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Abstract

A novel approach to measure the interdependence of two time series is proposed,
referred to as “stochastic event synchrony” (SES); it quantifies the alignment of
two point processes by means of the following parameters: time delay, variance
of the timing jitter, fraction of “spurious” events, and average similarity of events.
SES may be applied to generic one-dimensional and multi-dimensional point pro-
cesses, however, the paper mainly focusses on point processes in time-frequency
domain. The average event similarity is in that case described by two parameters:
the average frequency offset between events in the time-frequency plane, and the
variance of the frequency offset (“frequency jitter”); SES then consists of five pa-
rameters in total. Those parameters quantify the synchrony of oscillatory events,
and hence, they provide an alternative to existing synchrony measures that quan-
tify amplitude or phase synchrony. The pairwise alignment of point processes
is cast as a statistical inference problem, which is solved by applying the max-
product algorithm on a graphical model. The SES parameters are determined from
the resulting pairwise alignment by maximum a posteriori (MAP) estimation. The
proposed interdependence measure is applied to the problem of detecting anoma-
lies in EEG synchrony of Mild Cognitive Impairment (MCI) patients; the results
indicate that SES significantly improves the sensitivity of EEG in detecting MCI.

1 Introduction

Synchrony is an important topic in neuroscience. For instance, it is hotly debated whether the
synchronous firing of neurons plays a role in cognition [1] and even in consciousness [2]. The syn-
chronous firing paradigm has also attracted substantial attention in both the experimental (e.g., [3])
and the theoretical neuroscience literature (e.g., [4]). Moreover, medical studies have reported that
many neurophysiological diseases (such as Alzheimer’s disease) are often associated with abnor-
malities in neural synchrony [5, 6].

In this paper, we propose a novel measure to quantify the interdependence between point processes,
referred to as “stochastic event synchrony” (SES); it consists of the following parameters: time delay,
variance of the timing jitter, fraction of “spurious” events, and average similarity of the events. The
pairwise alignment of point processes is cast as a statistical inference problem, which is solved
by applying the max-product algorithm on a graphical model [7]. In the case of one-dimensional
point processes, the graphical model is cycle-free and statistical inference is exact, whereas for
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multi-dimensional point processes, exact inference becomes intractable; the max-product algorithm
is then applied on a cyclic graphical model, which not necessarily yields the optimal alignment [7].
Our experiments, however, indicate that the it finds reasonable alignments in practice. The SES
parameters are determined from the resulting pairwise alignments by maximum a posteriori (MAP)
estimation.

The proposed method may be helpful to detect mental disorders such as Alzheimer’s disease, since
mental disorders are often associated with abnormal blood and neural activity flows, and changes in
the synchrony of brain activity (see, e.g., [5, 6]). In this paper, we will present promising results on
the early prediction of Alzheimer’s disease from EEG signals based on SES.

This paper is organized as follows. In the next section, we introduce SES for the case of one-
dimensional point processes. In Section 3, we consider the extension to multi-dimensional point
processes. In Section 4, we use our measure to detect abnormalities in the EEG synchrony of
Alzheimer’s disease patients.

2 One-Dimensional Point Processes

Let us consider the one-dimensional point processes (“event strings”)X andX ′ in Fig. 1(a) (ignore
Y andZ for now). We wish to quantify to which extentX andX ′ are synchronized. Intuitively
speaking, two event strings can be considered as synchronous (or “locked”) if they are identical apart
from: (i) a time shiftδt; (ii) small deviations in the event occurrence times (“event timing jitter”); (iii)
a few event insertions and/or deletions. More precisely, for two event strings to be synchronous, the
event timing jitter should be significantly smaller than the average inter-event time, and the number
of deletions and insertions should comprise only a small fraction of the total number of events.
This intuitive concept of synchrony is illustrated in Fig. 1(a). The event stringX ′ is obtained from
event stringX by successively shiftingX over δt (resulting inY ), slightly perturbing the event
occurrence times (resulting inZ), and eventually, by adding (plus sign) and deleting (minus sign)
events, resulting inX ′. Adding and deleting events inZ leads to “spurious” events inX andX ′

(see Fig. 1(a); spurious events are marked in red): a spurious event inX is an event that cannot be
paired with an event inX ′ and vice versa.

