Extra Material

1. DATA PREPROCESSING

1.1. Removing the DC Component with an Orthogonal Projection. The
projector P,.e,pc is computed such that the first (for each color channel) compo-
nent of Py, pox corresponds to the DC component(s) of that patch. The transpose
of the matrix

— =

0 0
1 0

—_
o

1

has exactly the required property. However, it is not an orthogonal transformation.
Therefore, we decompose P into P = QR where R is upper triangular and @ is an
orthogonal transform. Since P = QR, the first column of @) must be a multiple of
the vector with all coefficients equal to one (due to the upper triangluarity of R).
Therefore, the first component of Q" x is a multiple of the DC component. Since @Q
is an orthonomal transform, using all but the first row of Q" for P.empc projects
out the DC component. In case of color images the same trick is applied to each
channel by making Pempc a block-diagonal matrix with QT as diagonal elements.

1.2. Rescaling the Data to Make Whitening an Volume Conserving Trans-
form. Secondly, the data was scaled such that the whitening transform has deter-
minant one, i.e. that thel determinant of the globally scaled data is one. This is
done by setting n = [[A\?", where \; are the eigenvalues of the covariance matrix
of the training data and n is their dimension. Therefore, the determinant of the
covariance matrix of the data after scaling with % is

1 _ ITA: B

Since the whitening transform consist of D~2U ' with UDUT = C (C is the
determinant of the scaled data), the whitening must have determinant one due to
1=det(C) = det(UDU ") = det(D2UT)?

Note, that the same scaling factor is used for the training and test set.

2. MEASURES OF REDUNDANCY

Redundancies can be quantified by a comparison of coding costs. According
to Shannon’s channel coding theorem the entropy of a discrete random variable is
an attainable lower bound on the coding cost for error-free encoding [1]. For the
construction of such a code, it is necessary to know the true distribution of the
random variable. If the assumed distribution P (k) used for the construction of an
optimal code is different from the true distribution P(k), the coding cost is given
by the log-loss

Ep[~log(P(k))] = =) P(k)log P(k) = H[k] + Dxr[P(k)|| P(k)].
k
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The Kullback-Leibler divergence quantifies the additional coding cost caused by
using a model distribution different from the true one. As long as it is positive,
the representation can be still compressed further, which means that there are still
redundancies left.

For continuous random variables, the total amount of bits required for loss-less
encoding is infinite. However, in analogy to the discrete case, we can use the
Kullback-Leibler divergence of the true distribution to a given model distribution.
The goal of redundancy reduction is to map a random variable Y to a new random
variable Z = f(Y') such that the distribution of Z is as close to a factorial distri-
bution as possible. Thus we can use the Kullback-Leibler divergence of the true
distribution to the product of its marginals to measure redundancy. This quantity
is known as multi-information

n p\z
@) = D [pl@)|[-irs(z)] = [ ola)log H_(p)ud
Algorithmically, redundancy can be reduced by finding a representation Z =
f(Y) such that a factorial model distribution p(z) = H?Zl p;(z;) is as close as
possible to the true distribution p(z). Since the multi-information I[p(z)] is hard
to estimate, one looks at the difference between the multi-informations of Y and
Z = f(Y), i.e. the quantity

Al = Ip(z)] = Ie(y)]
= Dxku [p@)||T15=105(2)] — Dxr. [e(W)IIT]7=10;(y;)]

where [[%_;0;(y;) is a factorial model distribution for the representation Y. The
following calculation shows that evaluating the redundancy reduction achieved with
a mapping z = f(y) is equivalent to evaluating the difference between the log-loss
of two particular model distributions.

Before doing the actual calculation, it is useful to define the different distributions
involved and state some interrelations between them:

(1) p(z) and o(y) are the true distributions of the random variables ¥ and
Z = f(Y). They are related by

pads = p(fly)- fdet 5 dy = oly)dy
o)ty = o7 a) - et 5| = pla)da

where gj’ﬁ denotes the Jacobian for f and gg? the Jacobian of f~!. Note
JI J

that ‘det %‘ = ‘det o

Yi Zj

(2) p(z) = [1j=1pi(2), 6s(y) and []7_,06;(y;) are the model distributions.

[1j=10(y;) is the factorial model for the representation Y. The non-

factorial model distribution 67(y) was chosen such that the function f
maps it into a factorial distribution, i.e.

