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Abstract

For a modified version of RMM, we derive the
empirical Rademacher complexities and then
use them to derive the generalization bounds.

1 Introduction

Support Vector Machines [5] find hyperplanes of the
form w⊤x = 0, w ∈ R

m,x ∈ R
m as the decision bound-

ary from a limited number of examples. We suppress
the bias term in this addendum for simplicity. The de-
cision boundary is found by minimizing a combination
w⊤w and an upper bound on the number of misclassi-
fications.

Minimizing 1
2w

⊤w can also be seen as choosing a

function g(x) = w⊤x + b from a set of linear functions
with bounded 2-norm. For a suitable choice of E, the
SVM solution can be seen as choosing a function g(·)
from the set {x → w⊤x|12w⊤w ≤ E}. Rademacher
complexity of a function class is a measure of how “sim-
ple” or “complex” a function class is. Further, it can be
used to derive generalization bounds. For SVMs, such
results can be found in [4].

In this addendum, for a slightly modified versions
of RMM and Σ-SVM, we define the function classes.
For the function classes defined, we derive the empirical
Rademacher complexity. Further, they will be used to
show the generalization bounds. This addendum shows
how the known bounds for SVM change with respect to
RMM and Σ-SVM.

Most of the material here closely follows the deriva-
tion of Rademacher complexity and the generalization
bounds in [4].

2 The function classes

We assume that (xi, yi)
n
i=1, with xi ∈ R

m and yi ∈ {±1}
is a training sample drawn independent and identically
distributed (iid) from an unknown underlying distribu-
tion Pr[(x, y)]. A linear classifier (such as an SVM)
estimates a function g(x) := w⊤x to match the sign of
the labels to minimize the probability of error on future
test data from Pr[(x, y)].

SVMs maximize the margin by minimizing 1
2w

⊤w.
This can be seen as choosing g(·) from a restricted class

of functions via a 2-norm ball on w. Given a choice of
the parameter E in the SVM (where E plays the role of
the regularization parameter), the set of linear functions
that will be considered is:

Definition 1 FE := {x → w⊤x| 12w⊤w ≤ E}.
This set of functions ensures that the SVM recovers

a certain absolute margin determined by E.
Let us now consider the function class for a mod-

ified version of RMM. Note that the proposed RMM
bounds the projection on the training examples. How-
ever, the generalization bounds in this addendum hold
only if we bound the projections on an independent set
{u1,u2, . . .unu

} – which can be from Pr[(x)] – rather
than the training examples. RMM maximizes the mar-
gin while bounding the projections, in this case, the pro-
jections on the set {u1,u2, . . .unu

} are bounded. Thus,
the class of functions considered by the modified RMM
is as follows:

Definition 2

HE,D

:= {x → w⊤x|1
2
w⊤w +

D

2
(w⊤ui)

2 ≤ E ∀1 ≤ i ≤ nu},

where D > 0 trades off between large margin and small
bound on the projections.

The above regularization scheme naturally suggests
a third related function class which merely trades off
between maximum absolute margin and a constraint on
the average spread of the projections of all examples
rather than a bound on individual projections:

Definition 3

GE,D := {x → w⊤x|1
2
w⊤w +

D

2nu

nu
∑

i=1

(w⊤ui)
2 ≤ E}.

Note that this is closely related to the class of functions
considered by Σ-SVM.

The following lemmas elucidate some simple set the-
oretic relationships between the function classes and
show that they form nested hypothesis spaces as is often
encountered in structural risk minimization (SRM) [5].
The next section provides more in-depth Rademacher
complexity estimates that relate the function classes.



Lemma 4 GE,0 = HE,0 = FE.

Lemma 5 HE,D ⊆ GE,D ⊆ FE .

Proof: Suppose g(·) ∈ HE,D, then 1
2w

⊤w+D
2 (w⊤ui)

2 ≤
E ∀1 ≤ i ≤ nu. Taking an average of the nu constraints
gives 1

2w
⊤w+ D

2nu

∑n

i=1(w
⊤ui)

2 ≤ E, thus g(·) ∈ GE,D.

This proves that HE,D ⊆ GE,D . Since (w⊤xi)
2 ≥ 0,

we have GE,D ⊆ FE.

3 Rademacher complexity

This section will address the Rademacher complexity of
the function classes in the previous section, in particu-
lar the empirical Rademacher complexity. Rademacher
complexity measures richness of a class of real-valued
functions with respect to a probability distribution [4,
2].

