Adaptive Martingale Boosting

Philip M. Long Rocco A. Servedio
Google Columbia University
plong@google.com rocco@cs.columbia.edu
Abstract

In recent work Long and Servedio [LS05] presented a “martingale boosting” al-
gorithm that works by constructing a branching program over weak classifiers and
has a simple analysis based on elementary properties of random walks. [LS05]
showed that this martingale booster can tolerate random classification noise when
it is run with a noise-tolerant weak learner; however, a drawback of the algorithm
is that it is notadaptive i.e. it cannot effectively take advantage of variation in the
quality of the weak classifiers it receives.

We present an adaptive variant of the martingale boosting algorithm. This adap-
tiveness is achieved by modifying the original algorithm so that the random walks
that arise in its analysis have different step size depending on the quality of the
weak learner at each stage. The new algorithm inherits the desirable properties of
the original [LS05] algorithm, such as random classification noise tolerance, and
has other advantages besides adaptiveness: it requires polynomially fewer calls to
the weak learner than the original algorithm, and it can be used with confidence-
rated weak hypotheses that output real values rather than Boolean predictions.

1 Introduction

Boosting algorithms are efficient procedures that can be used to convert a weak learning algorithm
(one which outputs a weak hypothesis that performs only slightly better than random guessing for
a binary classification task) into a strong learning algorithm (one which outputs a high-accuracy
classifier). A rich theory of boosting has been developed over the past two decades; see [Sch03,
MRO03] for some overviews. Two important issues for boosting algorithms which are relevant to the
current work areadaptivenesandnoise-tolerancewe briefly discuss each of these issues before
describing the contributions of this paper.

Adaptiveness. “Adaptiveness” refers to the ability of boosting algorithms to adjust to different
accuracy levels in the sequence of weak hypotheses that they are given. The first generation of
boosting algorithms [Sch90, Fre95] required the user to input an “advantage” pararsatdr that

the weak learner was guaranteed to always output a weak hypothesis with accuracyl @2least

Given an initial setting ofy, even if the sequence of weak classifiers generated by the runs of the
weak learner included some hypotheses with accuracy (perhaps significantly) betiei2thanthe

early boosting algorithms were unable to capitalize on this extra accuracy; thus, these early boosters
were not adaptive. Adaptiveness is an important property since it is often the case that the advantage
of successive weak classifiers grows smaller and smaller as boosting proceeds.

A major step forward was the development of the AdaBoost algorithm [FS97]. AdaBoost does
not require a lower bound on the minimum advantage, and the error rate of its final hypothesis
depends favorably on the different advantages of the different weak classifiers in the sequence. More
precisely, if the accuracy of theth weak classifier i% + 7¢, then the AdaBoost final hypothesis

has error at mos]f[;f:_ol /1 — 4~2. This error rate is usually upper bounded (see [FS97]) by

T-1
exp <—2 > %2) 1)
t=0
and indeed (1) is a good approximation if fois too large.

Noise tolerance One drawback of many standard boosting techniques, including AdaBoost, is that
they can perform poorly when run on noisy data [FS96, MO97, Die00, LS08]. Motivated in part by
this observation, in recent years boosting algorithms that work by constrictinghing programs

over the weak classifiers (note that this is in contrast with AdaBoost, which constructs a single
weighted sum of weak classifiers) have been developed and shown to enjoy some provable noise
tolerance. In particular, the algorithms of [KS05, LS05] have been shown to boost to optimally high
accuracy in the presence of random classification noise when run with a random classification noise
tolerant weak learner. (Recall that “random classification noise atjtateans that the true binary

label of each example is independently flipped with probabilityhis is a very well studied noise
model, see e.g. [AL88, Kea98, AD98, BKW03, KS05, RDM06] and many other references.)

While the noise tolerance of the boosters [KS05, LS05] is an attractive feature, a drawback of these
algorithms is that they do not enjoy the adaptiveness of algorithms like AdaBoost. The MMM
booster of [KS05] is not known to have any adaptiveness at all, and the “martingale boosting”
algorithm of [LS05] only has the following limited type of adaptiveness. The algorithm works in
stagesg = 0, 1, ... where in the-th stage a collection af+ 1 weak hypotheses are obtained;jet
denote the minimum advantage of thesel hypotheses obtained in staggLS05] shows that the

final hypothesis constructed by martingale boosting has error at most

exp((Zt2(%7t)) .)

