
Adaptive Martingale Boosting

Philip M. Long
Google

plong@google.com

Rocco A. Servedio
Columbia University

rocco@cs.columbia.edu

Abstract

In recent work Long and Servedio [LS05] presented a “martingale boosting” al-
gorithm that works by constructing a branching program over weak classifiers and
has a simple analysis based on elementary properties of random walks. [LS05]
showed that this martingale booster can tolerate random classification noise when
it is run with a noise-tolerant weak learner; however, a drawback of the algorithm
is that it is notadaptive, i.e. it cannot effectively take advantage of variation in the
quality of the weak classifiers it receives.

We present an adaptive variant of the martingale boosting algorithm. This adap-
tiveness is achieved by modifying the original algorithm so that the random walks
that arise in its analysis have different step size depending on the quality of the
weak learner at each stage. The new algorithm inherits the desirable properties of
the original [LS05] algorithm, such as random classification noise tolerance, and
has other advantages besides adaptiveness: it requires polynomially fewer calls to
the weak learner than the original algorithm, and it can be used with confidence-
rated weak hypotheses that output real values rather than Boolean predictions.

1 Introduction

Boosting algorithms are efficient procedures that can be used to convert a weak learning algorithm
(one which outputs a weak hypothesis that performs only slightly better than random guessing for
a binary classification task) into a strong learning algorithm (one which outputs a high-accuracy
classifier). A rich theory of boosting has been developed over the past two decades; see [Sch03,
MR03] for some overviews. Two important issues for boosting algorithms which are relevant to the
current work areadaptivenessandnoise-tolerance; we briefly discuss each of these issues before
describing the contributions of this paper.

Adaptiveness. “Adaptiveness” refers to the ability of boosting algorithms to adjust to different
accuracy levels in the sequence of weak hypotheses that they are given. The first generation of
boosting algorithms [Sch90, Fre95] required the user to input an “advantage” parameterγ such that
the weak learner was guaranteed to always output a weak hypothesis with accuracy at least1/2+ γ.
Given an initial setting ofγ, even if the sequence of weak classifiers generated by the runs of the
weak learner included some hypotheses with accuracy (perhaps significantly) better than1/2+γ, the
early boosting algorithms were unable to capitalize on this extra accuracy; thus, these early boosters
were not adaptive. Adaptiveness is an important property since it is often the case that the advantage
of successive weak classifiers grows smaller and smaller as boosting proceeds.

A major step forward was the development of the AdaBoost algorithm [FS97]. AdaBoost does
not require a lower boundγ on the minimum advantage, and the error rate of its final hypothesis
depends favorably on the different advantages of the different weak classifiers in the sequence. More
precisely, if the accuracy of thet-th weak classifier is12 + γt, then the AdaBoost final hypothesis

has error at most
∏T−1

t=0

√
1 − 4γ2

t . This error rate is usually upper bounded (see [FS97]) by

exp

(
−2

T−1∑

t=0

γ2
t

)
(1)

and indeed (1) is a good approximation if noγt is too large.

Noise tolerance.One drawback of many standard boosting techniques, including AdaBoost, is that
they can perform poorly when run on noisy data [FS96, MO97, Die00, LS08]. Motivated in part by
this observation, in recent years boosting algorithms that work by constructingbranching programs
over the weak classifiers (note that this is in contrast with AdaBoost, which constructs a single
weighted sum of weak classifiers) have been developed and shown to enjoy some provable noise
tolerance. In particular, the algorithms of [KS05, LS05] have been shown to boost to optimally high
accuracy in the presence of random classification noise when run with a random classification noise
tolerant weak learner. (Recall that “random classification noise at rateη” means that the true binary
label of each example is independently flipped with probabilityη. This is a very well studied noise
model, see e.g. [AL88, Kea98, AD98, BKW03, KS05, RDM06] and many other references.)