3.1 Preliminaries

Definition 6 For a sample S = {x1,x2, . . . ,xn} gen-
erated by a distribution on x and a real valued function
class F with domain x, the empirical Rademacher com-
plexity1 of F is defined by:

R̂(F) := Eσ

[

sup
f∈F
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]

where σ = {σ1, . . . σn} are independent random vari-
ables that take the values +1 or −1 with equal probabil-
ity. Moreover, the Rademacher complexity of F is:

R(F) := ES

[

R̂(F)
]

.

Essentially, Rademacher complexity quantifies how well
a given function class can fit random labels. Keeping
this quantity low reduces our ability to fit random labels
and provides regularization for the learning problem.

Lemma 7 Let F and G be classes of real functions. If
F ⊆ G then R̂(F) ≤ R̂(G).

The proof is straightforward, the supremum inside
the definition of the empirical Rademacher complexity
(Definition 6) is smaller when restricted to a smaller
subset.

Corollary 8 R̂(HE,D) ≤ R̂(GE,D) ≤ R̂(FE).

3.2 Empirical Rademacher complexity of the
function classes

In the rest of this section, we derive upper bounds on
the empirical Rademacher complexities for the different
function classes. These bounds provide insights on the
regularization properties of the function classes. All the
bounds are derived for the sample S = {x1,x2, . . .xn}.

1We suppress the dependence of the empirical

Rademacher complexity on n and S by writing R̂(F)
for brevity.

Theorem 9 The empirical Rademacher complexity on
the sample S for the class FE satisfies:

R̂(FE) ≤ UFE
:=

2
√

2E

n

√

√

√

√

n
∑

i=1

x⊤
i xi.

Proof:

R̂(FE) = Eσ

[

sup
f∈FE
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= Eσ

[

max
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2
w
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In line three, the Cauchy-Schwarz inequality was ap-
plied. Subsequently, Jensen’s inequality on the concave
function

√· is applied in line five. Finally, since σi and
σj are random variables taking values +1 or −1 with
equal probability, when i 6= j Eσ[σiσjx

⊤
i xj ] = 0 and

Eσ[σiσix
⊤
i xi] = Eσ[x⊤

i xi] = x⊤
i xi. The result follows

from the linearity of expectation.

Roughly speaking, by keeping E small, the abil-
ity to fit arbitrary labels is reduced. This is one way
to motivate a maximum margin strategy. Note that
√

∑n

i=1 x⊤
i xi is a measure of the spread of the data.

However, most SVM formulations do not directly opti-
mize this term. This motivates us to next consider the
two new function classes that were defined as extensions
to SVMs.

Theorem 10 The empirical Rademacher complexity of
the class HE,D, on the sample S, satisfies:

R̂(HE,D) ≤ UHE,D
:= min

λ≥0

1

n

n
∑

i=1

x⊤
i Σ−1

λ,Dxi +
2

n
E

nu
∑

i=1

λi

where

Σλ,D =

nu
∑

i=1

λiI + D

nu
∑

i=1

λiuiu
⊤
i .



Proof:

R̂(HE,D) = Eσ

[

sup
f∈HE,D
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σif(xi)
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(1)

= Eσ

[

sup
w: 1

2
(w⊤

w+D(w⊤
ui)2)≤E

∣

∣

∣

∣

∣

2

n

n
∑

i=1

σi(w
⊤xi)

∣

∣

∣

∣

∣

]

.

Consider the supremum inside the expectation. De-
pending on the sign of the term inside |·|, it corresponds
to either a maximization or a minimization. Without
loss of generality, we consider the case of maximization.
When a minimization is involved, the value of the objec-
tive still remains the same. The supremum is recovered
by solving the following optimization problem:

max
w

w⊤
n
∑

i=1

σixi (2)

s.t.
1

2
(w⊤w + D(w⊤ui)

2) ≤ E ∀1 ≤ i ≤ nu.

The Lagrangian of the above optimization problem can
be written as the following saddle problem involving
convex minimization over the primal variables w with
maximization over the non-negative Lagrange multipli-
ers λ1, λ2, . . . λn:

L(w, λ) = −w⊤
n
∑

i=1

σixi

+

nu
∑

i=1

λi

(

1

2

(

w⊤w + D(w⊤ui)
2
)

− E

)

. (3)

Differentiating (3) with respect to the primal vari-
ables gives:

∂L(w, λ)

∂w
= −

n
∑

i=1

σixi +

nu
∑

i=1

λi(w + Duiu
⊤
i w).

