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Abstract

This paper aims to model relational data on edges of networks. We describe appro-
priate Gaussian Processes (GPs) for directed, undirected, and bipartite networks.
The inter-dependencies of edges can be effectively modeled by adapting the GP
hyper-parameters. The framework suggests an intimate connection between link
prediction and transfer learning, which were traditionally two separate research
topics. We develop an efficient learning algorithm that can handle a large number
of observations. The experimental results on several real-world data sets verify
superior learning capacity.

1 Introduction

In many scenarios the data of interest consist of relational observations on the edges of networks.
Typically, a given finite collection of such relational data can be represented as anM × N matrix
Y = {yi,j}, which is often partially observed because many elements are missing. Sometimes
accompanyingY are attributes of nodes or edges. As an important nature of networks,{yi,j} are
highly inter-dependent even conditioned on known node or edge attributes. The phenomenon is
extremely common in real-world data, for example,

• Bipartite Graphs. The data represent relations between two different sets of objects or
measurements under a pair of heterogeneous conditions. One notable example istransfer
learning, also known as multi-task learning, which jointly learns multiple related but dif-
ferent predictive functions based on theM ×N observed labelsY, namely, the results of
N functions acting on a set ofM data examples. Collaborative filtering is an important
application of transfer learning that learns many users’ interests on a large set of items.

• Undirected and Directed Graphs. The data are measurements of existences, strengths, and
types of links between a set of nodes in a graph, where a given collection of observations
are anM×M (in this caseN = M ) matrixY, which can be symmetric or asymmetric, de-
pending on whether the links are undirected or directed. Examples include protein-protein
interactions, social networks, citation networks, and hyperlinks on the WEB. Link predic-
tion aims to recover those missing measurements inY, for example, predicting unknown
protein-protein interactions based on known interactions.

The goal of this paper is to design a Gaussian process (GP) [13] framework to model the depen-
dence structure of networks, and to contribute an efficient algorithm to learn and predict large-scale
relational data. We explicitly construct a series of parametric models indexed by their dimension-
ality, and show that in the limit we obtain nonparametric GP priors consistent with the dependence
of edge-wise measurements. Since the kernel matrix is on a quadratic number of edges and the
computation cost is even cubic of the kernel size, we develop an efficient algorithm to reduce the
computational complexity. We also demonstrate that transfer learning has an intimate connection to
link prediction. Our method generalizes several recent transfer learning algorithms by additionally
learning a task-specific kernel that directly expresses the dependence between tasks.
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Theapplication of GPs to learning on networks or graphs has been fairly recent. Most of the work
in this direction has focused on GPs over nodes of graphs and targeted at the classification of nodes
[20, 6, 10]. In this paper, we regard theedgesas the first-class citizen and develop a general GP
framework for modeling the dependence of edge-wise observations on bipartite, undirected and
directed graphs. This work extends [19], which built GPs for only bipartite graphs and proposed
an algorithm scaling cubically to the number of nodes. In contrast, the work here is more general
and the algorithm scaleslinearly to the number of edges. Our study promises a careful treatment to
model the nature of edge-wise observations and offers a promising tool for link prediction.

2 Gaussian Processes for Network Data

2.1 Modeling Bipartite Graphs

We first review the edge-wise GP for bipartite graphs [19], where each observation is a measurement
on a pair of objects of different types, or under a pair of heterogenous conditions. Formally, letU
andV be two index sets, thenyi,j denotes a measurement on edge(i, j) with i ∈ U andj ∈ V.
In the context of transfer learning, the pair involves a data instancei and a taskj, andyi,j denotes
the label of datai within taskj. The probabilistic model assumes thatyi,j are noisy outcomes of a
real-valued functionf : U ×V → R, which follows a Gaussian processGP(b, K), characterized by
mean functionb and covariance (kernel) function between edges

K ((i, j), (i′, j′)) = Σ(i, i′)Ω(j, j′) (1)

whereΣ andΩ are kernel functions onU andV, respectively. As a result, the realizations off on a
finite seti = 1, . . . , M andj = 1, . . . , N form a matrixF, following a matrix-variate normal dis-
tributionNM×N (B,Σ,Ω), or equivalently a normal distributionN (b,K) with meanb = vec(B)
and covarianceK = Ω⊗Σ, where⊗means Kronecker product. The dependence structure of edges
is decomposed into the dependence of nodes. Since a kernel is a notion of similarity, the model ex-
presses a prior belief – if nodei is similar to nodei′ and nodej is similar nodej′, then so aref(i, j)
andf(i′, j′).