While the noise tolerance of the boosters [KS05, LS05] is an attractive feature, a drawback of these
algorithms is that they do not enjoy the adaptiveness of algorithms like AdaBoost. The MMM
booster of [KS05] is not known to have any adaptiveness at all, and the “martingale boosting”
algorithm of [LS05] only has the following limited type of adaptiveness. The algorithm works in
stagest = 0, 1, . . . where in thet-th stage a collection oft + 1 weak hypotheses are obtained; letγt

denote the minimum advantage of theset + 1 hypotheses obtained in staget. [LS05] shows that the
final hypothesis constructed by martingale boosting has error at most

exp

(
− (
∑T−1

t=0 γt)
2

2T

)
. (2)

(2) is easily seen to always be a worse bound than (1), and the difference can be substan-
tial. Consider, for example, a sequence of weak classifiers in which the advantages decrease as
γt = 1/

√
t + 1 (this is in line with the oft-occurring situation, mentioned above, that advantages

grow smaller and smaller as boosting progresses). For anyǫ > 0 we can bound (1) from above byǫ
by takingT ≈ 1/

√
ǫ, whereas for this sequence of advantages the error bound (2) is never less than

0.5 (which is trivial), and in fact (2) approaches 1 ast → ∞.

Our contributions: adaptive noise-tolerant boosting. We give the first boosting algorithm that

is both adaptive enough to satisfy a bound ofexp
(
−Ω

(∑T−1
t=0 γ2

t

))
and is provably tolerant to

random classification noise. We do this by modifying the martingale boosting algorithm of [LS05]
to make it adaptive; the modification inherits the noise-tolerance of the original [LS05] algorithm. In
addition to its adaptiveness, the new algorithm also improves on [LS05] by constructing a branching
program with polynomially fewer nodes than the original martingale boosting algorithm (thus it
requires fewer calls to the weak learner), and it can be used directly with weak learners that generate
confidence-rated weak hypotheses (the original martingale boosting algorithm required the weak
hypotheses to be Boolean-valued).

Our approach. We briefly sketch the new idea that lets us achieve adaptiveness. Recall that the
original martingale booster of Long and Servedio formulates the boosting process as a random walk;
intuitively, as a random example progresses down through the levels of the branching program con-
structed by the [LS05] booster, it can be viewed as performing a simple random walk with step size 1
on the real line, where the walk is biased in the direction (positive or negative) corresponding to the
correct classification of the example. (The quantity tracked during the random walk is the difference
between the number of positive predictions and the number of negative predictions made by base
classifiers encountered in the braching program up to a given point in time.) This means that after
enough stages, a random positive example will end up to the right of the origin with high probability,
and contrariwise for a random negative example. Thus a high-accuracy classifier is obtained simply
by labelling each example according to the sign (+ or−) of its final location on the real line.

The new algorithm extends this approach in a simple and intuitive way, by having examples perform
a random walkwith variable step size: if the weak classifier at a given internal node has large

advantage, then the new algorithm makes the examples that reach that node take a large step in
the random walk. This is a natural way to exploit the fact that examples reaching such a large-
advantage node usually tend to walk in the right direction. The idea extends straightforwardly to
let us handleconfidence-ratedweak hypotheses (see [SS99]) whose predictions are real values in
[−1, 1] as opposed to Boolean values from{−1, 1}. This is done simply by scaling the step size for a
given examplex from a given node according to the numerical valueh(x) that the confidence-rated
weak hypothesish at that node assigns to examplex.

While using different step sizes at different levels is a natural idea, it introduces some complications.
In particular, if a branching program is constructed naively based on this approach, it is possible for
the number of nodes to increase exponentially with the depth. To avoid this, we use a randomized
rounding scheme together with the variable-step random walk to ensure that the number of nodes
in the branching program grows polynomially rather than exponentially in the number of stages
in the random walk (i.e. the depth of the branching program). In fact, we actually improve on
the efficiency of the original martingale boosting algorithm of [LS05] by a polynomial factor, by
truncating “extreme” nodes in the branching program that are “far” from the origin. Our analysis
shows that this truncation has only a small effect on the accuracy of the final classifier, while giving
a significant asymptotic savings in the size of the final branching program (roughly1/γ3 nodes as
opposed to the1/γ4 nodes of [KS05, LS05]).

