Cutoff Averaging: Technical Appendix

A Proof of Thm. 1. A Regret Bound for Margin-Based Perceptron
Proof. Throughout this proof denotes the hinge loss. We defif\g = |[u — w;_1||*> — ||u — w;||?

and prove the theorem by proving upper and lower bounds ¢h, A;. Beginning with the upper
bound, we notice that_;" | A; is a telescopic sum that collapses to

§jA = fu—wol* — lu = w||*
Neglecting|lu — w,,||* and usmg the facts thato = (0,...,0) and that|u|| < 1, we obtain the

upper bound
Sa<t. (5)

Moving on to the lower bound, we focus on rounds whé&ne; _1; (w;,y;)) > 0. We rewriteA; as
o; + B3, where

ai = Ju—wii? ~ la—wl_, > and f = Ju—wi_|P* — [lu—wi? .
Settingn = 1/(v/mR), we can rewritev; as
a;p = [lu—wiq|? = [lu— w1 =y
= 20 (yi{u,x;) —yi(wio1, %) — 7%l (6)

where the first inequality follows from the definition of,_; and the second equality is straight-
forward linear algebra. Next, we combine the term in Eq. (8hwhree additional facts: (1) by

assumptior|x|| < R, (2) by the assumption thétw;,_1; (x;,v;)) > 0 and using the definition of

the hinge loss, we havi§w; _1; (x;,4:)) = 1 — y:(W;_1,X;), and (3) by the definition of the hinge
lossl(u; (x;,y:)) > 1 — y;{u,x;). We obtain the lower bound

a; > 277(*5(11; (%i,%4)) +5(Wi—1;(xuyi))) - 7R .
Next we prove thaps; is always non-negative. If < ﬁ then this claim is an immediate

consequence of the definition of;. Otherwise, it holds thatw!_,|| > 1, w; = wi_,/[|[w}_{].
and we have that
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Using the Cauchy-Schwartz inequality and the assumptiat|th| < 1, we lower bound the term

1
21— ) (u,w_,)
( W§_1II> '

with —2||w/_, || + 2. Plugging this lower bound into Eq. (7) gives
2
Bi 2 1=2wi_i|| + w4 [I” = (1—[wi_l])
We have proven thag; is non-negative and we conclude that
Ay > 277(—5(11§ (xi,95)) +€(Wi71§(xi7yi))) - ’R* . 8)

Note that the above holds trivially whenevéw;_1; (x;,v;)) = 0, and therefore the above holds
for all 4. SummingAl over allz, we get

ZA > —27725 Xzayz +2772€ Wi 1,(Xz,yz)) - m772R2 .

1=1
Comparing the above to the upper bound in Eq (5) and reamaterms gives the bound
1 & 1 nR?
age(wi—l;(xi»yz § 7Z£ X’myz 2m77+7 .
Recalling that) = 1/(v/mR) proves the bound. O



B Proof of Lemma 1. An Adaptation of Freedman’s Bound

The following is a detailed proof of Lemma 1. We show that thmna is a direct corollary from
Freedman’s tail bound for martingales [6]. This proof is@ted from the work of Cesa-Bianchi and
Gentile in [3, Proposition 2] with two exceptions: First weetthe full power of Freedman’s theorem
and prove a Kolmogorov-type maximal inequality, namelyjraguality that holds uniformly for
any prefix of the random variable sequence. Second, we boildreeman’s original bound, as it
appears in [6], rather than the slightly different versisediin [3].

One of the straightforward techniques used in our proof ésstjuare root trick. There is really
nothing tricky about this elementary technique: it invalviinding the positive root of a second-
degree polynomial, in order to satisfy a quadratic constrdihe term “square root trick” has been
coined elsewhere and we stick with this name.

Lemma2. Let b and c be positive numbers. Then,
D 22—bzx—c>0and z2>0 <= $>@

2 22—bzx—c<0and z2>0 <= OSJL‘<Z’+7”;"F4C
Proof. The left-hand side of (1) above is a second degree polyndmialwith a positive leading
term, one negative rod¥ and one positive roaP. Therefore, it is positive in the regidar-co, N) U
(P, 00). Intersecting this constraint with > 0, givesz: > P. Equivalently, the left-hand side of
(2) is negative betweefv and P. Intersecting this constraint with > 0 results in the constraint
0 < z < P. In both cases, the value &fcan be calculated using the quadratic formula. O

For completeness, we give Freedman’s original theorem:
Theorem 3 (Freedman, [6]) Let (A4;), be a martingale with respect to (Z;)7™,. Let B, = A; —

A;_1 be the corresponding sequence of martingale differences and let D; = Var[B;|(Z j)é;ll] be

the corresponding sequence of conditional variances. Assume |B;| < 1 for all i. For any positive
numbers a and b,

2

t t
a
Pr| 3t B, >a, D;<b| < -
r( 2Bz ) ) eXp( 2(a+b)>
We are now ready to prove Lemma 1.

Proof of Lemma 1. Define, foralli € {1,...,m}

B; = % and V; = Var [B;|(Z;)!_}]

Note that(B;)™ , is a sequence of martingale differences with respecZi” |, and that B;| < 1
for all 4. For brevity, definex = In(%). We begin by examining the probability

t
Pr <Elt > B > a+\/a2+2a (1+Z§_1Vi))

i=1

Since|B;| < 1, itholds thaty"" ; V; < m. Therefore, we can upper-bound the above by

m t t
ZPr(Ht ZBi > a+vVa?+2as, Z%Ss)
s=1 i=1 i=1

Each summand above satisfies the requirements of Freedbmanmisl, Thm. 3. Applying the theo-
rem for each summand gives the upper bound

m - (a+ /—a2+2as)2 B m . -
( 2(a+\/a2+2a3+s) B Ze p(=a) =0
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Overall, we have proven that, with probability at least ¢, it holds that

t
vt SB < a+yfa 421+, V) | ©)
=1
Given a concrete value QZj)é;ll, Uj; is just a constant and does not effect the variance. Therefor
- Var[L|(Z);2h] _ E[EH(Z)5n] _ E[L(Z)5a] U
' Cc? - Cc? - C c

where the first inequality follows from the definition of vamice, the second inequality follows from
the fact thatZ; € [0, C], and the last equality uses the definitionlgf Plugging this bound into
Eq. (9), we have

t
Vi ZBi < a+\/a2+2a(1+éZf_1Ui> :
i=1

Using the definition of3; and the fact that/a + b < \/a + Vb, we have

Vi LY UL L < 20+ \/Qa (1+&sinu) -
Focus for a moment on one valuetofSubstitutingy = /1 + & >>;_, Uy and\ = £ 370, L;,
the above can be rewritten as the following quadratic cairgton-y

Y =V2ay—(2a+A+1) < 0.

Using the square-root trick, outlined in Lemma 2, the absweguivalent to

V2a++vV10a + 4\ + 4
v < 5 .

Taking the square of both sides above, we get
72 < 3a+ A+ 1+ V502 + 2\ + 20 .
Once again using the inequalitya + b + ¢ < /a + Vb + /¢, we get
¥ < A+ (34+VB)a+ V2ar +V2a .

Finally, assumingn > 4 we have thatr > \/« and therefore
Y2 < A+ B+ V5 +V2)a+ V2l .
Plugging in the definitions of and\ and using3 + v/5 + v/2 < 7 concludes the proof. O
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