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Abstract

In a variety of behavioral tasks, subjects exhibit an automatic and apparently sub-
optimalsequential effect: they respond more rapidly and accurately to a stimulus
if it reinforces a local pattern in stimulus history, such as a string of repetitions or
alternations, compared to when it violates such a pattern. This is often the case
even if the local trends arise by chance in the context of a randomized design, such
that stimulus history has no real predictive power. In this work, we use a normative
Bayesian framework to examine the hypothesis that such idiosyncrasies may re-
flect the inadvertent engagement of mechanisms critical for adapting to a changing
environment. We show that prior belief in non-stationarity can induce experimen-
tally observed sequential effects in an otherwise Bayes-optimal algorithm. The
Bayesian algorithm is shown to be well approximated by linear-exponential filter-
ing of past observations, a feature also apparent in the behavioral data. We derive
an explicit relationship between the parameters and computations of the exact
Bayesian algorithm and those of the approximate linear-exponential filter. Since
the latter is equivalent to a leaky-integration process, a commonly used model
of neuronal dynamics underlying perceptual decision-making and trial-to-trial de-
pendencies, our model provides a principled account ofwhy such dynamics are
useful. We also show that parameter-tuning of the leaky-integration process is
possible, using stochastic gradient descent based only on the noisy binary inputs.
This is a proof of concept that not only can neurons implement near-optimal pre-
diction based on standard neuronal dynamics, but that they can also learn to tune
the processing parameters without explicitly representing probabilities.

1 Introduction

One common error human subjects make in statistical inference is that they detect hidden patterns
and causes in what are genuinely random data. Superstitious behavior, or the inappropriate linking
of stimuli or actions with consequences, can often arise in such situations, something also observed
in non-human subjects [1, 2]. One common example in psychology experiments is that despite a
randomized experimental design, which deliberately de-correlate stimuli from trial to trial, subjects
pick up transient patterns such as runs ofrepetitionsandalternations, and their responses are fa-
cilitated when a stimulus continues to follow a local pattern, and impeded when such a pattern is
violated [3]. It has been observed in numerous experiments [3–5], that subjects respond more accu-
rately and rapidly if a trial is consistent with the recent pattern (e.g.AAAA followed byA, BABA
followed byB), than if it is inconsistent (e.g.AAAA followed byB, BABA followed byA). This
sequential effectis more prominent when the preceding run has lasted longer. Figure 1a shows re-
action time (RT) data from one such experiment [5]. Error rates follow a similar pattern, reflecting
a true expectancy-based effect, rather than a shift in RT-accuracy trade-off.

A natural interpretation of these results is that local patterns lead subjects to expect a stimulus,
whether explicitly or implicitly. They readily respond when a subsequent stimulus extends the local
pattern, and are “surprised” and respond less rapidly and accurately when a subsequent stimulus
violates the pattern. When such local patterns persist longer, the subjects have greater confidence in
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Figure 1: Bayesian modeling of sequential effects. (a) Median reaction time (RT) from Cho et al
(2002) affected by recent history of stimuli, in which subjects are required to discriminate a small “o”
from a large “O” using button-presses. Along the abscissa are all possible four-trial sub-sequences,
in terms of repetitions (R) and alternations (A). Each sequence, read from top to bottom, proceeds
from the earliest stimulus progressively toward the present stimulus. As the effects were symmetric
across the two stimulus types,A andB, each bin contains data from a pair of conditions (e.g.RRAR
can beAAABB or BBBAA). RT was fastest when a pattern is reinforced (RRRfollowed byR,
or AAA followed byA); it is slowest when an “established” pattern is violated (RRRfollowed by
A, or AAA followed byR). (b) Assuming RT decreases with predicted stimulus probability (i.e.
RT increases with1−P (xt|xt−1), wherext is the actual stimulus seen), then FBM would predict
much weaker sequential effects in the second half (blue: 720 simulated trials) than in the first half
(red: 840 trials). (c) DBM predicts persistently strong sequential effects in both the first half (red:
840 trials) and second half (blue: 720 trials). Inset shows prior overγ used; the same prior was also
used for the FBM in (b).α = .77. (d) Sequential effects in behavioral data were equally strong in
the first half (red: 7 blocks of 120 trials each) and the second half (blue: 6 blocks of 120 trials each).
Green dashed line shows a linear transformation from the DBM prediction in probability space of
(c) into the RT space. The fit is very good given the errorbars (SEM) in the data.