(2) is easily seen to always be a worse bound than (1), and the difference can be substan-
tial. Consider, for example, a sequence of weak classifiers in which the advantages decrease as
v = 1/4/t+1 (this is in line with the oft-occurring situation, mentioned above, that advantages
grow smaller and smaller as boosting progresses). Fot ang we can bound (1) from above lay

by takingT' = 1/+/¢, whereas for this sequence of advantages the error bound (2) is never less than
0.5 (which is trivial), and in fact (2) approaches 1ltas> co.

Our contributions: adaptive noise-tolerant boosting. We give the first boosting algorithm that
is both adaptive enough to satisfy a bounc:of (Q (Zt 0 Vi)) and is provably tolerant to

random classification noise. We do this by modifying the martingale boosting algorithm of [LS05]

to make it adaptive; the modification inherits the noise-tolerance of the original [LS05] algorithm. In
addition to its adaptiveness, the new algorithm also improves on [LS05] by constructing a branching
program with polynomially fewer nodes than the original martingale boosting algorithm (thus it
requires fewer calls to the weak learner), and it can be used directly with weak learners that generate
confidence-rated weak hypotheses (the original martingale boosting algorithm required the weak
hypotheses to be Boolean-valued).

Our approach. We briefly sketch the new idea that lets us achieve adaptiveness. Recall that the
original martingale booster of Long and Servedio formulates the boosting process as a random walk;
intuitively, as a random example progresses down through the levels of the branching program con-
structed by the [LSO5] booster, it can be viewed as performing a simple random walk with step size 1
on the real line, where the walk is biased in the direction (positive or negative) corresponding to the
correct classification of the example. (The quantity tracked during the random walk is the difference
between the number of positive predictions and the number of negative predictions made by base
classifiers encountered in the braching program up to a given point in time.) This means that after
enough stages, a random positive example will end up to the right of the origin with high probability,
and contrariwise for a random negative example. Thus a high-accuracy classifier is obtained simply
by labelling each example according to the signar —) of its final location on the real line.

The new algorithm extends this approach in a simple and intuitive way, by having examples perform
a random walkwith variable step sizeif the weak classifier at a given internal node has large

advantage, then the new algorithm makes the examples that teat node take a large step in

the random walk. This is a natural way to exploit the fact that examples reaching such a large-
advantage node usually tend to walk in the right direction. The idea extends straightforwardly to
let us handleconfidence-rateeveak hypotheses (see [SS99]) whose predictions are real values in
[—1, 1] as opposed to Boolean values fr¢ml, 1}. This is done simply by scaling the step size for a
given example: from a given node according to the numerical valje) that the confidence-rated
weak hypothesis at that node assigns to example

While using different step sizes at different levels is a natural idea, it introduces some complications.
In particular, if a branching program is constructed naively based on this approach, it is possible for
the number of nodes to increase exponentially with the depth. To avoid this, we use a randomized
rounding scheme together with the variable-step random walk to ensure that the number of nodes
in the branching program grows polynomially rather than exponentially in the number of stages
in the random walk (i.e. the depth of the branching program). In fact, we actually improve on
the efficiency of the original martingale boosting algorithm of [LS05] by a polynomial factor, by
truncating “extreme” nodes in the branching program that are “far” from the origin. Our analysis
shows that this truncation has only a small effect on the accuracy of the final classifier, while giving
a significant asymptotic savings in the size of the final branching program (rougiifynodes as
opposed to theé /v* nodes of [KS05, LS05]).

2 Preliminaries

We make the following assumptions and notational conventions throughout the paper. There is an
initial distribution D over a domain of example$. There is a target function: X — {—1, 1} that

we are trying to learn. Given the target functioand the distributiorD, we write D to denote

the distributionD restricted to the positive examplé¢s € X : ¢(x) = 1}. Thus, for any event

S C{z € X :c(x) =1} we havePrp+ [z € S] = Prplx € S|/Prp[c(z) = 1]. Similarly, we

write D~ to denoteD restricted to the negative examplese X : ¢(z) = —1}.