It is essential to learn the kernelsΣ andΩ based on the partially observedY, in order to capture the
dependence structure of the network. For transfer learning, this means to learn the kernelΣ between
data instances and the kernelΩ between tasks. HavingΣ andΩ is it then possible to predict those
missingyi,j based on known observations by using GP inference.

Theorem 2.1([19]). Let f(i, j) = D−1/2
∑D

k=1 gk(i)hk(j) + b(i, j), wheregk
iid∼ GP(0, Σ) and

hk
iid∼ GP(0, Ω), thenf ∼ GP(b,K) in the limit D → ∞, and the covariance between pairs is

K ((i, j), (i′, j′)) = Σ(i, i′)Ω(j, j′).

Theorem (2.1) offers an alternative view to understand the model. Theedge-wisefunctionf can be
decomposed into a product of two sets of intermediatenode-wisefunctions,{gk}∞k=1 and{hk}∞k=1,
which are i.i.d. samples from two GP priorsGP(0, Σ) andGP(0,Ω). The theorem suggests that the
GP model for bipartite relational data is a generalization of a Bayesian low-rank matrix factorization
F = HG>+B, under the priorH ∼ NM×D(0,Σ, I) andG ∼ NN×D(0,Ω, I). WhenD is finite,
the elements ofF are not Gaussian random variables.

2.2 Modeling Directed and Undirected Graphs

In this section we model observations on pairs of nodes of thesamesetU . This case includes both
directed and undirected graphs. It turns out that the directed graph is relatively easy to handle while
deriving a GP prior for undirected graphs is slightly non-trivial. For the case of directed graphs, we
let the functionf : U × U → R follow GP(b,K), where the covariance function between edges is

K ((i, j), (i′, j′)) = C(i, i′)C(j, j′) (2)

andC : U ×U → R is a kernel function between nodes. Since a random functionf drawn from the
GP is generallyasymmetric(even ifb is symmetric), namelyf(i, j) 6= f(j, i), the direction of edges
can be modeled. The covariance function Eq. (2) can be derived from Theorem (2.1) by setting
that {gk} and{hk} are two independent sets of functions i.i.d. sampled from thesameGP prior
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GP(0, C), modeling the situation that each node’s behavior as a sender is different but statistically
related to it’s behavior as a receiver. This is a reasonable modeling assumption. For example, if two
papers cite a common set of papers, their are also likely to be cited by a common set of other papers.

For the case of undirected graphs, we need to design a GP that ensures any sampled function to
besymmetric. Following the construction of GP in Theorem (2.1), it seems thatf is symmetric if
gk ≡ hk for k = 1, . . . , D. However a calculation reveals thatf is not bounded in the limitD →∞.
Theorem (2.2) shows that the problem can be solved by subtracting a growing quantityD1/2C(i, j)
asD →∞, and suggests the covariance function

K ((i, j), (i′, j′)) = C(i, i′)C(j, j′) + C(i, j′)C(j, i′). (3)

With such covariance function ,f is ensured to be symmetric because the covariance betweenf(i, j)
andf(j, i) equals the variance of either.

Theorem 2.2. Letf(i, j) = D−1/2
∑D

k=1 tk(i)tk(j)+b(i, j)−D1/2C(i, j), wheretk
iid∼ GP(0, C),

thenf ∼ GP(b,K) in the limit D → ∞, and the covariance between pairs isK ((i, j), (i′, j′)) =
C(i, i′)C(j, j′) + C(i, j′)C(j, i′). If b(i, j) = b(j, i), thenf(i, j) = f(j, i).