The optimum w is obtained by equating the above deriva-
tive to zero to give:

(

nu
∑

i=1

λiI + D

nu
∑

i=1

λiuiu
⊤
i

)

w =

n
∑

i=1

σixi.

Using the definition Σλ,D :=
∑nu

i=1 λiI+D
∑nu

i=1 λiuiu
⊤
i ;

we now have:

w = Σ−1
λ,D

n
∑

i=1

σixi. (4)

Substituting the expression for w in (3):

−w⊤
n
∑

i=1

σixi +

nu
∑

i=1

λi

(

1

2

(

w⊤w + D(w⊤ui)
2
)

− E

)

= −
n
∑

i=1

σix
⊤
i Σ−1

λ,D

n
∑

i=1

σixi − E

nu
∑

i=1

λi

+
1

2

nu
∑

i=1

λiw
⊤(I + Duiu

⊤
i )w

= −
n
∑

i=1

σix
⊤
i Σ−1

λ,D

n
∑

i=1

σixi − E

nu
∑

i=1

λi

+
1

2
w⊤

(

nu
∑

i=1

λiI + D

nu
∑

i=1

λiuiu
⊤
i

)

w

= −
n
∑

i=1

σix
⊤
i Σ−1

λ,D

n
∑

i=1

σixi − E

nu
∑

i=1

λi

+
1

2

n
∑

i=1

σix
⊤
i Σ−1

λ,D

n
∑

i=1

σixi

= − 1

2

n
∑

i=1

σix
⊤
i Σ−1

λ,D

n
∑

i=1

σixi − E

nu
∑

i=1

λi.

Thus the dual of the formulation (2) is given by:

min
λ≥0

1

2

n
∑

i=1

σix
⊤
i Σ−1

λ,D

n
∑

i=1

σixi + E

nu
∑

i=1

λi. (5)

Now, we derive an upper bound on the empirical
Rademacher complexity R̂(HE,D):

R̂(HE,D)

= Eσ

[
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w: 1

2
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w+D(w⊤
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n
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λ,D

n
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σjxj + E
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i=1
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≤ min
λ≥0

2

n
Eσ





1

2

n
∑

i,j=1

σiσjx
⊤
i Σ−1

λ,Dxj + E

nu
∑

i=1

λi





≤ min
λ≥0

1

n

n
∑

i=1

x⊤
i Σ−1

λ,Dxi +
2

n
E

nu
∑

i=1

λi. (6)

To go from the first line to the second, we use the
fact that the primal (2) and the dual (5) objectives are
equal at the optimum. On line two, the expectation is
over the minimizers over λ; clearly, this is less than first
taking the expectation and then minimizing over λ in
line three. On line four, simply recycle the arguments
used in Theorem 9 to handle the expectation over σ.



Note that the upper bound UHE,D
is not a closed

form expression in the general case but is possible to
evaluate in polynomial time using semi-definite program-
ming. Using Schur’s complement lemma (Appendix A)
the minimization (6) can be expressed as the following
semi-definite optimization [3]:

min
λ≥0,t

1

n

n
∑

i=1

ti +
2E

n

nu
∑

i=1

λi (7)

s.t.

[ ∑nu

j=1 λj(I + Duju
⊤
j ) xi

x⊤
i ti

]

� 0 ∀1 ≤ i ≤ n.

It is interesting to note that even though it involved
different derivation steps, the upper bound in Theorem
10 (namely, UHE,D

) is no looser than the upper bound
in Theorem 9 (namely, UFE

) when D = 0; they exactly
coincide in that case. The following theorem makes this
clear:

Theorem 11 When D = 0, UHE,D
= UFE

.

Proof:

UHE,0
= min

λ≥0

1

n

n
∑

i=1

x⊤
i Σ−1

λ,0xi +
2

n
E

nu
∑

i=1

λi

= min
λ≥0

1

n

∑n

i=1 x⊤
i xi

∑nu

i=1 λi

+
2

n
E

nu
∑

i=1

λi.

In non-trivial cases, defining τ :=
∑nu

i=1 λi, we have:

UHE,0
= min

τ≥0

1

nτ

n
∑

i=1

x⊤
i xi +

2

n
Eτ.

Differentiating the above expression with respect to τ
and selecting the positive solution, we get:

τ =

√

∑n

i=1 x⊤
i xi

√
2E

.

This τ when substituted back in the expression for UHE,0

gives UFE
.