2 Preliminaries

We make the following assumptions and notational conventions throughout the paper. There is an
initial distributionD over a domain of examplesX . There is a target functionc : X → {−1, 1} that
we are trying to learn. Given the target functionc and the distributionD, we writeD+ to denote
the distributionD restricted to the positive examples{x ∈ X : c(x) = 1}. Thus, for any event
S ⊆ {x ∈ X : c(x) = 1} we havePrD+ [x ∈ S] = PrD[x ∈ S]/PrD[c(x) = 1]. Similarly, we
writeD− to denoteD restricted to the negative examples{x ∈ X : c(x) = −1}.
As usual, our boosting algorithms work by repeatedly passing a distributionD′ derived fromD to
a weak learner, which outputs a classifierh. The future behavior will be affected by how wellh
performs on data distributed according toD′. To keep the analysis clean, we will abstract away
issues of sampling fromD′ and estimating the accuracy of the resultingh. These issues are trivial
if D is uniform over a moderate-sized domain (since all probabilities can be computed exactly), and
otherwise they can be handled via the same standard estimation techniques used in [LS05].

Martingale boosting. We briefly recall some key aspects of the martingale boosting algorithm of
[LS05] which are shared by our algorithm (and note some differences). Both boosters work by
constructing a leveled branching program. Each node in the branching program has alocation; this
is a pair(β, t) whereβ is a real value (a location on the line) andt ≥ 0 is an integer (the level of the
node; each level corresponds to a distinct stage of boosting). The initial node, where all examples
start, is at(0, 0). In successive stagest = 0, 1, 2, . . . the booster constructs nodes in the branching
program at levels0, 1, 2, For a location(β, t) where the branching program has a node, let
Dβ,t be the distributionD conditioned on reaching the node at(β, t). We sometimes refer to this
distributionDβ,t as thedistribution induced by node(β, t).

As boosting proceeds, in staget, each node(β, t) at level t is assigned a hypothesis which we
call hβ,t. Unlike [LS05] we shall allow confidence-rated hypotheses, so each weak hypothesis is a
mapping fromX to [−1, 1]. Once the hypothesishβ,t has been obtained, out-edges are constructed
from (β, t) to its child nodes at levelt + 1. While the original martingale boosting algorithm of
[LS05] had two child nodes at(β − 1, t + 1) and(β + 1, t + 1) from each internal node, as we
describe in Section 3 our new algorithm will typically havefour child nodes for each node (but may,
for a confidence-rated base classifier, have as many as eight).

Our algorithm. To fully specify our new boosting algorithm we must describe:

(1) How the weak learner is run at each node(β, t) to obtain a weak classifier. This is straight-
forward for the basic case of “two-sided” weak learners that we describe in Section 3 and
somewhat less straightforward in the usual (non-two-sided) weak learner setting. In Sec-
tion 5.1 we describe how to use a standard weak learner, and how to handle noise – both
extensions borrow heavily from earlier work [LS05, KS05].

(2) What function is used to label the node(β, t), i.e. how to route subsequent examples that
reach(β, t) to one of the child nodes. It turns out that this function is a randomized version
of the weak classifier mentioned in point (1) above.

(3) Where to place the child nodes at levelt + 1; this is closely connected with (2) above.

As in [LS05], once the branching program has been fully constructed down through some levelT
the final hypothesis it computes is very simple. Given an input examplex, the output of the final
hypothesis onx is sgn(β) where(β, T) is the location in levelT to whichx is ultimately routed as
it passes through the branching program.