As usual, our boosting algorithms work by repeatedly passing a distribiXiaerived fromD to

a weak learner, which outputs a classifter The future behavior will be affected by how wéill
performs on data distributed according®. To keep the analysis clean, we will abstract away
issues of sampling fror®’ and estimating the accuracy of the resultingThese issues are trivial

if D is uniform over a moderate-sized domain (since all probabilities can be computed exactly), and
otherwise they can be handled via the same standard estimation techniques used in [LS05].

Martingale boosting. We briefly recall some key aspects of the martingale boosting algorithm of
[LS05] which are shared by our algorithm (and note some differences). Both boosters work by
constructing a leveled branching program. Each node in the branching prograrfobasa this

is a pair(3,t) wheregs is a real value (a location on the line) ah@t 0 is an integer (the level of the

node; each level corresponds to a distinct stage of boosting). The initial node, where all examples
start, is at(0, 0). In successive stages= 0, 1,2, ... the booster constructs nodes in the branching
program at level®), 1,2, For a location(,t) where the branching program has a node, let
Dg.+ be the distributiorD conditioned on reaching the node(at ¢). We sometimes refer to this
distributionDg ; as thedistribution induced by nodgs, t).

As boosting proceeds, in stageeach nodds,t) at levelt is assigned a hypothesis which we

call hg+. Unlike [LSO5] we shall allow confidence-rated hypotheses, so each weak hypothesis is a
mapping fromX to [—1, 1]. Once the hypothesiss ; has been obtained, out-edges are constructed
from (5,) to its child nodes at level + 1. While the original martingale boosting algorithm of
[LS05] had two child nodes i3 — 1,¢ + 1) and (3 + 1,t + 1) from each internal node, as we
describe in Section 3 our new algorithm will typically hdeer child nodes for each node (but may,

for a confidence-rated base classifier, have as many as eight).

Our algorithm. To fully specify our new boosting algorithm we must describe:

(1) How the weak learner is run at each ng@et) to obtain a weak classifier. This is straight-
forward for the basic case of “two-sided” weak learners that we describe in Section 3 and
somewhat less straightforward in the usual (non-two-sided) weak learner setting. In Sec-
tion 5.1 we describe how to use a standard weak learner, and how to handle noise — both
extensions borrow heavily from earlier work [LS05, KS05].

(2) What function is used to label the no@# ¢), i.e. how to route subsequent examples that
reach(3, t) to one of the child nodes. It turns out that this function is a randomized version
of the weak classifier mentioned in point (1) above.

(3) Where to place the child nodes at level 1; this is closely connected with (2) above.

As in [LS05], once the branching program has been fully constructed down through some level
the final hypothesis it computes is very simple. Given an input examptiee output of the final
hypothesis onx: is sgn(3) where(3,T) is the location in level” to whichz is ultimately routed as

it passes through the branching program.

3 Boosting a two-sided weak learner

In this section we assume that we hawava-sided weak learneiThis is an algorithm which, given
a distributionD, can always obtain hypotheses that have-sided advantagas defined below:

Definition 1 A hypothesi: : X — [—1,1] hastwo-sided advantage with respect toD if it
satisfies bottE,cp+[h(z)] > v andE,cp- [h(z)] < —.

As we explain in Section 5.1 we may apply methods of [LSO05] to reduce the typical case, in which
we only receive “normal” weak hypotheses rather than two-sided weak hypotheses, to this case.

The branching program starts off with a single node at locafip®). Assuming the branching
program has been constructed up through lemegke now explain how it is extended in tieh stage
up through levet + 1. There are two basic steps in each stage: weak training and branching.