As the value of D is increased, our bound on the
empirical Rademacher complexity decreases. However,
this decrease is not merely due to a change in the scale of
the extra term in Σλ,D (which would be of limited value
in practice). Instead, increasing D provides increased
flexibility in optimizing over the Lagrange multipliers
λ which affect the shape of the matrix

∑n

i=1 λixix
⊤
i in

addition to scaling it. Thus, the empirical Rademacher
complexity is not necessarily simply linear in D.

At the optimum, (4) suggests that the classifier must
be

w∗ = Σ−1
λ∗,D

n
∑

i=1

σixi.

From (1), we have:

R̂(HE,D) =
2

n
Eσ

[

n
∑

i=1

σixiΣ
−1
λ∗,D

n
∑

i=1

σixi

]

.

Note that Σ∗
λ,D is the optimal solution obtained from

(5). Formulation (5) is precisely trying to minimize the
term inside the expectation above by changing the shape
of Σλ,D using λ. Not only is the magnitude of D rele-
vant but the overall shape of Σλ,D also plays a key role
in reducing the empirical Rademacher complexity.

Theorem 12 The empirical Rademacher complexity of
the class GE,D on the sample S satisfies:

R̂(GE,D) ≤ UGE,D
:=

2
√

2E

n

(

n
∑

i=1

x⊤
i Σ−1

D xi

)
1

2

where

ΣD = I +
D

nu

nu
∑

i=1

uiu
⊤
i .

Proof: Following steps similar to those in Theorem 12,
we start with the optimization:

max
w

w⊤
n
∑

i=1

σixi (8)

s.t.
1

2nu

nu
∑

i=1

(

w⊤w + D(w⊤ui)
2
)

≤ E.

We write the Lagrangian of the above problem as:

L(w, λ) = −w⊤
n
∑

i=1

σixi + λ

(

1

2
w⊤ΣDw − E

)

,

where λ is a non-negative Lagrange multiplier. Differen-
tiating and equating the partial derivative with respect
to w to zero in the Lagrangian, we get:

w =
1

λ
Σ−1

D

n
∑

i=1

σixi. (9)

Since we are optimizing a linear objective over a sin-
gle quadratic constraint, at the optimum, the quadratic
constraint becomes tight. Using this fact we can write:

1

2
w⊤ΣDw = E.

Substituting w from (9) in the above produces:

λ =
1√
2E

√

√

√

√

n
∑

i=1

σix
⊤
i Σ−1

D

n
∑

i=1

σixi.

Substituting this λ back in (9) and using that w in
the objective (8) yields:

√
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√
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√

√

n
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⊤
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D

n
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σixi.



Thus, the empirical Rademacher complexity is given
by:
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Eσ
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n
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σix
⊤
i Σ−1

D

n
∑
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σixi
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1

2

=
2
√

2E

n

(

n
∑

i=1

x⊤
i Σ−1

D xi

)
1

2

.

The second line follows from Jensen’s inequality on the
concave function

√·.
As we saw before, UH0,E

coincides with UFE
. In ad-

dition, some of the properties of UGD,E
also carry over to

UHD,E
. Note, however, that the term

∑nu

i=1 λiuiu
⊤
i ap-

pearing in ΣD,λ is more flexible than the term
∑n

i=1 uiu
⊤
i

in ΣD since the matrix ΣD only undergoes scaling as
D is varied.

3.3 Relation to the actual Rademacher
complexity

Note that, by definition 6, the empirical Rademacher
complexity of a function class is dependent on the data
(sample S). In many cases, it is not possible to give ex-
act expressions for the Rademacher complexity since the
underlying distribution over the data is unknown. How-
ever, it is possible to give probabilistic upper bounds
on the Rademacher complexity. Since the Rademacher
complexity is the expectation of its empirical estimate
over the data, by a straightforward application of McDi-
armid’s inequality, it is possible to show the following:

Lemma 13 Fix δ ∈ (0, 1), with probability at least 1−δ
over draws of the samples S the following holds for any
function class F :

R(F) ≤ R̂(F) + 2

√

ln(2/δ)

2n
.

In other words, the probability of one-sided devia-
tion2 between R(F) and R̂(F) drops off exponentially
with n. This suggests that even though we have used
empirical estimates of the Rademacher complexity, they
are not too far from their actual values with high prob-
ability.

4 Generalization bounds

This section presents generalization bounds for the three
different function classes. A generic bound for the gen-
eral case is first derived and then applied to the three
cases. The derivation largely follows the approach of
[4] and therefore details will be omitted in this article.