The above intuitive reasoning leads to our novel measure for synchrony between two event strings,
i.e., “stochastic event synchrony” (SES); for the one-dimensional case, it is defined as the triplet (δt,
st, ρspur), wherest is the variance of the (event) timing jitter, andρspur is the percentage of spurious
events

ρspur
4

=
nspur+ n′

spur

n + n′
, (1)

with n andn′ the total number of events inX andX ′ respectively, andnspur andn′
spur the total

number of spurious events inX andX ′ respectively. SES is related to the metrics (“distances”)
proposed in [9]; those metrics are single numbers that quantify the synchrony between event strings.
In contrast, we characterize synchrony by means of three parameters, which allows us to distinguish
different types of synchrony (see [10]). We compute those three parameters by performing inference
in a probabilistic model. In order to describe that model, we consider Fig. 1(b), which shows a
symmetric procedure to generateX andX ′. First, one generates an event stringV of length `,
where the eventsVk are mutually independent and uniformly distributed in[0, T0]. The stringsZ
andZ ′ are generated by delayingV over−δt/2 andδt/2 respectively and by (slightly) perturbing
the resulting event occurrence times (variance of timing jitter equalsst/2). The sequencesX and
X ′ are obtained fromZ andZ ′ by removing some of the events; more precisely, from each pair
(Zk, Z ′

k), eitherZk or Z ′
k is removed with probabilityps.

This procedure amounts to the statistical model:

p(x, x′, b, b′, v, δt, st, `) = p(x|b, v, δt, st)p(x′|b′, v, δt, st)p(b, b′|`)p(v|`)p(`)p(δt)p(st), (2)

whereb andb′ are binary strings that indicate whether the events inX andX ′ are spurious (Bk = 1
if Xk is spurious,Bk = 0 otherwise; likewise forB′

k); the length̀ has a geometric priorp(`) =

(1 − λ)λ` with λ ∈ (0, 1), andp(v|`) = T−`
0 . The prior on the binary stringsb andb′ is given by

p(b, b′|`) = (1 − ps)
n+n′

p2`−n−n′

s = (1 − ps)
n+n′

p
ntot

spur
s , (3)
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with ntot
spur = nspur+ n′

spur = 2` − n − n′ the total number of spurious events inX andX ′, nspur =
∑n

k=1 bk = ` − n′ the number of spurious events inX , and likewisen′
spur, the number of spurious

events inX ′. The conditional distributions inX andX ′ are equal to:

p(x|b, v, δt, st) =

n
∏

k=1

(

N
(

xk − vik
;−

δt

2
,
st

2

)

)1−bk

(4)

p(x′|b′, v, δt, st) =

n′

∏

k=1

(

N
(

x′
k − vi′

k
;
δt

2
,
st

2

)

)1−b′
k

, (5)

whereVik
is the event inV that corresponds toXk (likewiseVi′

k
), andN (x; m, s) is a univariate

Gaussian distribution with meanm and variances. Since we do not wish/need to encode prior
information aboutδt andst, we adopt improper priorsp(δt) = 1 = p(st).

Eventually, marginalizing (2) w.r.t.v results in the model:

p(x, x′, b, b′, δt, st, `) =

∫

p(x, x′, b, b′, v, δt, st, `)dv ∝ βntot
spur

nnon-spur
∏

k=1

N (x′
j′
k

− xjk
; δt, st), (6)

with (xjk
, x′

j′
k

) the pairs of non-spurious events,nnon-spur = n + n′ − ` the total number of non-

spurious event pairs, andβ = ps

√

λ
T0

; in the example of Fig. 1(b),J = (1, 2, 3, 5, 6, 7, 8),

J ′ = (2, 3, 4, 5, 6, 7, 8), and nnon-spur = 7. In the following, we will denote model (6) by
p(x, x′, j, j′, δt, st) instead ofp(x, x′, b, b′, δt, st, `), since for givenx, x′, b, andb′ (and hence given
n, n′, andnnon-spur), the length̀ is fully determined, i.e.,̀ = n + n′−nnon-spur; moreover, it is more
natural to describe the model in terms ofJ andJ ′ instead ofB andB′ (cf. RHS of (6)). Note that
B andB′ can directly be obtained fromJ andJ ′.