[T—10i(2)

choice of f .
= p(z)

Q
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Now, we can write the difference in multi-information as

Al = I[p(z)] — I[e(y)]
= D [p@I[TT-15(25)| = Dict. [eITT-15(w)]
_ S (COTN S [P ¢ ) N
R v en ll : H;f_léj(yj)]
p(f(y)- |det 52 ofy)

= B log 07 (y) ~Fe llOgH?_léj(yj)]

[ pf()) - det 2 oy)
= o los or(y) s [17=10(y;)

: =o(y) i

det 771
_ el H;;l@g(yg)p(f(y))‘ € By,
¢ 07(y) o(y)

B _O =193 (Y;) _
- BT ]

= E, [~ logos(y)] — E, |~ log [T}, (1] -

Thus, if we have a model density which does not factorize with respect to y
and we have a (possibly nonlinear) mapping z = f(y) such that the transformed
model density with respect to z becomes factorial, we can evaluate the redundancy
reduction achieved with the mapping f simply by estimating the difference in the
average log-loss obtained for §;(y) and H?Zléj(yj).

In order to get a measure which is less dependent on the number of dimensions
n we define the average log-loss (ALL) to be ALL = 1E[—log 4(y)] for any given
model distribution 4(y).

In practice, the ALL can estimated by with the empirial mean

m

1 1
—E,[~log o ~ —log 64 (ys).
—E, [~log 07(y)] nm; og 07(yi)

3. L,-SPHERICALLY SYMMETRIC DISTRIBUTIONS

3.1. Definitions, Lemmas and Theorems. In this part, we provide the rigorous
definitions, lemmas and theorems used in the paper. Most results and proofs are
not new and have been collected from papers and books. Nevertheless, in many
cases we adapted the original statements to our need and provided more detailed
versions of the proofs. The original sources are mentioned at the respective lemmas
and theorems.

Definition 1. p-Norm



Let y € R” be an arbitrary vector. We define

1
lyll, = (Zlyi|p> ,p>0

i=1

as the p-norm of y. Note, that only for p > 1, ||y||, is a norm in the strict sense.
However, we will also use the term “p-norm” even if only 0 < p.

Definition 2. p-Sphere
The unit p-sphere Sgil in n dimensions is the set of points that fulfill

;7 = {yeR"llyll,=1,p>0}.

Lemma 3. Transformation in Radial and Spherical Coordinates 3]
Lety = (y1,--Yn) " 1 > 2 be a vector in R™\{0}. Consider the transformation

U1 Yn—1
y — (T7U17...,Un—1) = (Hy”]?v ||y|| 3y Hy” > ’
D p

The absolute value of the determinants of the transformation on the upper and
lower halfspaces

RY = {yeR"|y, >0}
R = {y eR"y, <0}

are equal and are given by

1 1-p

n— P

|det | = r"7t <1—Z|ui|p> :
i=1

Proof. The proof is a more detailed version of the proof found in [3].
Let

Ai — 1, U; > 0
—1, u; <O0.

Then we can write |u;| = A;u;. The above transformation is bijective on each of
the regions R’ and R”™. Let o = sign(yy), then the inverse is given by

n—1 % n—1 %
or (1 - Z ui|p> =or (1 - Z(Aiui)p> .
i=1

i=1

Yn

Note, that the o = sign(y,,) determines the halfspace in which the transformation
is inverted.



First, we determine the Jacobian 7. We start with computing the derivatives

Oy; .
85; = 0;r, 1<4,j<n-1
1-p
ay n—1 P
< _— _gp 1—Z\ui|p Afuffl,lgjgn—l
8’&]' P
O
i oy 1<i<n-—1
or

5yn n—1 P
W = O (1 — Z(Azul)p> .

Therefore, the Jacobian, is given by

Oy1. Oy Ou
ouy OUp —1 or
j fr—
OYn OYn 9Yn
Ouy OUp 1 or
r 0 Ul
0 r Us
’ 1-p 1
n—1 P p, p—1 n—1 P
—or (1*21:1 |ui|p) AP 0(1722,:1 (Aiui)p)

Before actually computing the absolute value of the determinant | det J|, we can
factor out r from the first n — 1 columns. Furthermore, we can factor out o from
the last row. Since we take the absolute value of det J and 0 = {—1,1}, we can
remove it completely afterwards. Now we can use Laplace’s formula to expand the
determinant along the last column. With this, we get

1—-p
n—1 n—1 P
1 L _
el = (A (1) A 1'<I‘Z“i'p>
k=1 =1
1 1
e (1= S
=1
1-p 1
n—1 n—1 P n—1 P
= S (1= ) o (1)
k=1 =1 =1

1-p

n—1 P n—1 n—1
(1 - Z |ui|p> (Z lugl? +1 — Z |uk|1’>
i=1 k=1 k=1

n—1 P
(1S )
i=1

Resolving the result for | det J| completes the proof. O



Theorem 4. p-Spherical Uniform Distribution [3]
Let Y = (Y1,...,Y,) " be a random vector. Let the Y; be i.i.d. distributed with

p.d.f.