Proof. Without loss of generality, letb(i, j) ≡ 0. Based on the central limit theorem, for every(i, j),
f(i, j) converges to a zero-mean Gaussian random variable asD → ∞, because{tk(i)tk(j)}D

k=1
is a collection of random variables independently following the same distribution, and has the mean
C(i, j). The covariance function is Cov(f(i, j), f(i′, j′)) = 1

D

∑D
k=1{E[tk(i)tk(j)tk(i′)tk(j′)] −

C(i, j)E[tk(i′)tk(j′)] − C(i′, j′)E[tk(i)tk(j)] + C(i, j)C(i′, j′)} = C(i, i′)C(j, j′) +
C(i, j′)C(j, i′) + C(i, j)C(i′, j′)− C(i, j)C(i′, j′) = C(i, i′)C(j, j′) + C(i, j′)C(j, i′).

Interestingly, Theorem (2.2) recovers Theorem (2.1) and is thus more general. To see the connection,
let hk ∼ GP(0, Σ) and gk ∼ GP(0, Ω) be concatenated to form a functiontk, then we have
tk ∼ GP(0, C) and the covariance is

C(i, j) =





Σ(i, j), if i, j ∈ U ,

Ω(i, j), if i, j ∈ V,

0, if i, j are in different sets.
(4)

For i, i′ ∈ U andj, j′ ∈ V, applying Theorem (2.2) leads to

f(i, j) = D−1/2
D∑

k=1

tk(i)tk(j) + b(i, j)−D1/2C(i, j) = D−1/2
D∑

k=1

hk(i)gk(j) + b(i, j), (5)

K ((i, j), (i′, j′)) = C(i, i′)C(j, j′) + C(i, j′)C(j, i′) = Σ(i, i′)Ω(j, j′). (6)

Theorems (2.1) and (2.2) suggest a general GP framework to model directed or undirected relation-
ships connecting heterogeneous types of nodes. Basically, we learn node-wise covariance functions,
like Σ, Ω, andC, such that edge-wise covariances composed by Eq. (1), (2), or (3) can explain the
happening of observationsyi,j on edges. The proposed framework can be extended to cope with
more complex network data, for example, networks containing both undirected links and directed
links. We will briefly discuss some extensions in Sec. 6.

3 An Efficient Learning Algorithm

We consider the regression case under a Gaussian noise model, and later briefly discuss extensions
to the classification case. Lety = [yi,j ](i,j)∈O be the observational vector of length|O|, f be the
corresponding quantities of the latent functionf , andK be the|O|×|O|matrix ofK between edges
having observations, computed by Eq. (1)-(3). Then observations on edges are generated by

yi,j = f(i, j) + bi,j + εi,j (7)

wheref ∼ N (0,K), εi,j
iid∼ N (0, β−1), and the mean has a parametric formbi,j = µi + νj . In the

directed/undirected graph case we letµi = νi for anyi ∈ U . f can be analytically marginalized out,
the marginal distribution of observations is then

p(y|θ) = N (y;b,K + β−1I), (8)
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whereθ = {β, b, K}. The parameters can be estimated by minimizing the penalized negative log-
likelihoodL(θ) = − ln p(y|θ) + `(θ) under a suitable regularizatioǹ(θ). The objective function
has the form:

L(θ) =
|O|
2

log 2π +
1
2

ln |C|+ 1
2
tr

[
C−1mm>]

+ `(θ), (9)

whereC = K + β−1I, m = y − b andb = [bi,j ], (i, j) ∈ O. `(θ) will be configured in Sec. 3.1.
Gradient-based optimization packages can be applied to find a local optimum ofθ. However the
computation can be prohibitively high when the size|O| of measured edges is very big, because the
memory cost isO(|O|2), and the computational cost isO(|O|3). In our experiments|O| is about
tens of thousands or even millions. A slightly improved algorithm was introduced in [19], with
a complexityO(M3 + N3) cubic to the size of nodes. The algorithm employed a non-Gaussian
approximation based on Theorem (2.1) and is applicable to only bipartite graphs.