3 Boosting a two-sided weak learner

In this section we assume that we have atwo-sided weak learner. This is an algorithm which, given
a distributionD, can always obtain hypotheses that havetwo-sided advantageas defined below:

Definition 1 A hypothesish : X → [−1, 1] has two-sided advantageγ with respect toD if it
satisfies bothEx∈D+ [h(x)] ≥ γ andEx∈D− [h(x)] ≤ −γ.

As we explain in Section 5.1 we may apply methods of [LS05] to reduce the typical case, in which
we only receive “normal” weak hypotheses rather than two-sided weak hypotheses, to this case.

The branching program starts off with a single node at location(0, 0). Assuming the branching
program has been constructed up through levelt, we now explain how it is extended in thet-th stage
up through levelt + 1. There are two basic steps in each stage: weak training and branching.

Weak training. Consider a given node at location(β, t) in the branching program. As in [LS05] we
construct a weak hypothesishβ,t simply by running the two-sided weak learner on examples drawn
fromDβ,t and lettinghβ,t be the hypothesis it generates. Let us writeγβ,t to denote

γβ,t
def
= min{Ex∈(Dβ,t)+ [hβ,t(x)],Ex∈(Dβ,t)− [−hβ,t(x)]}.

We callγβ,t theadvantageat node(β, t).

We do this for all nodes at levelt. Now we define theadvantage at levelt to be

γt
def
= min

β
γβ,t. (3)

Branching. Intuitively, we would like to useγt as a scaling factor for the “step size” of the random
walk at levelt. Since we are using confidence-rated weak hypotheses, it is also natural to have
the step that examplex takes at a given node be proportional to the value of the confidence-rated
hypothesis at that node onx. The most direct way to do this would be to label the node(β, t) with
the weak classifierhβ,t and to route each examplex to a node at location(β + γthβ,t(x), t + 1).
However, there are obvious difficulties with this approach; for one thing a single node at(β, t) could
give rise to arbitrarily many (infinitely many, if|X | = ∞) nodes at levelt+1. Even if the hypotheses
hβ,t were all guaranteed to{−1, 1}-valued, if we were to construct a branching program in this way
then it could be the case that by theT -th stage there are2T−1 distinct nodes at levelT .

We get around this problem by creating nodes at levelt+1 only at integer multiples ofγt

2 . Note that
this “granularity” that is used is different at each level, depending on the advantage at each level (we
shall see in the next section that this is crucial for the analysis). This keeps us from having too many
nodes in the branching program at levelt + 1. Of course, we only actually create those nodes in the
branching program that have an incoming edge as described below (later we will give an analysis to
bound the number of such nodes).

We simulate the effect of having an edge from(β, t) to (β + γthβ,t(x), t + 1) by usingtwo edges
from (β, t) to (i · γt/2, t + 1) and to((i + 1) · γt/2, t + 1), wherei is the unique integer such that
i ·γt/2 ≤ β +γthβ,t(x) < (i+1) ·γt/2. To simulate routing an examplex to (β +γthβ,t(x), t+1),
the branching program routesx randomly along one of these two edges so that the expected location
at whichx ends up is(β +γthβ,t(x), t+1). More precisely, ifβ +γthβ,t(x) = (i+ρ) ·γt/2 where
0 ≤ ρ < 1, then the rule used at node(β, t) to route an examplex is “with probabilityρ sendx to
((i + 1) · γt/2, t + 1) and with probability(1 − ρ) sendx to (i · γt/2, t + 1).”

Since|hβ,t(x)| ≤ 1 for all x by assumption, it is easy to see that at most eight outgoing edges
are required from each node(β, t). Thus the branching program that the booster constructs uses
a randomized variant of each weak hypothesishβ,t to route examples along one of (at most) eight
outgoing edges.