the pattern, and are therefore more surprised and more strongly affected when the pattern is violated.
While such a strategy seems plausible, it is also sub-optimal. The experimental design consists of
randomized stimuli, thus all runs of repetitions or alternations are spurious, and any behavioral ten-
dencies driven by such patterns are useless. However, compared to artificial experimental settings,
truly random sequential events may be rare in the natural environment, where the laws of physics and
biology dictate that both external entities and the observer’s viewpoint undergo continuous transfor-
mations for the most part, leading to statistical regularities that persist over time on characteristic
timescales. The brain may be primed to extract such statistical regularities, leading to what appears
to be superstitious behavior in an artificially randomized experimental setting.

In section 2, we use Bayesian probability theory to build formally rigorous models for predicting
stimuli based on previous observations, and compare differentially complex models to subjects’
actual behavior. Our analyses imply that subjects assume statistical contingencies in the task to
persist over several trials butnon-stationaryon a longer time-scale, as opposed to being unknown
but fixedthroughout the experiment. We are also interested in understanding how the computations
necessary for prediction and learning can be implemented by the neural hardware. In section 3, we
show that the Bayes-optimal learning and prediction algorithm is well approximated by a linear filter
that weighs past observations exponentially, a computationally simpler algorithm that also seems to
fit human behavior. Such an exponential linear filter can be implemented by standard models of
neuronal dynamics. We derive an explicit relationship between the assumed rate of change in the
world and the time constant of the optimal exponential linear filter. Finally, in section 4, we will
show that meta-learning about the rate of change in the world can be implemented by stochastic
gradient descent, and compare this algorithm with exact Bayesian learning.

2 Bayesian prediction in fixed and changing worlds

One simple internal model that subjects may have about the nature of the stimulus sequence in a
2-alternative forced choice (2AFC) task is that the statistical contingencies in the task remain fixed
throughout the experiment. Specifically, they may believe that the experiment is designed such that
there is a fixed probabilityγ, throughout the experiment, of encountering a repetition (xt = 1) on
any given trialt (thus probability1−γ of seeing an alternationxt =0). What they would then learn
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Figure 2: Bayesian inference assuming fixed and changing Bernoulli parameters. (a) Graphical
model for the FBM.γ ∈ [0, 1], xt ∈ {0, 1}. The numbers in circles show example values for the
variables. (b) Graphical model for the DBM.γt = αδ(γt−γt−1) + (1−α)p0(γt), where we as-
sume the priorp0 to be a Beta distribution. The numbers in circles show examples values for the
variables. (c) Grayscale shows the evolution of posterior probability mass overγ for FBM (darker
color indicate concentration of mass), given the sequence of truly random (P(xt) = .5) binary
data (blue dots). The mean of the distribution, in cyan, is also the predicted stimulus probability:
P (xt = 1|xt−1) = 〈γ|xt−1〉. (d) Evolution of posterior probability mass for the DBM (grayscale)
and predictive probabilityP (xt = 1|xt−1) (cyan); they perpetually fluctuate with transient runs of
repetitions or alternations.

about the task over the time course of the experiment is the appropriate value ofγ. We call this the
Fixed Belief Model (FBM). Bayes’ Rule tells us how to compute the posterior:

p(γ|xt) ∝ P (xt|γ)p(γ) = γrt+a+1(1 − γ)t−rt+b+1

where rt denotes the number of repetitions observed so far (up tot), xt is the set of binary
observations(x1, . . . , xt), and the prior distributionp(γ) is assumed to be a beta distribution:
p(γ) = p0(γ) = Beta(a, b). The predicted probability of seeing a repetition on the next trial is
the mean of this posterior distribution:P (xt+1 =1|xt) =

∫
γp(γ|xt)dγ = 〈γ|xt〉.