)
Qu (U1, ey Up—1) = 2nlI‘n<)< Z|ul|>

with —1 <u; <1,i=1,..,n—1 and Y0 Ju;|? < 1.
Proof. The joint p.d.f. of Y is given by

nff

oly) = 2 )exp (—Zlyz )

2n1"n (7
with y; € R and 7 = 1,...,n. Applying the transformation

(y1, 7yn) = (7‘, Ui, ---aun—l)

from Lemma 3 and taking into account that each (u1,...,u,—1) corresponds to
(y1, ., yn) and (y1,..., —yn) we obtain

1-p
n

_n n—1 P
p"Tp el < rp> »
q(uy, .., Up_1,7r) = 2 —m—1T exp | —— 1-— E U

onT'n (l
P

By integrating out r, we obtain g, (u1, ..., un):

1-p

0 pnf% n—1 P oo P
q(uyy ey ttp_1,r)dr = —————1— ;P / " Lexp (—) dr.
/O on—17'n (%) Z 0 D

i=1

In order to compute the integral, we use the substitution z = % orr = (zp)% This

yields dr = (zp)%_ldz and, therefore,

o rP e n-1 1-p
/ " Lexp (—) dr = / (zp) 7 exp(—z)(zp) ® dz
0 p 0

n—p

o0 n
= por / zv Lexp(—z)dz
0




Hence,

oo
Qu(ulv”'vunfl) = / q(ulw"vunflar)dr
0

1-p

- g (Ee) ()

) :;((Z;) (1 5 |> 5

(]

In order to see, why g, is called uniform on Sg_l we must observe that g, of

1-p n—1
n—1 P . . . . p N
(1 - |ui|p) which is due to the coordinate transformation and 7271711“}(%))

which corresponds to twice the surface area of the p-sphere (see Lemma 5). Since
each u corresponds to two y before the coordinate transform (one on the upper

and one on the lower halfsphere), the density of u in y-coordinates corresponds to
onp(Lyn .
ﬁ where Sz’}_l = pn%r”()ﬂ) is the surface area of the unit p-sphere (see Lemma
P p

5).
As we will see in Lemma 7, ﬁ is independent of ||Y||, and, therefore, the
P
specific form of the density o does not matter as long as it is p-spherically symmetric.

Lemma 5. Volume and Surface of the p-Sphere
The volume Vp"_l(r) of the p-Sphere with radius r is given by

non 1\n
ne1 _ T 2 F(E)
Vo) = np"1(2)"
The surface S}~ (r) is given by
d
n—1 _ n—1
S = Ly
Tn712n1"(%)n
i)

As a convention, we leave out the argument of V;'~'(r) and S}~ (r) when de-
noting the volume or the surface of the unit p-sphere, i.e.

n—1 . n—1
vl o= vl
n—1 . n—1
S, = 5,7 (1).

Proof. In order to compute the volume of the p-sphere in n-dimension, we must
solve the integral fsn—l du. Using the volume element transformation from lemma
P



3, we can transform the integral into

1-p
r n—1 o
du = 2/ /r”fl 1- s |P dr du
L. 0 >
r n—1 1'%1)
= 2/ r"Ldr / <1 — Z |Ui|p> du
0 i=1

1-p

n—1 P
1
2 [ (1= | du
T /( ‘ |u|> u

i=1

n—1p(n 1-p
In theorem 4 we prove that g(uy,...,up—1) = % (1 -y |ui|p) " isa
P

probability density. In particular, this means that

/Q(ul,...,un_l)du — ;llli(())/oniulp) s -

= 1

which is equivalent to

1-p

/(1—§|ui|p>pdu - 27;?;((5)

Therefore,

Il
)

3

3
\
7N

—

\
. 3
]}
—

=

=
N~
|

=

c

PRI O (l)
_ \PJ
-1p(n
np" 1l (p)
Differentiation of V! (r) with respect to r yields the result for the surface area. [

Definition 6. L,-Spherically Symmetric Distribution [2] A random vector
Y = (Y3,...,Y,)" is said to have a L,-spherically symmetric distribution if ¥ can
be written as a product of two independent random variables Y = R - U, where R
is a non-negative univariate random variable with density ¢, : R™ — R™ and U is
uniformly distributed on the unit p-sphere, i.e.