4 Proof of correctness for boosting a two-sided weak learner

The following theorem shows that the algorithm described above is an effective adaptive booster for
two-sided weak learners:

Theorem 2 Consider running the above booster forT stages. Fort = 0, . . . , T − 1 let the val-
uesγ0, . . . , γT−1 > 0 be defined as described above, so each invocation of the two-sided weak
learner on distributionDβ,t yields a hypothesishβ,t that hasγβ,t ≥ γt. Then the final hypothesish
constructed by the booster satisfies

Prx∈D[h(x) 6= c(x)] ≤ exp

(
−1

8

T−1∑

t=0

γ2
t

)
. (4)

The algorithm makes at mostM ≤ O(1) ·
∑T−1

t=0
1
γt

∑t−1
j=0 γj calls to the weak learner (i.e. con-

structs a branching program with at mostM nodes).

Proof: We will show thatPrx∈D+ [h(x) 6= 1] ≤ exp
(
− 1

8

∑T−1
t=0 γ2

t

)
; a completely symmetric

argument shows a similar bound for negative examples, which gives (4).

For t = 1, . . . , T we define the random variableAt as follows: given a draw ofx from D+ (the
original distributionD restricted to positive examples), the value ofAt is γt−1hβ,t−1(x), where
(β, t − 1) is the location of the node thatx reaches at levelt of the branching program. Intuitively
At captures the direction and size of the move that we would likex to make during the branching
step that brings it to levelt.

We defineBt to be the random variable that captures the direction and size of the move thatx
actuallymakes during the branching step that brings it to levelt. More precisely, leti be the integer
such thati · (γt−1/2) ≤ β + γt−1hβ,t−1(x) < (i + 1) · (γt−1/2), and letρ ∈ [0, 1) be such that
β + γt−1hβ,t−1(x) = (i + ρ) · (γt−1/2). Then

Bt =

{
((i + 1) · (γt−1/2)− β) with probabilityρ, and
(i · (γt−1/2) − β) with probability1 − ρ.

We have thatE[Bt] (where the expectation is taken only over theρ-probability in the definition of
Bt) equals((i + ρ) · (γt−1/2) − β)hβ,t−1(x) = γt−1hβ,t−1(x) = At. Let Xt denote

∑t
i=1 Bt, so

the value ofXt is the actual location on the real line wherex ends up at levelt.

Fix 1 ≤ t ≤ T and let us consider the conditional random variable(Xt|Xt−1). Conditioned on
Xt−1 taking any particular value (i.e. onx reaching any particular location(β, t− 1)), we have that
x is distributed according to(Dβ,t−1)

+, and thus we have

E[Xt|Xt−1] = Xt−1 + Ex∈(Dβ,t)+ [γt−1hβ,t−1(x)] ≥ Xt−1 + γt−1γβ,t−1 ≥ Xt−1 + γ2
t−1, (5)

where the first inequality follows from the two-sided advantage ofhβ,t−1.

For t = 0, . . . , T , define the random variableYt asYt = Xt −
∑t−1

i=0 γ2
i (soY0 = X0 = 0). Since

conditioning on the value ofYt−1 is equivalent to conditioning on the value ofXt−1, using (5) we
get

E[Yt|Yt−1] = E

[
Xt −

t−1∑

i=0

γ2
i

∣∣Yt−1

]
= E[Xt|Yt−1] −

t−1∑

i=0

γ2
i ≥ Xt−1 −

t−2∑

i=0

γ2
i = Yt−1,

so the sequence of random variablesY0, . . . , YT is a sub-martingale.1 To see that this sub-martingale
has bounded differences, note that we have

|Yt − Yt−1| = |Xt − Xt−1 − γ2
t−1| = |Bt − γ2

t−1|.
1The more common definition of a sub-martingale requires thatE[Yt|Y0, ..., Yt−1] ≤ Yt−1, but the weaker

assumption thatE[Yt|Yt−1] ≤ Yt−1 suffices for the concentration bounds that we need (see [ASE92, Hay05]).

The value ofBt is obtained by first moving byγt−1hβ,t−1(x), and then rounding to a neighboring
multiple ofγt−1/2, so|Bt| ≤ (3/2)γt−1, which implies|Yt − Yt−1| ≤ (3/2)γt−1 + γ2

t−1 ≤ 2γt−1.