A more complex internal model that subjects may entertain is that the relative frequency of repeti-
tion (versus alternation) can undergo discrete changes at unsignaled times during the experimental
session, such that repetitions are more prominent at times, and alternation more prominent at other
times. We call this the Dynamic Belief Model (DBM), in whichγt has a Markovian dependence
on γt−1, so that with probabilityα, γt = γt−1, and probability1 − α, γt is redrawn from a fixed
distributionp0(γt) (same Beta distribution as for the prior). The observationxt is still assumed to
be drawn from a Bernoulli process with rate parameterγt. Stimulus predictive probability is now
the mean of the iterative prior,P (xt =1|xt−1) = 〈γt|xt−1〉, where

p(γt = γ|xt−1) = αp(γt−1 = γ|xt−1) + (1 − α)p0(γt = γ)

p(γt|xt) ∝ P (xt|γt)p(γt|xt−1)

Figures 2a;b illustrate the two graphical models. Figures 2c;d demonstrate how the two models re-
spond differently to the exact same sequence of truly random binary observations (γ= .5). While
inference in FBM leads to less variable and more accurate estimate of the underlying bias as the
number of samples increases, inference in DBM is perpetually driven by local transients. Relat-
ing back to the experimental data, we plot the probability ofnot observing the current stimulus for
each type of 5-stimulus sequences in Figure 1 for (b) FBM and (c) DBM, since RT is known to
lengthen with reduced stimulus expectancy. Comparing the first half of a simulated experimental
session (red) with the second half (blue), matched to the number of trials for each subject, we see
that sequential effects significantly diminish in the FBM, but persist in the DBM. A re-analysis
of the experimental data (Figure 1d) shows that sequential effects also persist in human behavior,
confirming that Bayesian prediction based on a (Markovian) changeable world can account for be-
havioral data, while that based on a fixed world cannot. In Figure 1d, the green dashed line shows
that a linear transformation of the DBM sequential effect (from Figure 1c) is quite a good fit of the
behavioral data. It is also worth noting that in the behavioral data there is a slight over all preference
(shorter RT) for repetition trials. This is easily captured by the DBM by assumingp0(γt) to be
skewed toward repetitions (see Figure 1c inset). The same skewed prior cannot produce a bias in the
FBM, however, because the prior only figures into Bayesian inference once at the outset, and is very
quickly overwhelmed by the accumulating observations.
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Figure 3: Exponential discounting a good descriptive and normative model. (a) For each of the
six subjects, we regressed RR on repetition trials against past observations,RT ≈ C + b1xt−1 +
b2xt−2 + . . ., wherexτ is assigned0 if it was repetition, and1 if alternation, the idea being that
recent repetition trials should increase expectation of repetition and decrease RR, and recent alter-
nation should decrease expectation of repetition and increase RR on a repetition trial. Separately we
also regressed RR’s on alternation trials against past observations (assigning0 to alternation trials,
and1 to repetitions). The two sets of coefficients did not differ significantly and were averaged
togther (red: average across subjects, error bars: SEM). Blue line shows the best exponential fit to
these coefficients. (b) We regressedPt obtained from exact Bayesian DBM inference, against past
observations, and obtained a set of average coefficients (red); blue is the best exponential fit. (c) For
different values ofα, we repeat the process in (b) and obtain the best exponential decay parameter
β (blue). Optimalβ closely tracks the2/3 rule for a large range of values ofα. β is .57 in (a),
so α = .77 was used to generate (b). (d) Both the optimal exponential fit (red) and the2/3 rule
(blue) approxiate the true BayesianPt well (green dashed line shows perfect match).α = .77. For
smaller values ofα, the fit is even better; for largerα, the exponential approximation deteriorates
(not shown). (e) For repetition trials, the greater the predicted probability of seeing a repetition
(xt = 1), the faster the RT, whether trials are categorized by Bayesian predictive probabilities (red:
α = .77, p0 = Beta(1.6, 1.3)), or by linear exponential filtering (blue). For alternation trials, RT’s
increase with increasing predicted probability of seeing a repetition. Inset: for the biasesb ∈ [.2, .8],
the log prior ratio (shift in the initial starting point, and therefore change in the distance to decision
boundary) is approximately linear.