P 1F< ) n—1 , =
Qu(U1, oytty) = — (7) <1—Z|ul| )

(see Theorem 4).



Lemma 7. Probability Density Functions [2]
Let Y = (Y1,...,Y,) " be an n-dimensional random variable with P{Y = 0} =0
and a density of the formY ~ o(||y||}). Then the following three statements hold:

(1) The random variables R = ||Y||, and U = ﬁ are independent.
(2) U= ﬁ is uniformly distributed on the unit p-sphere S !
(3) R =||Y||, has a density g,, where g, relates to ¢ via
o = TG
a\r) = S Tipny 2T
pr0(3)
n—1 ~
= S (r)o(r?), r > 0.
Proof. The proof is a more detailed version of the proof found in [2].

First we transform the density of Y with the transformation of lemma 3 and
obtain the new density in spherical and radial coordinates

1-p

n—1 P
qur, oy tn_1,7) = 2<1—Zuz'p> o(rPyr™=t

i=1

n
“l<u; <1, 1<i<n—1 ) |’ <L
i=1
Since ¢ can be written as a product of a function of r and a function of u =

(u1,...;un—1), U and R are independent. Thus, ||Y||, = R and U = Hgllp are

independent as well.
In order to get ¢,(u1,...,un—1), we must integrate out r. However, we do not
know the exact form of g. But since ¢ is a probability density, we know that

/ /q(ul,...,un_l,r)dudr = 1.
0

Since Y and R are independent, we can write this integral as

1-p

[eS) n—1 o )
/ /Q(ulv ~-~7un7177‘)dud’r = 2/ 1- Z |uz|p du - / é(?"p)’f'n_ldr.
0 i=1 0

From that, we can immediately derive
L -1

/000 o(rP)yr"tdr = 2/(1—7§|ui|p> ' du

i=1

1-p

~1
In order to solve (2 Ik (1 - Z;:ll |ui|P) : du) we can use theorem 4. In this

1-p

prir(2 -1 P
theorem, we showed that g, (u1,...,un_1) = ﬁ (1 -3 |ui|p) is the
uniform distribution on the p-unit sphere. In particular, we know that f q(ug, ooy tp—1)du =

1 and, therefore,
1p 2nipn (1)
[ (-srer) w2

n—1 n
T (3)
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Thus,
]771) 71
%) n—1 P
/ o(rP)yr"tdr = 2/ (1— Zuﬂ’) du
0 i=1
()
Qnrn (%)
and

oo
qu(ula"'aunfl) = / q(ulv"'aunfl»r)dr
0

n—1 =E 1T (g)
= (1- u; [P _—
2 | l| on—11n (l)
= P
This shows that Y is uniformly distributed on the unit p-sphere.
The density of R can be computed by integrating out wuq, ..., Un—1

QT(T) = /q(ub“wunflar)du

e (1)
p n—1~

= o(r?), r>0
T (3)

by the same argument as in 2. This completes the proof. O

The next theorem tells us that Y is Ly-spherically symmetric distributed if and
only if its density has the form o(|[y][[}).

Theorem 8. Form of L,-Spherically Symmetric Distribution [2] Let Y =
(Y1, ..., Yy,) T be an n-dimensional random variable with P{Y = 0} = 0. Then, the
density of Y has the form o(||y|[b), where g : Ry — Ry is a measurable function,
if and only if Y = RU is spherically symmetric distributed, with independent R and
U, where R has the density

onn (l)
P n—1
gr(r) = ——4r""g(rP),r>0.
o ()

Proof. Sufficiency: Assume Y = RU with independent R and U, where U is uni-
formly distributed on the p-sphere and R has the density ¢,.. Then the joint density
is given by (see theorem 4):

1-p

o) = ) L) (LZW)F
e )

—1<ui<1,1§i§n—1,Z|ui|p<1,r>0.
=1
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n—1

1
Now let y; = ru; for 1 <i<n—1and |y,| =7 (1 — > ui|p)p. We can use 3
to see that the absolute value of the determinant of the Jacobian is given by

n—1 liTp - n—1 %
ol <1 - Z |ui|p> = rln <1 - Z |ui|p>

i=1 i=1
Therefore,
pnfll—‘ (ﬂ
p 1-n
P, nyn) = ——— 5 Gy,
on—17n (l)
P
= o(llyllp)-
Necessity: Assume Y ~ o(||[Y][[P). According to lemma 7 H;/II and Y are inde-
P
pendent and ﬁ is uniformly distributed on the p-sphere. Again in lemma 7 we
P

showed that R has the density

e ()
_ p n—1~p
g-(r) = r" = o(r?), r > 0.