It also noteworthy thatT0, λ andps do not need to be specified individually, since they appear in (6)
only throughβ. The latter serves in practice as a knob to control the number of spurious events.
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X
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Z

X ′

(a) Asymmetric procedure
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Figure 1: One-dimensional stochastic event synchrony.

Given event stringsX and X ′, we wish to determine the parametersδt and st, and the hidden
variablesB andB′; the parameterρspur (cf. (1)) can obtained from the latter :

ρspur
4

=

∑n
k=1 bk +

∑n′

k=1 b′k
n + n′

. (7)

There are various ways to solve this inference problem, but perhaps the most natural one is cyclic
maximization: first one chooses initial valuesδ̂

(0)
t and ŝ

(0)
t , then one alternates the following two

update rules until convergence (or until the available time has elapsed):

(ĵ(i+1), ĵ′(i+1)) = argmax
b,b′

p(x, x′, j, j′, δ̂
(i)
t , ŝ

(i)
t ) (8)

(δ̂
(i+1)
t , ŝ

(i+1)
t ) = argmax

δt,st

p(x, x′, ĵ(i+1), ĵ′(i+1), δt, st). (9)
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The update (9) is straightforward, it amounts to the empirical mean and variance, computed over
the non-spurious events. The update (8) can readily be carried out by applying the Viterbi algorithm
(“dynamic programming”) on an appropriate trellis (with the pairs of non-spurious events(xjk

, x′
j′
k

)

as states), or equivalently, by applying the max-product algorithm on a suitable factor graph [7]; the
procedure is similar to dynamic time warping [8].

3 Multi-Dimensional Point Processes

In this section, we will focus on the interdependence of multi-dimensional point processes. As a
concrete example, we will consider multi-dimensional point processes in time-frequency domain;
the proposed algorithm, however, is not restricted to that particular situation, it is applicable to
generic multi-dimensional point processes.

Suppose that we are given a pair of (continuous-time) signals, e.g., EEG signals recorded from two
different channels. As a first step, the time-frequency (“wavelet”) transform of each signal is approx-
imated as a sum of (half-ellipsoid) basis functions, referred to as “bumps” (see Fig. 2 and [17]); each
bump is described by five parameters: timeX , frequencyF , width ∆X , height∆F , and amplitude
W . The resulting bump modelsY = ((X1, F1, ∆X1, ∆F1, W1), . . . , (Xn, Fn, ∆Xn, ∆Fn, Wn))
andY ′ = ((X ′

1, F
′
1, ∆X ′

1, ∆F ′
1, W

′
1), . . . , (X

′
n′ , F ′

n′ , ∆X ′
n′ , ∆F ′

n′ , W ′
n′)), representing the most

prominent oscillatory activity, are thus 5-dimensional point processes. Our extension of stochastic
event synchrony to multi-dimensional point processes (and bump models in particular) is derived
from the following observation (see Fig. 3): bumps in one time-frequency map may not be present
in the other map (“spurious” bumps); other bumps are present in both maps (“non-spurious bumps”),
but appear at slightly different positions on the maps. The black lines in Fig. 3 connect the centers
of non-spurious bumps, and hence, visualize the offset between pairs of non-spurious bumps. We
quantify the interdependence between two bump models by five parameters, i.e., the parameters
ρspur, δt, andst introduced in Section 2, in addition to:

• δf : the average frequency offset between non-spurious bumps,

• sf : the variance of the frequency offset between non-spurious bumps.