We reduce the memory and computational cost by exploring the special structure ofK as discussed
in Sec. 2 and assumeK to be composed by node-wise linear kernelsΣ(i, i′) = 〈xi,xi′〉, Ω(i, i′) =
〈zj , zj′〉, andC(i, j) = 〈xi,xj〉, with x ∈ RL1 andz ∈ RL2. The edge-wise covariance is then

• Bipartite Graphs:K ((i, j), (i′, j′)) = 〈xi ⊗ zj ,xi′ ⊗ zj′〉.
• Directed Graphs:K ((i, j), (i′, j′)) = 〈xi ⊗ xj ,xi′ ⊗ xj′〉.
• Undirected Graphs:K ((i, j), (i′, j′)) = 〈xi ⊗ xj ,xi′ ⊗ xj′〉+ 〈xi ⊗ xj ,xj′ ⊗ xi′〉

We turn the problem of optimizingK into the problem of optimizingX = [x1, . . . ,xM ]> and
Z = [z1, . . . , zN ]>. It is important to note that in all the cases the kernel matrix has the form
K = UU>, whereU is an |O| × L matrix, L ¿ |O|, therefore applying the Woodbury identity
C−1 = β[I−U(U>U+β−1I)−1U>] can dramatically reduce the computational cost. For example,
in the bipartite graph case and the directed graph case, respectively there are

U> =
[
xi ⊗ zj

]
(i,j)∈O, and U> =

[
xi ⊗ xj

]
(i,j)∈O, (10)

where the rows ofU are indexed by(i, j) ∈ O. For the undirected graph case, we first rewrite the
kernel function

K ((i, j), (i′, j′)) = 〈xi ⊗ xj ,xi′ ⊗ xj′〉+ 〈xi ⊗ xj ,xj′ ⊗ xi′〉
=

1
2

[
〈xi ⊗ xj ,xi′ ⊗ xj′〉+ 〈xj ⊗ xi,xj′ ⊗ xi′〉+ 〈xi ⊗ xj ,xj′ ⊗ xi′〉+ 〈xj ⊗ xi,xi′ ⊗ xj′〉

]

=
1
2

[〈
(xi ⊗ xj + xj ⊗ xi), (xi′ ⊗ xj′ + xj′ ⊗ xi′)

〉]
, (11)

andthen obtain a simple form for the undirected graph case

U> =
1√
2

[
xi ⊗ xj + xj ⊗ xi

]
(i,j)∈O

(12)

The overall computational cost is atO(L3 + |O|L2). Empirically we found that the algorithm is
efficient to handleL = 500 when |O| is about millions. The gradients with respect toU can be
found in [12]. Further calculation of gradients with respect toX andZ can be easily derived. Here
we omit the details for saving the space. Finally, in order to predict the missing measurements, we
only need to estimate a simple linear modelf(i, j) = w>ui,j + bi,j .

3.1 Incorporating Additional Attributes and Learning from Discrete Observations

There are different ways to incorporate node or edge attributes into our model. A common practice
is to let the kernelK, Σ, orΩ be some parametric function of attributes. One such choice is the RBF
function. However, node or edge attributes are typically local information while the network itself
is rather a global dependence structure, thus the network data often has a large part of patterns that
are independent of those known predictors. In the following, via the example of placing a Bayesian
prior onΣ : U×U → R, we describe a flexible solution to incorporate additional knowledge. LetΣ0

be the covariance that we wishΣ to be apriori close to. We apply the priorp(Σ) = 1
Z exp(−τE(Σ))

and use its negative log-likelihood as a regularization forΣ:

`(Σ) = τE(Σ) =
τ

2

[
log |Σ + γ−1I|+ tr

(
(Σ + γ−1I)−1Σ0

) ]
(13)
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whereτ is a hyperparameter predetermined on validation data, andγ−1 is a small number to be
optimized. The energy functionE(Σ) is related to the KL divergenceDKL(GP(0, Σ0)||GP(0, Σ +
γ−1δ)), whereδ(·, ·) is the dirac kernel. If we letΣ0 be the linear kernel of attributes, normalized
by the dimensionality, thenE(Σ) can be derived from a likelihood ofΣ as if each dimension of the
attributes is a random sample fromGP(0,Σ + γ−1δ). If the attributes are nonlinear predictors we
can conveniently setΣ0 by a nonlinear kernel. We setΣ0 = I if the corresponding attributes are
absent.̀ (Ω), `(C) and`(K) can be set in the same way.

The observations can be discrete variables rather than real values. In this case, an appropriate like-
lihood function can be devised accordingly. For example, theprobit function could be employed
as the likelihood function for binary labels, which relatesf(i, j) to the targetyi,j ∈ {−1, +1}, by
a cumulative normalΦ(yi,j(f(i, j) + bi,j)). To preserve computationally tractability, a family of
inference techniques, e.g. Laplace approximation, can be applied to finding a Gaussian distribution
that approximates the true likelihood. Then, the marginal likelihood (8) can be written as an explicit
expression and the gradient can be derived analytically as well.

4 Discussions on Related Work

Transfer Learning : As we have suggested before, the link prediction for bipartite graphs has a tight
connection to transfer learning. To make it clear, letfj(·) = f(·, j), then the edge-wise function
f : U × V → R consists ofN node-wise functionsfj : U → R for j = 1, . . . , N . If we fix
Ω(j, j′) ≡ δ(j, j′), namely a Dirac delta function, thenfj are assumed to be i.i.d. GP functions
from GP(0, Σ), where each function corresponds to one learning task. This is the hierarchical
Baysian model that assumes multiple tasks sharing the same GP prior [18]. In particular, the negative
logarithm ofp

({yi,j}, {fj}|Σ
)

is

L
(
{fj}, Σ

)
=

N∑

j=1


∑

i∈Oj

l
(
yi,j , fj(i)

)
+

1
2
f jΣ−1f j


 +

N

2
log |Σ|, (14)

wherel(yi,j , fj(i)) = − log p(yi,j |fj(i)). The form is close to the recent convex multi-task learning
in a regularization framework [3], if the log-determinant term is replaced by a trace regularization
term λtr(Σ). It was proven in [3] that ifl(·, ·) is convex withfj , then the minimization of (14)
is convex with jointly{fj} andΣ. The GP approach differs from the regularization approach in
two aspects: (1)fj are treated as random variables which are marginalized out, thus we only need to
estimateΣ; (2) The regularization forΣ is a non-convex log-determinant term. Interestingly, because
log |Σ| ≤ tr(Σ)−M , the trace norm is the convex envelope for the log-determinant, and thus the two
minimization problems are somehow doing similar things. However, the framework introduced in
this paper goes beyond the two methods by introducing an informative kernelΩ between tasks. From
a probabilistic modeling point of view, the independence of{fj} conditioned onΣ is a restrictive
assumption and even incorrect when some task-specific attributes are given (which means that{fj}
are not exchangeable anymore). The task-specific kernel for transfer learning has been recently
introduced in [4], which however increased the computational complexity by a factor ofN2. One
contribution of this paper on transfer learning is an algorithm that can efficiently solve the learning
problem with both data kernelΣ and task kernelΩ.

Gaussian Process Latent-Variable Model (GPLVM): Our learning algorithm is also a generaliza-
tion of GPLVM. If we enforceΩ(j, j′) = δ(j, j′) in the model of bipartite graphs, then the evidence
Eq. (9) is equivalent to the form of GPLVM,

L(Σ, β) =
MN

2
log 2π +

N

2
ln |(Σ + β−1I)|+ 1

2
tr

[
(Σ + β−1I)−1YY>

]
, (15)

whereY is a fully observedM ×N matrix, the meanB = 0, and there is no further regularization
onΣ. GPLVM assumes that columns ofY are conditionally independent givenΣ. In this paper we
consider a situation with complex dependence of edges in network graphs.