n—1 n
ror(3)

Therefore, Y is L,-spherically symmetric distributed if and only if Y ~ g(|[Y|[})
for some density 0. O

3.2. Distributions.

3.2.1. The p-Spherically Symmetric Distribution with Radial Mizture of Log-Normal
Distribution. We obtain this distribution by modeling the radial component with
a mixture of log-Normal distributions

( ) i Tk ( (1og7“—,uk)2>

gr(r) = ———exp| ————— .

" i ropV2m 207

Here, n;, with >, mi = 1 constitute the “prior” probability of selecting one log-
Normal distribution from the mixture, and yuj and o7 denote the mean and the
variance of the kth mixture. Taking into account the uniform distribution on the
p-sphere, we get

1—p
n—1 a pnflp (%) K _ 2
Tk (log ™ — pur.) )
u,r) = 1—- u; [P exp| ————— .
q(u,r) ( ; |uil ) gn—1T'n (%) ; TRV 2T P < 207

Reversing the coordinate transform, we obtain the distribution in Euclidean coor-
dinates

n—1 n) K
oly) = et <P) S e (_ (log [ly[lp — uk)z) '
on[n (%) = lyllporv2n 20}

Since ||y||, being log-Normal distributed means log||y||, being Gaussian distributed,
we can use the standard EM for a mixture of Gaussians on the log-domain to es-
timate the parameters of the mixture. This is justified because log (or exp) is a
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strictly monotonic increasing (decreasing) function and the multiplicative determi-
nant of the Jacobian does not depend on the parameters. Therefore, the maximizing
parameter values for one the mixture of log-Normal distributions also maximizes
the log-likelihood of the mixture of Gaussians in the log-domain.

In order to transform the radial component into the radial component of the
p-generalized distribution, we will need the cumulative distribution function, which

is given by
To
/ qr(r)dr
0

- (log 7 — )’

= /TOZLQXP <2) dr
o i ropV2r 20,

K
_ an/’“";exp (Jlogr—uw?) i
= 0 ToRV2T 207

F(ro)

K

Zflkfk(foaukﬁk) ;
k=1

where Fy(ro; pr,ox) is simply the cumulative distribution function of the log-
Normal distribution with parameters u; and oy.

3.2.2. The p-generalized Normal distribution. The p-generalized Normal distribu-
tion is obtained by choosing Y to be a collection of n i.i.d. random variables Y;,
each distributed according to the exponential power distribution

P ly|”
Yi~ply) = ——~———exp ( )
r (1) @022 207

n |p
Y~oly)=[[pw) = | —~—r | e (—W)
41 r (%) (202)¥2 20
Since o(y) has the form g(||y|[}), it is a proper p-spherically symmetric distribution
due to Theorem 8. Note, that for the case of p = 2, the p-generalized Normal
distribution reduces to a multivariate isotropic Gaussian. In order to compute the
contrast gain control function, we need to compute the radial distribution g, of
p(x). Transforming p according to Lemma 3 yields

1—p
n—1 o
pnrn—l ( Tp><
q(r;u) = ” exp | —o— ) (1= |ul’ :
I‘n (%) (20-);27171 20 z:zl

By integrating over u (see lemma 5 how to carry out the integral) we get

prr1 rP
q@(r) = —F—=———exp -5
r(z)ee)? 20

p

In order to estimate the scale parameter o from data X = {ry,..r,} =
{IIx1llp; - ||%Xm]|p}: we carry out the usual procedure for maximum likelihood es-
timation and obtain
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d d 2n rP
— log g, = —[-=1 -
do 81 (r) do ( P 0g(7) 202>
_ rPp— 2no?
= o3
d & - rfp — 2no?
do ; log g, (i) = ; P
!
= 0.
This yields
OA- =

For the transformation of the radial component, we will also need the cumulative
distribution function of

qr(r) = W

|
=
=
3
[\)
Q —
-
s 3
o]
k!
kel
/l\
N
L=
~__

a n—1 P
pr (a) = / p’,ﬂin exp <_T2) dr
0 T(2) (@02} 20

b
1 Pl
= / y» " exp(—y)dy
r(y)
p
r (550

where T (2, b) f y*~ 1 exp(—y)dy is the incomplete I'-function.