Weak training. Consider a given node at locati¢fi, ¢) in the branching program. As in [LS05] we
construct a weak hypothedisg , simply by running the two-sided weak learner on examples drawn
fromDg ; and lettinghg + be the hypothesis it generates. Let us wiite to denote

def .
V8.t = mln{EIE(Dﬁ,t)+ [hﬁat(x)]7 EmE(Dﬁ,t)’ [_hﬁﬂf(w)]}'

We callvys ;. theadvantageat node(3, t).

We do this for all nodes at level Now we define thadvantage at levelto be

def .
Yt = n%ln VBt (3

Branching. Intuitively, we would like to usey, as a scaling factor for the “step size” of the random
walk at levelt. Since we are using confidence-rated weak hypotheses, it is also natural to have
the step that example takes at a given node be proportional to the value of the confidence-rated
hypothesis at that node an The most direct way to do this would be to label the n¢@g) with

the weak classifieh s , and to route each exampieto a node at locatiofd + y:hg . (z),t + 1).
However, there are obvious difficulties with this approach; for one thing a single n¢dg atould

give rise to arbitrarily many (infinitely many, fX| = co) nodes at level+1. Even if the hypotheses

hg, were all guaranteed tp—1, 1}-valued, if we were to construct a branching program in this way
then it could be the case that by theth stage there ar2” —! distinct nodes at level.

We get around this problem by creating nodes at level only at integer multiples o¥-. Note that

this “granularity” that is used is different at each level, depending on the advantage at each level (we
shall see in the next section that this is crucial for the analysis). This keeps us from having too many
nodes in the branching program at levetl 1. Of course, we only actually create those nodes in the
branching program that have an incoming edge as described below (later we will give an analysis to
bound the number of such nodes).

We simulate the effect of having an edge frgmt) to (8 + ~v.hg(z),t + 1) by usingtwo edges

from (8,¢) to (i - v,/2,t + 1) and to((i + 1) - v./2,t + 1), wherei is the unique integer such that
i-v/2 < B+vhgi(x) < (i+1)-7¢/2. To simulate routing an exampteto (8 +y:hs (x), t+1),

the branching program routesandomly along one of these two edges so that the expected location
atwhichz ends up 5 +v:hg, (), t +1). More precisely, i3 + v.hg,(z) = (i+p) -7 /2 where

0 < p < 1, then the rule used at nodg, ¢) to route an example is “with probability p sendz to
((t+1)-7¢/2,t+ 1) and with probability(1 — p) sendz to (¢ - v;/2,¢ + 1).”

Since|hg,(z)| < 1 for all x by assumption, it is easy to see that at most eight outgoing edges
are required from each nodg, t). Thus the branching program that the booster constructs uses
a randomized variant of each weak hypothésjs to route examples along one of (at most) eight
outgoing edges.

4 Proof of correctness for boosting a two-sided weak learner

The following theorem shows that the algorithm described above is an effective adaptive booster for
two-sided weak learners:

Theorem 2 Consider running the above booster férstages. Fort = 0,...,T7 — 1 let the val-
uesno,...,yr—1 > 0 be defined as described above, so each invocation of the two-sided weak
learner on distributiorDg ; yields a hypothesigg ; that hasys ; > ~:. Then the final hypothesis
constructed by the booster satisfies

T-1
1
Proeplh(z) # c(z)] < exp <—§ 3 ﬁ) . @)
t=0
The algorithm makes at modt < O(1) - ZtT;Ol % Z;;é ~; calls to the weak learner (i.e. con-

structs a branching program with at ma&f nodes).

Proof: We will show thatPr,.p+[h(z) # 1] < exp (—% ZtT:’Ol %2); a completely symmetric
argument shows a similar bound for negative examples, which gives (4).

Fort = 1,...,T we define the random variabl¢; as follows: given a draw aof from D+ (the
original distributionD restricted to positive examples), the valueAfis ~v._1hs +—1(z), where
(8,t — 1) is the location of the node thatreaches at level of the branching program. Intuitively
A, captures the direction and size of the move that we wouldilike make during the branching
step that brings it to level

We defineB; to be the random variable that captures the direction and size of the move that
actuallymakes during the branching step that brings it to léviore precisely, let be the integer
such thati - (v,—1/2) < 8+ v—1hg—1(x) < (i + 1) - (v=1/2), and letp € [0,1) be such that
B+ vi-1hpi-1(x) = (i +p) - (12-1/2). Then

B — ((i+1) - (1t—1/2) — B) with probabilityp, and

PTG (1 /2) = B) with probability1 — p.