Now recall Azuma’s inequality for sub-martingales:

Let 0 = Y0, . . . , YT be a sub-martingale which has|Yi − Yi−1| ≤ ci for each

i = 1, . . . , T . Then for anyλ > 0 we havePr[YT ≤ −λ] ≤ exp
(
− λ2

2
P

T
i=1

c2
i

)
.

We apply this with eachci = 2γi−1 andλ =
∑T−1

t=0 γ2
t . This gives us that the error rate ofh on

positive examples,Prx∈D+ [h(x) = −1], equals

Pr[XT < 0] = Pr[YT < −λ] ≤ exp

(
− λ2

8
∑T−1

t=0 γ2
t

)
= exp

(
−1

8

T−1∑

t=0

γ2
t

)
. (6)

So we have established (4); it remains to bound the number of nodes constructed in the branching
program. Let us writeMt to denote the number of nodes at levelt, soM =

∑T−1
t=0 Mt.

The t-th level of boosting can cause the rightmost (leftmost) node to be at most2γt−1 distance
farther away from the origin than the rightmost (leftmost) node at the(t − 1)-st level. This means
that at levelt, every node is at a position(β, t) with |β| ≤ 2

∑t−1
j=0 γj . Since nodes are placed at

integer multiples ofγt/2, we have thatM =
∑T−1

t=0 Mt ≤ O(1) ·
∑T−1

t=0
1
γt

∑t−1
j=0 γj .

Remark. Consider the case in which each advantageγt is justγ and we are boosting to accuracy
ǫ. As usual takingT = O(log(1/ǫ)/γ2) gives an error bound ofǫ. With these parameters we have
thatM ≤ O(log2(1/ǫ)/γ4), the same asymptotic bound achieved in [LS05]. In the next section we
describe a modification of the algorithm that improves this bound by essentially a factor of1

γ
.

4.1 Improving efficiency by freezing extreme nodes

Here we describe a variant of the algorithm from the previous section that constructs a branching
program with fewer nodes.

The algorithm requires an input parameterǫ which is an upper bound on the desired final error of the
aggregate classifier. Fort ≥ 1, after the execution of stept − 1 of boosting, when all nodes at level

t have been created, each node(α, t) with |α| >

√(
8
∑t−1

s=0 γ2
s

) (
2 ln t + ln 4

ǫ

)
is “frozen.” The

algorithm commits to classifying any test examples routed to any such nodes according tosgn(α),
and these nodes are not used to generate weak hypotheses during the next round of training.

We have the following theorem about the performance of this algorithm:

Theorem 3 Consider running the modified booster forT stages. Fort = 0, . . . , T − 1 let the
valuesγ1, . . . , γT > 0 be defined as described above, so each invocation of the weak learner on
distributionDβ,t yields a hypothesishβ,t that hasγβ,t ≥ γt. Then the final output hypothesish of
the booster satisfies

Prx∈D[h(x) 6= c(x)] ≤ ǫ

2
+ exp

(
−1

8

T−1∑
t=0

γ2
t

)
. (7)

The algorithm makesO

(√(∑T−1
t=0 γ2

t

) (
ln T + ln 1

ǫ

)
·∑T−1

t=0
1
γt

)
calls to the weak learner.

Proof: As in the previous proof it suffices to boundPrx∈D+ [h(x) 6= 1]. The proof of Theorem 2

gives us that if we never did any freezing, thenPrx∈D+ [h(x) 6= 1] ≤ exp
(
− 1

8

∑T−1
t=0 γ2

t

)
. Now

let us analyze the effect of freezing in a given staget < T . Let At be the distance from the origin

past which examples are frozen in roundt; i.e. At =
√

(8
∑t−1

s=0 γ2
s)(2 ln t + ln 4

ǫ
). Nearly exactly

the same analysis as proves (6) can be used here: for a positive examplex to be incorrectly frozen

in roundt, it must be the caseXt < −At, or equivalentlyYt < −At −
∑t−1

i=0 γ2
i . Thus our choice

of At gives us thatPrx∈D+ [x incorrectly frozen in roundt] is at most

Pr[Yt ≤ −At −
t−1∑

i=0

γ2
t] ≤ Pr[Yt ≤ −At] ≤

ǫ

4t2
,

so consequently we havePrx∈D+[x ever incorrectly frozen] ≤ ǫ
2 . From here we may argue as in