3 Exponential filtering both normative and descriptive

While Bayes’ Rule tells us in theory what the computations ought to be, the neural hardware may
only implement a simpler approximation. One potential approximation is suggested by related work
showing that monkeys’ choices, when tracking reward contingencies that change at unsignaled
times, depend linearly on previous observations that are discounted approximately exponentially
into the past [6]. This task explicitly examines subjects’ ability to track unsignaled statistical regu-
larities, much like the kind we hypothesize to be engaged inadvertently in sequential effects.

First, we regressed the subjects’reward rate(RR) against past observations and saw that the linear
coefficients decay approximately exponentially into the past (Figure 3a). We definereward rateas
mean accuracy/mean RT, averaged across subjects; we thus take into account both effects in RT and
accuracy as a function of past experiences. We next examined whether there is also an element of
exponential discounting embedded in the DBM inference algorithm. Linear regression of the pre-
dictive probabilityPt ,P (xt =1|xt−1), which should correlate positively with RR (since it corre-
lates positively with accuracy and negatively with RT) against previous observationsxt−1, xt−2, . . .

yields coefficients that also decay exponentially into the past (Figure 3b):Pt ≈ C+η
∑t−1

τ=1 βτxt−τ .
Linear exponential filtering thus appears to be both a good descriptive model of behavior, and a good
normative model approximating Bayesian inference.

An obvious question is how this linear exponential filter relates to exact Bayesian inference, in
particular how the rate of decay relates to the assumed rate of change in the world (parameterized
by α). We first note that the linear exponential filter has an equivalent iterative form:

Pt , P (xt =1|xt−1) = C+η
t−1∑

τ=1

βτxt−τ = C(1 − β)+ηβxt−1+βPt−1 .

We then note that the nonlinear Bayesian update rule can also be written as:

Pt+1 =
1

2
(1 − α) + xt−1α

Kt − P 2
t

Pt − P 2
t

+ αPt

1 − Kt

Pt

1 − Pt

≈
1

2
(1−α) +

1

3
αxt +

2

3
αPt (1)
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whereKt , 〈γ2
t |xt−1〉, and we approximatePt by its mean value〈Pt〉=1/2, andKt by its mean

value〈Kt〉 = 1/3. These expected values are obtained by expandingPt andKt in their iterative
forms and assuming〈Pt〉 = 〈Pt−1〉 and〈Kt〉 = 〈Kt−1〉, and also assuming thatp0 is the uniform
distribution. We verified numerically (data not shown) that this mean approximation is quite good for
a large range ofα (though it gets progressively worse whenα≈1, probably because the equilibrium
assumptions deviate farther from reality as changes become increasingly rare).

Notably, our calculations implyβ ≈ 2
3α, which makes intuitive sense, since slower changes should

result in longer integration time window, whereas faster changes should result in shorter memory.
Figure 3c shows that the best numerically obtainedβ (by fitting an exponential to the linear regres-
sion coefficients) for different values ofα (blue) is well approximated by the2/3 rule (black dashed
line). For the behavioral data in Figure 3a,β was found to be.57, which impliesα = .77; the sim-
ulated data in Figure 3b are in fact obtained by assumingα = .77, hence the remarkably good fit
between data and model. Figure 3d shows that reconstructedPt based on the numerically optimal
linear exponential filter (red) and the2/3 rule (blue) both track the true BayesianPt very well.

In the previous section, we saw that exact Bayesian inference for the DBM is a good model of be-
havioral data. In this section, we saw that linear exponential filtering also seems to capture the data
well. To compare which of the two better explains the data, we need a more detailed account of how
stimulus history-dependent probabilities translate into reaction times. A growing body of psycho-
logical [7] and physiological data [8] support the notion that some form of evidence integration up
to a fixed threshold underlies binary perceptual decision making, which both optimizes an accuracy-
RT trade-off [9] and seems to be implemented in some form by cortical neurons [8]. The idealized,
continuous-time version of this, the drift-diffusion model (DDM), has a well characterized mean
stopping time [10],Td = z

A
tanh Az

c2 , whereA andc are the mean and standard deviation of unit
time fluctuation, andz is the distance between the starting point and decision boundary. The vertical
axis for the DDM is in units of log posterior ratiolog P (s0|xt)