Other Related Work: Getoor et al. [7] introduced link uncertainty in the framework of probabilistic
relational models. Latent-class relational models [17, 11, 1] have been popular, aiming to find
the block structure of links. Link prediction was casted as structured-output prediction in [15, 2].
Statistical models based on matrix factorization was studied by [8]. Our work is similar to [8] in the
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Figure1: The left-hand side: the subset of the UMist Faces data that contains 10 people at 10 different views.
The blank blocks indicate the ten knocked-off images as test cases; The right-hand side: the ten knocked-off
images (the first row) along with predictive images. The second row is of our results, the third row is of the
MMMF results, and the fourth row is of the bilinear results.

sense that relations are modeled by multiplications of node-wise factors. Very recently, Hoff showed
in [9] that the multiplicative model generalizes the latent-class models [11, 1] and can encode the
transitivity of relations.

5 Numerical Experiments

We set the dimensionality of the model via validation on10% of training data. In cases that the
additional attributes on nodes or edges are either unavailable or very weak, we compare our method
with max-margin matrix factorization (MMMF) [14] using a square loss, which is similar to singular
value decomposition (SVD) but can handle missing measurements.

5.1 A Demonstration on Face Reconstruction

A subset of the UMist Faces images of size112× 92 was selected to illustrate our algorithm, which
consists of 10 people at 10 different views. We manually knocked 10 images off as test cases, as
presented in Figure 1, and treated each image as a vector that leads to a103040 × 10 matrix with
103040 missing values, where each column corresponds a view of faces. GP was trained by setting
L1 = L2 = 4 on this matrix to learn from the appearance relationships between person identity
and pose. The images recovered by GP for the test cases are presented as the second row of Figure
1-right (RMSE=0.2881). The results of MMMF are presented as the third row (RMSE=0.4351). We
also employed the bilinear models introduced by [16], which however does not handle missing data
of a matrix, and put the results at the bottom row for comparison. Quantitatively and perceptually
our model offers a better generalization to unseen views of known persons.

5.2 Collaborative Filtering

Collaborative filtering is a typical case of bipartite graphs, where ratings are measurements on edges
of user-item pairs. We carried out a serial of experiments on the whole EachMovie data, which
includes61265 users’2811718 distinct numeric ratings on1623 movies. We randomly selected
80% of each user’s ratings for training and used the remaining20% as test cases. The random
selection was carried out20 times independently.

For comparison purpose, we also evaluated the predictive performance of four other approaches:
1) Movie Mean: the empirical mean of ratings per movie was used as the predictive value of all
users’ rating on the movie; 2) User Mean: the empirical mean of ratings per user was used as
the predictive value of the users’ rating on all movies; 3) Pearson Score: the Pearson correlation
coefficient corresponds to a dot product between normalized rating vectors. We computed the Gram
matrices of the Pearson score with mean imputation for movies and users respectively, and took
principal components as their individual attributes. We tried 20 or 50 principal components as
attributes in this experiment and carried out least square regression on observed entries. 4) MMMF.
The optimal rank was decided by validation.
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Table 1: Test results on the EachMovie data. The number in bracket indicates the rank we applied. The
results are averaged over 20 trials, along with the standard deviation. To evaluate accuracy, we utilize root
mean squared error (RMSE), mean absolute error (MAE), and normalized mean squared error, i.e. ,the RMSE
normalized by the standard deviation of observations.

METHODS RMSE MAE NMSE
MOVIE MEAN 1.3866±0.00131.1026±0.00100.7844±0.0012
USERMEAN 1.4251±0.00111.1405±0.00090.8285±0.0008
PEARSON(20)1.3097±0.00121.0325±0.00130.6999±0.0011
PEARSON(50)1.3034±0.00181.0277±0.00150.6931±0.0019
MMMF(3) 1.2245±0.05030.9392±0.02460.6127±0.0516
MMMF(15) 1.1696±0.02830.8918±0.01460.5585±0.0286
GP(3) 1.1557±0.00100.8781±0.00090.5449±0.0011

Table 2:Test results on the Cora data. The classification accuracy rate is averaged over 5 trials, each with 4
folds for training and one fold for test.