[LS05]: we have thatPrx∈D+ [h(x) = 0] equals

Prx∈D+[h(x = 0 andx is frozen] + Prx∈D+ [h(x) = 0 andx is not frozen] ≤ ǫ

2
+ exp

(
−1

2

T−1∑

t=0

γ2
t

)

which gives (7). The bound on the number of calls to the weak learner follows from the
fact that there areO(At/γt) such calls in each stage of boosting, and the fact thatAt ≤√

(8
∑T−1

s=0 γ2
s)(2 lnT + ln 4

ǫ
) for all t.

It is easy to check that ifγt = γ for all t, takingT = O(log(1/ǫ)/γ2) the algorithm in this section
will construct anǫ-accurate hypothesis that is anO(log2(1/ǫ)/γ3)-node branching program.

5 Extensions

5.1 Standard weak learners

In Sections 3 and 4, we assumed that the boosting algorithm had access to a two-sided weak learner,
which is more accurate than random guessing on both the positive and the negative examples sepa-
rately. To make use of a standard weak learner, which is merely more accurate than random guessing
on average, we can borrow ideas from [LS05].

The idea is to force a standard weak learner to provide a hypothesis with two-sided accuracy by (a)
balancing the distribution so that positive and negative examples are accorded equal importance, (b)
balancing the predictions of the output of the weak learner so that it doesn’t specialize on one kind
of example.

Definition 4 Given a probability distributionD over examples, let̂D be the distribution obtained
by rescaling the positive and negative examples so that they have equal weight: i.e., letD̂[S] =
1
2D+[S] + 1

2D−[S].

Definition 5 Given a confidence-rated classifierh : X → [−1, 1] and a probability distributionD
overX , let the balanced variant ofh with respect toD be the function̂h : X → [−1, 1] defined as
follows: (a) ifEx∈D[h(x)] ≥ 0, then, for allx ∈ X , ĥ(x) = h(x)+1

Ex∈D [h(x)]+1 −1. (b) if Ex∈D[h(x)] ≤
0, then, for allx ∈ X , ĥ(x) = h(x)−1

−Ex∈D[h(x)]+1 + 1.

The analysis is the natural generalization of Section 5 of [LS05] to confidence-rated classifiers.

Lemma 6 If D is balanced with respect toc, and h is a confidence-rated classifier such that
Ex∈D[h(x)c(x)] ≥ γ, thenEx∈D[ĥ(x)c(x)] ≥ γ/2.

Proof. Assume without loss of generality thatEx∈D[h(x)] ≥ 0 (the other case can be handled
symmetrically). By linearity of expectation

Ex∈D[ĥ(x)c(x)] =
Ex∈D[h(x)c(x)]

Ex∈D[h(x)] + 1
+ Ex∈D[c(x)]

(
1

Ex∈D[h(x]) + 1
− 1

)
.

SinceD is balanced we haveEx∈D[c(x)] = 0, and henceEx∈D[ĥ(x)c(x)] = Ex∈D [h(x)c(x)]
Ex∈D [h(x)]+1 , so the

lemma follows from the fact thatEx∈D[h(x)] ≤ 1.

We will use a standard weak learner to simulate a two-sided weak learner as follows. Given a
distributionD, the two-sided weak learner will pasŝD to the standard weak learner, take its output
g, and returnh = ĝ. Our next lemma analyzes this transformation.