P (s1|xt)
. An unbiased (uniform) prior overs

implies a stochastic trajectory that begins at 0 and drifts until it hits one of the two boundaries±z.
When the prior is biased atb 6= .5, it has an additive effect in the log posterior ratio space and moves
the starting point tolog b

1−b
. For the relevant range ofb (.2 to .8), the shift shift in starting point

is approximately linear inb (Figure 3e inset), so that the new distance to the boundary is approxi-
matelyz + kb. Thus, the new mean decision time isz+kb

A
tanh Az+Akb

c2 . Typically in DDM models
of decision-making, the signal-to-noise ratio is small, i.e.A ≪ c, such thattanh is highly linear in
the relevant range. We therefore haveTd(b) ≈

z
2

c2 + 2zk

c2 b, implying that the change in mean decision
time is linear in the biasb, in units of probability.

This linear relationship between RT andb was already born out by the good fit between sequential
effects in behavioral data and for the DBM in Figure 1d. To examine this more closely, we run the
exact Bayesian DBM algorithm and the linear exponential filter on the actual sequences of stimuli
observed by the subjects, and plot median RT against predicted stimulus probabilities. In Figure 3e,
we see that for both exact Bayesian (red) and exponential (blue) algorithms, RT’s decrease on repe-
tition stimuli when predicted probability for repetition increased; conversely, RT’s increase on alter-
nation trials when predicted probability for repetition increase (and therefore predicted probability
for alternation decrease). For both Bayesian inference and linear exponential filtering, the relation-
ship between RT and stimulus probability is approximately linear. The linear fit in fact appears
better for the exponential algorithm than exact Bayesian inference, which, conditioned on the DDM
being an appropriate model for binary decision making, implies that the former may be a better
model of sequential adaptation than exact Bayesian inference. Further experimentation is underway
to examine this prediction more carefully.

Another implication of the SPRT or DDM formulation of perceptual decision-making is that incor-
rect prior bias, such as due to sequential effects in a randomized stimulus sequence, induces a net
cost in accuracy (even though the RT effects wash out due to the linear dependence on prior bias).

The error rate with a biasx0 in starting point is 1
1+e2za − 1−(e−ax0 )

2

e2az−e−2az [10], implying error rate rises
monotonically with bias in either direction. This is a quantitative characterization of our claim that
extrageneous prior bias, such as due to sequential effects, induces suboptimality in decision-making.
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Figure 4: Meta-learning about the rate of change. (a) Graphical model for exact Bayesian learning.
Numbers are example values for the variables. (b) Mean of posteriorp(α|xt) as a function of
timesteps, averaged over 30 sessions of simulated data, each set generated from different true values
of α (see legend; color-coded dashed lines indicate trueα). Inset shows prior overα, p(α) =
Beta(17, 3). Time-course of learning is not especially sensitive to the exact form of the prior (not
shown). (c) Stochastic gradient descent with a learning rate of.01 produce estimates ofα (thick
lines, width denotes SEM) that converge to the true values ofα (dashed lines). Initial estimate ofα,
before seeing any data, is.9. Learning based on50 sessions of5000 trials for each value ofα. (d)
Marginal posterior distributions overα (top panel) andγt (bottom panel) on a sample run, where
probability mass is color-coded: brighter color is more mass.

4 Neural implementation and learning

So far, we have seen that exponential discounting of the past not only approximates exact Bayesian
inference, but fits human behavioral data. We now note that it has the additional appealing property
of being equivalent to standard models of neuronal dynamics. This is because the iterative form
of the linear exponential filter in Equation 1 has a similar form to a large class of leaky integration
neuronal models, which have been used extensively to model perceptual decision-making on a rela-
tively fast time-scale [8,11–15], as well as trial-to-trial interactions on a slower time-scale [16–20].
It is also related to the concept of eligibility trace in reinforcement learning [21], which is important
for the temporal credit assignment problem of relating outcomes to states or actions that were re-
sponsible for them. Here, we provided thecomputational rationalefor this exponential discounting
the past – it approximates Bayesian inference under DBM-like assumptions.