We have thaE[B;] (where the expectation is taken only over fhprobability in the definition of
By) equals((i + p) - (ve—1/2) — B)hsi1(x) = vi—1hp i 1(x) = A;. Let X; denote} '_, By, SO
the value ofX;, is the actual location on the real line wharends up at level.

Fix 1 < ¢ < T and let us consider the conditional random varigbfg| X;_;). Conditioned on
X:_ taking any particular value (i.e. anreaching any particular locatiq®, ¢t — 1)), we have that
x is distributed according ttDs ;1) ", and thus we have

E[X¢|X:i1] = Xe—1+ Epep,)+ 1e—1hp-1(@)] = X1 + V198,01 > Xec1 +77-1, (5)
where the first inequality follows from the two-sided advantagkef_ ;.

Fort =0,...,T, define the random variabl¢ asY; = X; — Zﬁ;é 72 (soYy = Xo = 0). Since
conditioning on the value df;_; is equivalent to conditioning on the value &f_;, using (5) we
get

ElY}|Y;-1] = E

t—1
Xi =Y 7|V
=0

so the sequence of random varialigs. . ., Y7 is a sub-martingalé To see that this sub-martingale
has bounded differences, note that we have

Y, = Y| =X — X1 — 27| = [Be — 77l

t—1 t—2
=EXYi 1] =D = Xea— Y 77 =Y,
=0 =0

The more common definition of a sub-martingale requiresit#t|Yo, ..., Y;—1] < Y;_1, but the weaker
assumption thaE[Y:|Yz—1] < Y:—1 suffices for the concentration bounds that we need (see [ASE92, Hay05]).

The value ofB; is obtained by first moving by;_1hs :—1(z), and then rounding to a neighboring
multiple of v;_1/2, so|B;| < (3/2)y;—1, which implies|Y; — Y;_1| < (3/2)y—1 + 771 < 27—1.

Now recall Azuma'’s inequality for sub-martingales:

Let0 = Yp,...,Yr be a sub-martingale which hd¥; — Y;_1| < cl for each
i=1,...,T. Thenfor any\ > 0 we havePr[Y; < —)] < exp(22)
i=1 1

We apply this with eaclr; = 2v,_; and\ = Zt o V7. This gives us that the error rate bfon
positive exampleRr . p+[h(z) = —1], equals

Pr Xy <0]=Pr[Yr < —-) < exp <—7_> = exp <—— 73) . (6)
SZtT:ol V" 8 ;

So we have established (4); it remains to bound the number of nodes constructed in the branching
program. Let us writé/,; to denote the number of nodes at letjedo M = Zt —0 Mt

The ¢-th level of boosting can cause the rightmost (leftmost) node to be at I9pst distance

farther away from the origin than the rightmost (leftmost) node afthe 1)-st level. This means

that at levelt, every node is at a positiaof, t) with |3] < 2 ZJ 0% Since nodes are placed at

integer multiples ofy; /2, we have thaf\/ = tho M; <0(1) - Zt 0 ¥ Z;;é ;- O

Remark. Consider the case in which each advantages justy and we are boosting to accuracy
e. As usual takingl’ = O(log(1/€)/~?) gives an error bound ef With these parameters we have

thatM < O(log?(1/€)/~*), the same asymptotic bound achieved in [LS05]. In the next section we
describe a modification of the algorithm that improves this bound by essentially a fac%tor of

4.1 Improving efficiency by freezing extreme nodes

Here we describe a variant of the algorithm from the previous section that constructs a branching
program with fewer nodes.

The algorithm requires an input parameterhich is an upper bound on the desired final error of the
aggregate classifier. For> 1, after the execution of step— 1 of boosting, when all nodes at level

t have been created, each nqdet) with |a| > \/(82 075) (2Int +1In?) is “frozen.” The

algorithm commits to classifying any test examples routed to any such nodes accorgingin
and these nodes are not used to generate weak hypotheses during the next round of training.