Lemma 7 If E
x∈ bD[g(x)c(x)] ≥ γ, thenEx∈D+ [h(x)] ≥ γ/2 andEx∈D− [−h(x)] ≥ γ/2.

Proof: Lemma 6 implies thatE
x∈ bD[h(x)c(x)] ≥ γ/2. Expanding the definition of̂D, we have

Ex∈D+[h(x)] − Ex∈D− [h(x)] ≥ γ. (8)

Sinceh balancedg with respect toD̂ and c, we haveE
x∈ bD[h(x)] = 0. Once again expanding

the definition ofD̂, we get thatEx∈D+ [h(x)] + Ex∈D− [h(x)] = 0 which impliesEx∈D− [h(x)] =
−Ex∈D+[h(x)] andEx∈D+[h(x)] = −Ex∈D+[h(x)]. Substituting each of the RHS for its respec-
tive LHS in (8) completes the proof.

Lemma 7 is easily seen to imply counterparts of Theorems 2 and 3in which the requirement of a
two-sided weak learner is weakened to require only standard weak learning, but eachγt is replaced
with γt/2.

5.2 Tolerating random classification noise

As in [LS05], noise tolerance is facilitated by the fact that the path through the network is not
affected by altering the label of an example. On the other hand, balancing the distribution before
passing it to the weak learner, which was needed to use a standard weak learner, may disturb the
independence between the event that an example is noisy, and the random draw ofx. This can be
repaired exactly as in [KS05, LS05]; because of space constraints we omit the details.

References

[AD98] J. Aslam and S. Decatur. Specification and simulation of statistical query algorithms for efficiency
and noise tolerance.J. Comput & Syst. Sci., 56:191–208, 1998.

[AL88] Dana Angluin and Philip Laird. Learning from noisy examples.Machine Learning, 2(4):343–370,
1988.

[ASE92] N. Alon, J. Spencer, and P. Erdos.The Probabilistic Method (1st ed.). Wiley-Interscience, New
York, 1992.

[BKW03] A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem, and the statisti-
cal query model.J. ACM, 50(4):506–519, 2003.

[Die00] T.G. Dietterich. An experimental comparison of three methods for constructing ensembles of deci-
sion trees: bagging, boosting, and randomization.Machine Learning, 40(2):139–158, 2000.

[Fre95] Y. Freund. Boosting a weak learning algorithm by majority.Information and Computation,
121(2):256–285, 1995.

[FS96] Y. Freund and R. Schapire. Experiments with a new boosting algorithm. InICML, pages 148–156,
1996.

[FS97] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an appli-
cation to boosting.JCSS, 55(1):119–139, 1997.

[Hay05] T. P. Hayes. A large-deviation inequality for vector-valued martingales. 2005.

[Kea98] M. Kearns. Efficient noise-tolerant learning from statistical queries.JACM, 45(6):983–1006, 1998.

[KS05] A. Kalai and R. Servedio. Boosting in the presence of noise.JCSS, 71(3):266–290, 2005.

[LS05] P. Long and R. Servedio. Martingale boosting. InProc. 18th Annual COLT, pages 79–94, 2005.

[LS08] P. Long and R. Servedio. Random classification noise defeats all convex potential boosters. In
ICML, 2008.

[MO97] R. Maclin and D. Opitz. An empirical evaluation of bagging and boosting. InAAAI/IAAI, pages
546–551, 1997.

[MR03] R. Meir and G. Rätsch. An introduction to boosting and leveraging. InLNAI Advanced Lectures on
Machine Learning, pages 118–183, 2003.

[RDM06] L. Ralaivola, F. Denis, and C. Magnan. CN=CNNN. InICML, pages 265–272, 2006.

[Sch90] R. Schapire. The strength of weak learnability.Machine Learning, 5(2):197–227, 1990.

[Sch03] R. Schapire.The boosting approach to machine learning: An overview. Springer, 2003.

[SS99] R. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions.Ma-
chine Learning, 37:297–336, 1999.

