Without getting too much into the details,

1A linear operator is automatically continuous in finite dimensional spaces, not necessarily in infinite di-
mensional spaces.
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this means that if we sample i.i.dm elements fromD, then(f(x1) + . . .+ f(xm))/
√
m converges

in distribution (asm→ ∞) to a Gaussian random variable, and the convergence is uniform over all
f(·) in the set, in an appropriately defined sense.

We use the fact that ifF andG are Donsker classes, then so areF + G andF · G (see examples
2.10.7 and 2.10.8 in [8]). This allows us to reduce the problem to showing that the following three
function classes, fromX to R, are Donsker:

{〈θi, φ(h)〉}‖θ̂−θ0‖≤δ,h∈X , {〈φ(·), φ(h)〉}h∈X , {1Cθ,i
(·)}‖θ̂−θ0‖≤δ. (32)

Notice that the first class is a set of bounded constant functions, while the third class is a set of
indicator functions for all possible clusters. One can now use several tools to show that each class
in Eq. (32) is Donsker. For example, consider a class of real functions on a bounded subset of some
Euclidean space. By Thm. 8.2.1 in [3] (and its preceding discussion), the class is Donsker if any
function in the class is differentiable to a sufficiently high order. This ensures that the first class in
Eq. (32) is Donsker, because it is composed of constant functions. Asto the second class in Eq. (32),
the same holds in the case of Bregman divergence clustering (whereφ(·) is the identity function),
because it is then just a set of linear functions. For finite dimensional kernel clustering, it is enough
to show that{〈·, φ(h)〉}h∈X is Donsker (namely, the same class of functions after performing the
transformation fromX to φ(X )). This is again a set of linear functions inHk, a subset of some
finite dimensional Euclidean space, and so it is Donsker. In infinite dimensional kernel clustering,
our class of functions can be written as{k(·,h)}h∈X , wherek(·, ·) is the kernel function, so it is
Donsker if the kernel function is differentiable to a sufficiently high order.

The third class in Eq. (32) is more problematic. By Theorem 8.2.15 in [3] (and its preceding discus-
sion), it suffices that the boundary of each possible cluster is composed of a finite number of smooth
surfaces (differentiable to a high enough order) in some Euclidean space. In Bregman divergence
clustering, the clusters are separated by hyperplanes, which are linear functions (see appendix A in
[1]), and thus the class is Donsker. The same holds for finite dimensional kernel clustering. This
will still be true for infinite dimensional kernel clustering, if we can guarantee that any cluster in
any solution close enough toθ0 in Θ will have smooth boundaries. Unfortunately, this does not hold
in some important cases. For example, universal kernels (such as the Gaussian kernel) are capable
of inducing cluster boundaries arbitrarily close in form to any continuous function, and thus our
line of attack will not work in such cases. In a sense, this is not too surprising, since these kernels
correspond to very ’rich’ hypothesis classes, and it is not clear if a precise characterization of their
stability properties, via central limit theorems, is at all possible.

Summarizing the above discussion, we have shown that for the settings assumed in our theorem, all
three classes in Eq. (32) are Donsker and hence Eq. (31) holds. We now return to deal with the other
ingredients required to apply Thm.E.1.

As to the asymptotic distribution of
√
m(Ψm − Ψ)(θ0), sinceΨ(θ0) = 0 by assumption, we have

that for anyi ∈ {1, . . . , k},

√
m(Ψi

m − Ψi)(θ0) =
1√
m

m
∑

j=1

∆i(θ0,xj). (33)

wherex1, . . . ,xm is the sample by whichΨm is defined. The r.h.s of Eq. (33) is a sum of identically
distributed, independent random variables with zero mean, normalized by

√
m. As a result, by the

standard central limit theorem,
√
m(Ψi

m−Ψi)(θ0) converges in distribution to a zero mean Gaussian
random vectorY , with covariance matrix

Vi =

∫

Cθ0,i

p(x)(φ(x) − θ0,i)(φ(x) − θ0,i)
⊤dx.

Moreover, it is easily verified that Cov(∆i(θ0,x),∆i′(θ0,x)) = 0 for any i 6= i′. Therefore,√
m(Ψm − Ψ)(θ0) converges in distribution to a zero mean Gaussian random vector, whose co-

variance matrixV is composed ofk diagonal blocks(V1, . . . , Vk), all other elements ofV being
zero.

Thus, we can use Thm.E.1to get that
√
m(θ̂−θ0) converges in distribution to a zero mean Gaussian

random vector of the form−Ψ̇−1
θ0
Y , which is a Gaussian random vector with a covariance matrix of

the formΨ̇−1
θ0
V Ψ̇−1

θ0
.
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F Proof of Thm. 4

Since our algorithm returns a locally optimal solution with respect to the differentiable log-
likelihood function, we can frame it as a Z-estimator of the derivative of the log-likelihood function
with respect to the parameters, namely the score function

Ψm(θ̂) =
1

m

m
∑

i=1

∂

∂θ
log(q(xi|θ̂)).

This is a random mapping based on the samplex1, . . . ,xm.

Similarly, we can defineΨ(·) as the ’asymptotic’ score function with respect to the underlying
distributionD:

Ψ(θ̂) =

∫

X

∂

∂θ
log(q(x|θ̂))p(x)dx.

Under the assumptions we have made, the modelθ̂ returned by the algorithm satisfiesΨm(θ̂) = 0,
and θ̂ converges in probability to someθ0 for which Ψ(θ0) = 0. The asymptotic normality of√
m(θ̂−θ0) is now an immediate consequence of central limit theorems for ’maximum likelihood’

Z-estimators, such as Thm. 5.21 in [7].
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