4. LoG-LIKELIHOOD OF FILTERS UNDER THE LOG-NORMAL MIXTURE MODEL
The log-likelihood of a basis W in whitened space, given a set of whitened images
X ={x1,...;%Xm}, is given by
E(W|77aM»U) = Zlng(yZ‘|777M70»XiaW)
i=1
= m(n—1)logp+ mlogT <n) mnlog2 — mnlogT ( > +
p

S g (30 o (- LBVl = )
IWx|[gov/2m 207

i=1 k=1
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Taking the derivative with respect to the jth row w; of W yields

7L(W|7]7 Hy U)

mog K log |[Wx; || — )2
_ Z Z Mk exp | — (log [[Wx |2‘p Bke)
= ow [[Wx;||[Ropv/2m 20

k=1 k

=:L1(W|n,p,0,%;)

K
n log [|[Wx;||p — k)2
= E L1(W]n, p, 0,%;) E arﬁw <||Wxi|p exp(—( gl Zl2‘p ) >)
k=1 Ok J

i=1 QUk

m
= > Li(Win,pox) "t x

=1
K
log [|Wx;|p — px)? 1 9
W[5 ep [ & » —n— —(log |[Wx] |, — ——||Wx;
kzl" \/—WII llp 202 n Cr]%(ogll Xillp — pr) awjll xillp

= Za(wm,mxl-)*luvvxﬂl;("*”~xZ X
=1

K 2

Mk (log [|Willp — pur) 1
E exp | — -n — log ||[Wx As|lwix;|P ,
= ok /7271' p( 20_2 i( g” ’LHP ) ]l J ’Ll

k

=

since 2 |[Wil|, = 52 (S0, [wix]?)

Bw; = ||Wxi||11)_p C A lwx [P -x;] with
Aij = SgH(Win).
Therefore, the gradient aiwﬁ(Wh), W, o) can be written as an product between

two matrices aiwc(wm u,0) =A - B with

(log || Wxillp — pur)? 1
(A)ji = —Aylwixg P~ Z ak\/? (— - n+ ;z(logIIWXillp - 1K)

20%

(B)M = ﬁl(WW H, o, Xi)7 waal (ntp) cTip

K 9 -1
Mk (log [[Wxi]lp — pi)
Wx;||P E exp | — By
<| ZHP 1 OkV2T P < 2(7}% i
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Absolute Difference [Bits/Comp.] Relative Difference [% wrt. cICA]

| | |
’ ‘ Color ‘ Gray ‘ Color ‘ Gray ‘
’ HAD - PIX ‘ —4.0778 + 0.0039 ‘ —3.1275 + —0.0040 ‘ 92.0797 + —0.0581 ‘ 90.8566 + —0.0854 ‘
’ SYM - PIX ‘ —4.1665 + 0.0040 ‘ —3.1697 + —0.0037 ‘ 94.0826 + 0.0534 ‘ 92.0834 + —0.0876 ‘
’ ICA - PIX ‘ ~4.2376 + 0.0041 ‘ ~3.2146 + —0.0037 ‘ 95.6872 + 0.0489 ‘ 93.3870 + —0.0823 ‘
’ ¢HAD - PIX ‘ ~4.3516 + 0.0055 ‘ ~3.4149 + 0.0058 ‘ 98.2622 + 0.0086 ‘ 99.2077 + 0.0103 ‘
’ ¢SYM - PIX ‘ —4.3819 + 0.0056 ‘ ~3.4242 + 0.0058 ‘ 98.9454 + 0.0098 ‘ 99.4770 + 0.0099 ‘
| | |

cICA - PIX ‘ —4.4286 £ 0.0057 —3.4422 £ 0.0059 ‘ 100.0000 + 0.0000 ‘ 100.0000 + 0.0000

TABLE 1. Difference in ALL for gray value and color images with
standard devation over ten training and test set pairs. For com-
putational efficiency the patch size has been chosen 7 x 7. The
columns on the left display the absolute difference to the PIX rep-
resentation. The columns on the right show the percentual differ-
ence with respect to the largest reduction achieved by ICA with
non-factorial model.

5. ALL Scores FOrR COLOR AND GRAY VALUE IMAGES
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FicUre 5.1. ALL in Bits per component as a function of p for
achromatic (right) and chromatic (left) images. For computational
efficiency both plots have been computed on patches of size 7 x 7.
The slightly brighter envelope depicts the standard deviation over
ten pairs of training and test sets. For further details see the
respective figure in the paper.
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