Viewed as a leaky-integrating neuronal process, the parameters of Equation 1 have the following
semantics:12 (1−α) can be thought of as a constant bias,1

3αxt−1 as the feed-forward input, and
2
3αPt−1 as the leaky recurrent term. Equation 1 suggests that neurons utilizing a standard form
of integration dynamics can implement near-optimal Bayesian prediction under the non-stationary
assumption, as long as the relative contributions of the different terms are set appropriately. A natural
question to ask next is how neurons canlearn to set the weights appropriately. We first note thatxt

is a sample from the distributionP (xt|xt−1). SinceP (xt|xt−1) has the approximate linear form in
Equation 1, with dependence on a single parameterα, learning about near-optimal predictions can
potentially be achieved based on estimating the value ofα via the stochastic samplesx1, x2, . . ..
We implement a stochastic gradient descent algorithm, in whichα̂ is adjusted incrementally on each
trial in the direction of the gradient, which should bringα̂ closer to the trueα.

α̂t = α̂t−1 + ǫ(xt − P̂t)
dPt

dα

whereα̂t is the estimate ofα after observingxt, andP̂t is the estimate ofPt using the estimate
α̂t−1 (before seeingxt). Figure 4c shows that learning via the binary samples is indeed possible: for
different true values ofα (dashed lines) that generated different data sets, stochastic gradient descent
produced estimates of̂α that converge to the true values, or close to them (thick lines; widths denote
SEM estimated from50 sessions of learning). A key challenge for future work is to clarify whether
and how the gradient,dPt

dα
, can be computed by neural machinery (perhaps approximately).

For comparison, we also implement the exact Bayesian learning algorithm, which augments the
DBM architecture by representingα as a hidden variable instead of a fixed known parameter:

p(α, γt|xt) ∝ p(α|xt−1)P (xt|γt)p(γt|α,xt−1) .

Figure 4a illustrates this augmented model graphically. Figure 4b shows the evolution of the mean
of the posterior distribution overα, or 〈α|xt〉. Based on sets of 30 sessions of 5000 trials, generated
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from each of four different true values ofα, the mean value ofα under the posterior distribution
tends toward the trueα over time. The prior we assume forα is a beta distribution (Beta(17, 3),
shown in the inset of Figure 4b).

Compared to exact Bayesian learning, stochastic gradient descent has a similar learning rate. But
larger values ofα (e.g.α= .6) tend to be under-estimated, possibly due to the fact that the analytical
approximation forβ is under-estimated for largerα. For data that were generated from a fixed
Bernoulli process with rate.5, an equivalently appropriate model is the DBM withα=0 – stochastic
gradient descent produced estimates ofα (thick red line) that converge to0 on the order of50000
trials (details not shown). Figure 4d shows that the posterior inference aboutα andγt undergoes
distinct phases when trueα = 0 and there is no correlation between one timestep and the next.
There is an initial phase where marginal posterior mass forα tends toward high values ofα, while
marginal posterior mass forγt fluctuates around.5. Note that this combination is an alternative,
equally valid generative model for completely randomized sequence of inputs. However, this joint
state is somehow unstable, andα tends toward 0 whileγt becomes broad and fluctuates wildly. This
is because as inferredα gets smaller, there is almost no information aboutγt from past observations,
thus the marginal posterior overγt tends to be broad (high uncertainty) and fluctuates along with
each data point.α can only decrease slowly because so little information about the hidden variables
is obtained from each data point. For instance, it is very difficult to infer from what is believed
to be an essentially random sequence whether the underlying Bernoulli rate really tends to change
once every 1.15 trials or 1.16 trials. This may explain why subjects show no diminished sequential
effects over the course of a few hundred trials (Figure 1d). While the stochastic gradient results
demonstrate that, in principle, the correct values ofα can be learned via the sequence of binary
observationsx1, x2, . . . , further work is required to demonstrate whether and how neurons could
implement the stochastic gradient algorithm or an alternative learning algorithm .