We have the following theorem about the performance of this algorithm:

Theorem 3 Consider running the modified booster férstages. Fort = 0,...,7 — 1 let the
valuesvi, ...,y > 0 be defined as described above, so each invocation of the weak learner on
distributionDg ; yields a hypothesisg ; that hasys: > 7. Then the final output hypothedisof

the booster satisfies

Proeplh(z) # c¢(x)] < = +exp (_% Tz::1 %2) | -

The algorithm make® (\/(Zt 0 'yt) (InT+mnl). S %) calls to the weak learner.

Proof: As in the previous proof it suffices to boull,cp+ [h(z) # 1]. The proof of Theorem 2
gives us that if we never did any freezing, thBn,cp+[h(z) # 1] < ex (Zt 0 %) . Now
let us analyze the effect of freezing in a given stage 7'. Let At be the dlstance from the origin

past which examples are frozen in rounde. A, = \/(8 Z 0 ¥2)(2Int +1n %). Nearly exactly
the same analysis as proves (6) can be used here: for a positive exatogie incorrectly frozen

in roundt, it must be the cas&; < —A;, or equivalentlyy; < —A; — Zf;é 2. Thus our choice
of A; gives us thaPr,p+ [z incorrectly frozen in round] is at most
t—1
2 €
Pr[Y; < —-A, — ;%] <Prfy; < —A < PTER
so consequently we havr, .+ [z ever incorrectly frozef <
[LSO05]: we have thaPr,p+[h(z) = 0] equals

. From here we may argue as in

Nl

T-1
Pr,cp+[h(x = 0 andz is frozen} + Pr, cp+ [h(z) = 0 andz is not frozeh < % + exp (—% Z 73)

t=0
which gives (7). The bound on the number of calls to the weak learner follows from the
fact that there are)(A;/~:) such calls in each stage of boosting, and the fact that <

\/(8 S) @2InT +1nd)forallt. O

It is easy to check that if, = ~ for all ¢, takingT = O(log(1/¢)/~?) the algorithm in this section
will construct ane-accurate hypothesis that is @tlog?(1/¢) /~v*)-node branching program.

5 Extensions

5.1 Standard weak learners

In Sections 3 and 4, we assumed that the boosting algorithm had access to a two-sided weak learner,
which is more accurate than random guessing on both the positive and the negative examples sepa-
rately. To make use of a standard weak learner, which is merely more accurate than random guessing
on average, we can borrow ideas from [LS05].

The idea is to force a standard weak learner to provide a hypothesis with two-sided accuracy by (a)
balancing the distribution so that positive and negative examples are accorded equal importance, (b)
balancing the predictions of the output of the weak learner so that it doesn’t specialize on one kind
of example.

Definition 4 Given a probability distributiorD over examples, leD be the distribution gbtained
by rescaling the positive and negative examples so that they have equal weight: ¥Slet
D[S+ 5D [S].

Definition 5 Given a confidence-rated classifier. X — [—1, 1] and a probability distributiorD
over X, let the balanced variant df with respect tdD be the functiork : X — [—1, 1] defined as
follows: (a) if Ezep[h(z)] > 0, then, forallz € X, h(z) = gt 1. (b) if Ezep[h(z)] <

X wep[h(2)]
0, then, forallz € X, h(z) = % + 1.

The analysis is the natural generalization of Section 5 of [LS05] to confidence-rated classifiers.

Lemma 6 If D is balanced with respect to, and i is a confidence-rated classifier such that

E.ep[h(z)c(z)] 2 7, thenEyep[h(z)c(z)] = 7/2.

Proof. Assume without loss of generality thBt.cp[h(z)] > 0 (the other case can be handled
symmetrically). By linearity of expectation

E.cplh(z)c(z)] (1)
—— = 1 E, c(x 1.

