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Theorem 3 Any algorithm suffers a regret larger thanT7 for some small enough constant
depending or andg.

Proof of Theorem 3. An elementary event of the probability space is charaadrlzy the infinite
sequencd,, I, ... of arms and by the infinite sequences of rewards correspgrdirach of the

arm: Xr, 1, X0, 2, X1,,1, X101, - - ., and so on. Armi; is the first arm drawn/, # I; is the
second one, and so on. Lk ¢ < ¢’ < p*. Let K* denote the smallegtsuch thafu;, > p* — 6.
Let K be the number of arms ifify, ..., Ix~_1} with expected reward smaller than or equal to

w* — &', An algorithm will request a number of arnd§, which is a random variable (possibly
depending on the obtained rewards). Lidie the expected reward of the best ardin, ..., Ik }.
Letx > 0 a parameter to be chosen. We have
Rn = Rn,lﬂgu*—é + Bnlﬂ>u*—6
> Tl(glﬂgm—a + K(5'1ﬂ>p*_5
2 n8lpgpr 5+ 80 Lps 5k
where the first inequality uses that> p* — ¢ implies that the armg,, . . ., Ik~ have been at least
tried once. By taking expectations on both sides and takirgnd/é’, we get
ER,, > ndP(i < p* —6) + k6’ (P(i > p* — 6) — P(K < k)) = §'kP(K > k).

Now the random variabl& follows a geometric distribution with parameter= Wm.
So we haveER, > §'x(1 — p)*. Takingd = §'n~Y/(B+1) andé’ a constant value 0, x*) (for

instance(2c,) /7 to ensurey < 2¢,6”), we haves = nTi andp is of orderl/x and obtain the
desired result.

Theorem 4 For any horizon timex > 2, the expected regret of the UCB-AIR algorithm satisfies
C(l 2 if 3<landu* <1
ER, < { CUosn)vn i 5<landur ()
C(logn)*nt+7  otherwise,i.e.ifu* =10org3 >1
with C' a constant depending only en, c; andg.

*The major part of this work was completed during the research interasi@prtis and INRIA SequeL.



Proof of Theorem 4. We essentially need to adapt the proof of Theorem 1. We récallX,,
denote the number of arms played up to time.et I, ..., I, denote the selected armi:is the
first arm drawn,/; the second, and so on. L&}, denote the time arrk being played for the first
time. 1 = S5, < 85, < --- < S, - Since armdy, ..., Ik, progressively enter in competition,
Lemma 1 no longer holds but an easy adaptation of |ts proofshioat fork € {I,..., Ik, },

E(Tk(n)|jl7 e 7IK71) S U+ Z?:u-‘rl Zs:u ]P)(Bk:,s,t > T) + Qk (2)
with .
Z H P(HSI (S [0715}7 Bk’,s’,t g ’7’) .
t=u+1 L'k S,/ <t

As in the proof of Theorem 1, since the exploration sequeatisfiese; > 2log(101logt), we have
P(3s" € [0,t], Bir st < T) < 1/2 for armsk’ such thatu,, > 7. Consequently, lettingv; . ;
denote the cardinal of the spt’ : k' # k, uyr > 7, Spr < t}, we have

O < Z?:l 2= Nrkt

Let us first consider the cageé = 1 or 8 > 1. In the case of UCB-AIRS;, is the smallest integer
strictly larger than(j — 1)(%+1)/8. To shorten notation, let us writs; for S;,. According to the

arm-increasing rule (try a new armif, _, < t%/(#*1) [S, S, . 1) is the time interval in which the
competing arms aré,, I, ..., I;.

As in the proof of Theorem 1, we consider= p* — Ay /2. We have
EQulle=k) < X 2Py E(2 e = k)

> (S — Sj)E(TN""”Sj e = k) ®)
Y (Sj1 = SE(27Nreesion)
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SinceN; ,s;_, follows a binomial distribution with parametgr— 1 andP(x. > ), we have

E(27 Vs ) = (1= P(u = 7)/2)i!
and

i (S~ SB(2 V) = I (S — ) (1 B(u 2 7)/2)7!
SIS - o2 — )P

whereé = ¢;27 1. Plugging (4) into (3), we obtain

(4)
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]E(AIeQIz) = 2ﬁﬁ+1 Z nljlaE(AIé[ EA?Jj_l)'

Now this last expectation can be bounded by the same conyngats forfEx (A1) in the proof of
Theorem 1. We have, for appropriate positive consta@htandC, depending o, andg,

E(Ar,Q,) < C1 30 55771980 < Cy(log K,,)? (®)

Using (2) andER,, Ze " E(Ar,z,), we obtain
ER, < K,JE{ [50(%%) + 1) logn} A (nAy) + Cy(log Kn)z}, (6)

from which Theorem 4 follows for the cage’ = 1 or 3 > 1. For the casgf < 1 andu* < 1,
replacm% by 5 8 leads to a similar version of (5) as

1-8

E(Ar,Q,) < G Y0 5717581 < Cy(log Ko) K

which gives the desired convergence rate sifiges of ordern®/2.