5 Discussion

Humans and other animals constantly have to adapt their behavioral strategies in response to chang-
ing environments: growth or shrinkage in food supplies, development of new threats and opportuni-
ties, gross changes in weather patterns, etc. Accurate tracking of such changes allow the animals to
adapt their behavior in a timely fashion. Subjects have been observed to readily alter their behavioral
strategy in response to recent trends of stimulus statistics, even when such trends are spurious. While
such behavior is sub-optimal for certain behavioral experiments, which interleave stimuli randomly
or pseudo-randomly, it is appropriate for environments in which changes do take place on a slow
timescale. It has been observed, in tasks where statistical contingencies undergo occasional and
unsignaled changes, that monkeys weigh past observations linearly but with decaying coefficients
(into the past) in choosing between options [6]. We showed that human subjects behave very simi-
larly in 2AFC tasks with randomized design, and that such discounting gives rise to the frequently
observed sequential effects found in such tasks [5]. We showed that such exponential discounting ap-
proximatesoptimalBayesian inference under assumptions of statistical non-stationarity, and derived
an analytical, approximate relationship between the parameters of the optimal linear exponential fil-
ter and the statistical assumptions about the environment. We also showed how such computations
can be implemented by leaky integrating neuronal dynamics, and how the optimal tuning of the
leaky integration process can be achieved without explicit representation of probabilities.

Our work provides a normative account ofwhy exponential discounting is observed in both sta-
tionary and non-stationary environments, andhow it may be implemented neurally. The relevant
neural mechanisms seem to be engaged both in tasks when the environmental contingencies are
truly changing at unsignaled times, and also in tasks in which the underlying statistics are station-
ary but chance patterns masquerade as changing statistics (as seen in sequential effects). This work
bridges and generalizes previousdescriptiveaccounts of behavioral choice under non-stationary task
conditions [6], as well asmechanisticmodels of how neuronal dynamics give rise to trial-to-trial in-
teractions such as priming or sequential effects [5, 13, 18–20]. Based the relationship we derived
between the rate of behavioral discounting and the subjects’ implicit assumptions about the rate of
environmental changes, we were able to “reverse-engineer” the subjects’ internal assumptions. Sub-
jects appear to assumeα= .77, or changing about once every four trials. This may have implications
for understanding why working memory has the observed capacity of 4-7 items.
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In a recent human fMRI study [22], subjects appeared to have different learning rates in two phases
of slower and faster changes, but notably the first phase containedno changes, while the second
phase contained frequent ones. This is a potential confound, as it has been observed that adaptive
responses change significantly upon the first switch but then settle into a more stable regime [23]. It
is also worth noting that different levels of sequential effects/adaptive response appear to take place
at different time-scales [4,23], and different neural areas seem to be engaged in processing different
types of temporal patterns [24]. In the context of our model, it may imply that there is sequential
adaptation happening at different levels of processing (e.g. sensory, cognitive, motor), and their
different time-scales may reflect different characteristic rate of changes at these different levels.
A related issue is that brain needs not to have explicit representation of the rate of environmental
changes, which are implicitly encoded in the “leakiness” of neuronal integration over time. This is
consistent with the observation of sequential effects even when subjects are explicitly told that the
stimuli are random [4]. An alternative explanation is that subjects do not have complete faith in the
experimenter’s instructions [25]. Further work is needed to clarify these issues.

We used both a computationally optimal Bayesian learning algorithm, and a simpler stochastic gra-
dient descent algorithm, to learn the rate of change (1-α). Both algorithms were especially slow at
learning the case whenα=0, which corresponds to truly randomized inputs. This implies that com-
pletely random statistics are difficult to internalize, when the observer is searching over a much larger
hypothesis space that contains many possible models of statistical regularity, which can change over
time. This is consistent with previous work [26] showing that discerning “randomness” from binary
observations may require surprisingly many samples, when statistical regularities are presumed to
change over time. Although this earlier work used a different model for what kind of statistical
regularities are allowed, and how they change over time (temporally causal and Markovian in ours,
an acausal correlation function in theirs), as well as the nature of the inference task (on-line in our
setting, and off-line in theirs), the underlying principles and conclusions are similar: it is very diffi-
cult to discriminate a truly randomized sequence, which by chance would contain runs of repetitions
and alternations, from one that haschanging biasesfor repetitions and alternations over time.
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