SinceD is balanced we havB, cp[c(z)] = 0, and henc@®, cp[h(z)c(z)] = %, so the
lemma follows from the fact th&,cp[h(x)] < 1.0

Eeplh(a)e(z)] =

We will use a standard weak learner to simulate a two-sideckwesner as follows. Given a
distributionD, the two-sided weak learner will pagsto the standard weak learner, take its output
g, and returmh = §. Our next lemma analyzes this transformation.

Lemma7 It E,_5lg(x)c(z)] > 7, thenE,cp: [A(z)] > 7/2 andB,cp [~h(z)] > 7/2.

Proof: Lemma 6 implies thakE _5[h(z)c(z)] > /2. Expanding the definition aD, we have
E.cp+[h(z)] — Epep-[h(2)] = 7. 8
Sinceh balancedy with respect toD and ¢, we haveE _5[h(z)] = 0. Once again expanding

the definition ofD, we get thal, c p+ [h(z)] + Eycp- [h(x)] = 0 which impliesE,cp- [h(z)] =
—E,cp+[h(z)] andE cp+[h(x)] = —E,cp+[h(x)]. Substituting each of the RHS for its respec-
tive LHS in (8) completes the prodi.

Lemma 7 is easily seen to imply counterparts of Theorems 2 andvBich the requirement of a
two-sided weak learner is weakened to require only standard weak learning, but éactplaced
with ~y, /2.

5.2 Tolerating random classification noise

As in [LS05], noise tolerance is facilitated by the fact that the path through the network is not
affected by altering the label of an example. On the other hand, balancing the distribution before
passing it to the weak learner, which was needed to use a standard weak learner, may disturb the
independence between the event that an example is noisy, and the random drawhaf can be
repaired exactly as in [KS05, LS05]; because of space constraints we omit the detalils.

References
[AD98] J. Aslam and S. Decatur. Specification and simulation of statistical query algorithms for efficiency
and noise tolerancel. Comput & Syst. S¢i56:191-208, 1998.

[AL88] Dana Angluin and Philip Laird. Learning from noisy exampl&éachine Learning2(4):343-370,
1988.

[ASE92] N. Alon, J. Spencer, and P. Erdoshe Probabilistic Method (1st ed.)Wiley-Interscience, New
York, 1992.

[BKWO3] A.Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem, and the statisti-
cal query modelJ. ACM 50(4):506-519, 2003.

[Die00] T.G. Dietterich. An experimental comparison of three methods for constructing ensembles of deci-
sion trees: bagging, boosting, and randomizatMachine Learning40(2):139-158, 2000.

[Fre95] VY. Freund. Boosting a weak learning algorithm by majoritypformation and Computatign
121(2):256-285, 1995.

[FS96] V. Freund and R. Schapire. Experiments with a new boosting algorithl@Mh, pages 148-156,
1996.

[FS97] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an appli-
cation to boostingJCS$55(1):119-139, 1997.

[Hay05] T. P.Hayes. A large-deviation inequality for vector-valued martingales. 2005.

[Kea98] M. Kearns. Efficient noise-tolerant learning from statistical queda€M, 45(6):983—1006, 1998.
[KS05] A. Kalai and R. Servedio. Boosting in the presence of nQl&S$ 71(3):266—290, 2005.

[LSO5] P.Long and R. Servedio. Martingale boostingPhoc. 18th Annual COL;Tpages 79-94, 2005.

[LS08] P. Long and R. Servedio. Random classification noise defeats all convex potential boosters. In
ICML, 2008.

[MO97] R. Maclin and D. Opitz. An empirical evaluation of bagging and boostingAARI/IAAI, pages
546-551, 1997.

[MRO3] R. Meirand G. Ratsch. An introduction to boosting and leveragindg.NAI Advanced Lectures on
Machine Learningpages 118-183, 2003.

[RDMO06] L. Ralaivola, F. Denis, and C. Magnan. CN=CNNN.I@ML, pages 265-272, 2006.
[Sch90] R. Schapire. The strength of weak learnabilifachine Learning5(2):197-227, 1990.
[Sch03] R. SchapireThe boosting approach to machine learning: An overvi8pringer, 2003.

[SS99] R. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predidaens.
chine Learning37:297-336, 1999.