2It is possible to state a similar result for the two-sided
absolute deviation but we have used a one sided result since
we are primarily interested in upper bounds.

Recall the theorem from [4] that leverages the empiri-
cal Rademacher complexity to provide a generalization
bound.

Theorem 14 Let F be a class of functions mapping Z
to [0, 1]; let {z1, . . . , zn} be drawn from the domain Z
independently and identically distributed (iid) according
to a probability distribution D. Then for any fixed δ ∈
(0, 1), the following bound holds for any f ∈ F with
probability at least 1 − δ over random draws of a set of
samples of size n:

ED[f(z)] ≤ Ê[f(z)] + R̂(F) + 3

√

ln(2/δ)

2n
.

Definition 15 The Heaviside function, Q : R → {0, 1}
is defined as:

Q(s) :=

{

1 if s > 0,
0 otherwise.

For a function g : R
m → R, Q(−yg(x)) is an in-

dicator of whether the function g(·) predicts the right
label for the example (x, y) ∈ R

m × {±1}. So, if we let
f(x, y) = −yg(x), we have:

ED[Q(f(x, y))] = ED[Q(−yg(x))] = Pr
D

[y 6= sign(g(x))],

which is exactly the generalization error that we would
like to bound.

Theorem 16 Fix γ > 0, let F be the class of functions
from R

m × {±1} → R given by f(x, y) = −yg(x). Let
{(x1, y1), . . . , (xn, yn)} be drawn iid from a probability
distribution D. Then, with probability at least 1 − δ
over the samples of size n, the following bound holds:

Pr
D

[y 6= sign(g(x))]

≤ 1

n

n
∑

i=1

ξi +
2

γ
R̂(F) + 3

√

ln(2/δ)

2n
, (10)

where ξi = max(0, 1 − yig(xi)) are the so-called slack
variables.

Proof: We first define the function A : R → [0, 1] as
below:

A(s) :=







1, if s > 0,
1 + a

γ
if − γ ≤ s ≤ 0,

0 otherwise.

First, note that Q(f(x, y)) ≤ A(f(x, y)). Thus,

ED[Q(f(x, y)) − 1] ≤ ED[A(f(x, y)) − 1].

Theorem 14 can now be applied to ED[A(f(x, y))−
1] to get:

ED[Q(f(x, y)) − 1] ≤ ED[A(f(x, y)) − 1]

≤ Ê[A(f(x, y)) − 1] + R̂((A− 1) ◦ F) + 3

√

ln(2/δ)

2n
.



The above simplifies as:

ED[Q(f(x, y))]

≤ Ê[A(f(x, y))] +R̂((A− 1) ◦ F) + 3

√

ln(2/δ)

2n
.

However, it is easy to see that:

Ê[A(f(x, y))] =

n
∑

i=1

A(f(xi, yi)) ≤
1

n

n
∑

i=1

ξi.

Thus the only quantity that remains to be bounded is
R̂((A − 1) ◦ F). It can be shown that this quantity
satisfies the theorem in Appendix B with L = 1

γ
, to

give:

R̂((A − 1) ◦ F) ≤ 2

γ
R̂(F).

We can now substitute the upper bounds that we
derived in Section 3 , namely: UFE

, UGE,D
and UHE,D

,
in the above theorem to get the corresponding general-
ization bounds for the function classes of interest. In
contrast to the bound for the function class FE, the
other two bounds provide a more explicit role for the
spread of the data.

There is a trade-off between the average of the slack
variables and the empirical Rademacher term (the com-
plexity term) in the generalization bound. In many
problems (for example in high dimensional feature spaces
or when nonlinear kernels are used) the average slack
variables can be small if training data can be easily sep-
arated. In such situations, reducing the complexity term
can significantly drive down the bound.
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A Schur’s complement lemma

Let A ∈ R
m×m,B ∈ R

m×1, C ∈ R; further let A ≻ 0,
then:
[

A B

B⊤ C

]

� 0 if and only if C − B⊤A−1B ≥ 0.

B A property of the empirical

Rademacher complexity

A function f : R → R is Lipschitz with constant L if:
|f(x) − f(y)| ≤ L|x − y|, for any x, y ∈ R.

Theorem 17 If A : R → R is Lipschitz with constant
L and if A(0) = 0 then R̂(A ◦ F) ≤ 2LR̂(F).

A proof can be found in [1].