METHODS DS HA ML PL
CONTENT 53.70±0.5067.50±1.7068.30±1.6056.40±0.70
L INK 48.90±1.7065.80±1.4060.70±1.1058.20±0.70
PCA(50) 61.61±1.4269.36±1.3670.06±0.9060.26±1.16
GP(50) 62.10±0.8475.40±0.8078.30±0.7863.25±0.60

Theresults of these approaches are reported in Table 1. The per-movie average yields much better
results than the per-user average, which is consistent with the findings previously reported by [5].
The improvement is noticeable by using more components of the Pearson score, but not significant.
The generalization performance of our algorithm is better than that of others. T-test showed a signif-
icant difference with p-value 0.0387 of GP over MMMF (with 15 dimensions) in terms of RMSE.
It is well worth highlighting another attractiveness of our algorithm – the compact representation of
factors. On the EachMovie data, there are onlythree factorsthat well represent thousands of items
individually. We also trained MMMF with 3 factors as well. Although the three-factor solution GP
found is also accessible to other models, MMMF failed to achieve comparable performance on this
case (i.e., see results of MMMF(3)). In each trial, the number of training samples is around 2.25
million. Our program took about865 seconds to accomplish500 L-BFGS updates on all 251572
parameters using an AMD Opteron 2.6GHz processor.

5.3 Text Categorization based on Contents and Links

We used a part of Cora corpus including 751 papers on data structure (DS), 400 papers on hardware
and architecture (HA), 1617 on machine learning (ML) and 1575 on programming language (PL).
We treated the citation network as adirected graphand modeled the link existence as binary labels.
Our model applied the probit likelihood and learned a node-wise covariance functionC, L = 50×
50, which composes an edge-wise covarianceK by Eq. (2). We set the prior covarianceC0 by the
linear kernel computed by bag-of-word content attributes. Thus the learned linear features encode
both link and content information, which were then used for document classification. We compare
several other methods that provide linear features for one-against-all categorization using SVM: 1)
CONTENT: bag-of-words features; 2) LINK: each paper’s citation list; 3) PCA: 50 components
by PCA on the concatenation of bag-of-word features and citation list for each paper. We chose
the dimensionality 50 for both GP and PCA, because their performances both saturated when the
dimensionality exceeds 50. We reported results based on 5-fold cross validation in Table 2. GP
clearly outperformed other methods in 3 out of 4 categories. The main reason we believe is that our
approach models the in-bound and out-bound behaviors simultaneously for each paper .

6 Conclusion and Extensions

In this paper we proposed GPs for modeling data living on links of networks. We described solu-
tions to handle directed and undirected links, as well as links connecting heterogenous nodes. This
work paves a way for future extensions for learning more complex relational data. For example, we
can model a network containing both directed and undirected links. Let(i, j) be directed and(i′, j′)
be undirected. Based on the feature representations, Eq.(10)-right for directed links and Eq.(12)
for undirected links, the covaraince isK((i, j), (i′, j′)) = 1/

√
2[C(i, i′)C(j, j′)+C(i, j′)C(j, i′)],
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which indicates that dependence between a directed link and an undirected link is penalized com-
pared to dependence between two undirected links. Moreover, GPs can be employed to model
multiple networks involving multiple different types of nodes. For each type, we use one node-wise
covariance. Letting covariance between two different types of nodes be zero, we obtain a huge
block-diagonal node-wise covariance matrix, where each block corresponds to one type of nodes.
This big covariance matrix will induce the edge-wise covariance for links connecting nodes of the
same or different types. In the near future it is promising to apply the model to various link prediction
or network completion problems.
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