We determine the alignment of two bump models in addition to the 5 above parameters by an infer-
ence algorithm similar to the one of Section 2, as we will explain in the following; we will use the
notationθ = (δt, st, δf , sf ). Model (6) may naturally be extended in time-frequency domain as:

p(y, y′, j, j′, θ) ∝ βntot
spur

nnon-spur
∏

k=1

N
( x′

k′ − xk

∆xk + ∆x′
k′

; δt, st

)

N
( f ′

k′ − fk

∆fk + ∆f ′
k′

; δf , sf

)

· p(δt)p
(

st

)

p(δf )p
(

sf

)

, (10)

where the offsetx′
k′ − xk in time and offsetf ′

k′ − fk in frequency are normalized by the width and
height respectively of the bumps; we will elaborate on the priors on the parametersθ later on. In
principle, one may determine the sequencesJ andJ ′ and the parametersθ by cyclic maximization
along the lines of (8) and (9). In the multi-dimensional case, however, the update (8) is no longer
tractable: one needs to allow permutations of events, the indicesjk andj′k′ are no longer necessarily
monotonically increasing, and as a consequence, the state space becomes drastically larger. As a
result, the Viterbi algorithm (or equivalently, the max-product algorithm applied on cycle-free factor
graph of model (10)) becomes impractical.

We solve this problem by applying the max-product algorithm on acyclic factor graph of the system
at hand, which will amount to a suboptimal but practical procedure to obtain pairwise alignments
of multi-dimensional point processes (and bump models in particular). To this end, we introduce a
representation of model (10) that is naturally represented by a cyclic graph: for each pair of events
Yk andY ′

k′ , we introduce a binary variableCkk′ that equals one ifYk andY ′
k′ form pair of non-

spurious events and is zero otherwise. Since each event inY associated to at most one event inY ′,
we have the constraints:

n′

∑

k′=1

C1k′

4

= S1 ∈ {0, 1},
n′

∑

k′=1

C2k′

4

= S2 ∈ {0, 1}, . . . ,
n′

∑

k′=1

Cnk′

4

= Sn ∈ {0, 1}, (11)
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and similarly, each event inY ′ is associated to at most one event inY , which is expressed by a similar
set of constraints. The sequencesS andS′ are related to the sequencesB andB′ (cf. Section 2):
Bk = 1 − Sk andB′

k = 1 − S′
k. In this representation, the global statistical model (10) can be cast

as:
p(y, y′, b, b′, c, θ) ∝

n
∏

k=1

(βδ[bk − 1] + δ[bk])

n′

∏

k′=1

(βδ[b′k − 1] + δ[b′k])

·
n
∏

k=1

n′

∏

k′=1

(

N
( x′

k′ − xk

∆xk + ∆x′
k′

; δt, st

)

N
( f ′

k′ − fk

∆fk + ∆f ′
k′

; δf , sf

)

)c
kk′

p(δt)p
(

st

)

p(δf )p
(

sf

)

·
n
∏

k=1

(

δ[bk +

n′

∑

k′=1

ckk′ − 1]
)

n′

∏

k′=1

(

δ[b′k′ +

n
∑

k=1

ckk′ − 1]
)

. (12)

Since we do not need to encode prior information aboutδt and δf , we choose improper priors
p(δt) = 1 = p(δf ). On the other hand, we have prior knowledge aboutst andsf . Indeed, we expect
a bump in one time-frequency map to appear in the other map at about the samefrequency, but there
may be some timing offset between both bumps. For example, bump nr. 1 in Fig. 3(a) (t = 10.7s)
should be paired with bump nr. 3 (t = 10.9s) and not with nr. 2 (t = 10.8s), since the former is much
closer in frequency than the latter. As a consequence, we a priori expect smaller values forsf than
for st. We encode this prior information by means of conjugate priors forst andsf , i.e., scaled
inverse chi-square distributions.

A factor graph of model (14) is shown in Fig. 4 (each edge represents a variable, each node corre-
sponds to a factor of (14), as indicated by the arrows at the right hand side; we refer to [7] for an
introduction to factor graphs). We omitted the edges for the (observed) variablesXk, X ′

k′ , Fk, F ′
k′ ,

∆Xk, ∆X ′
k′ , ∆Fk, and∆F ′

k′ in order not to clutter the figure.
Time-frequency map Time-frequency map

↓ ↓
Bump model Bump model

⇔
Figure 2: Two-dimensional stochastic event synchrony.

We determine the alignmentC = (C11, C12, . . . , Cnn′) and the parametersθ = (δt, st, δf , sf) by
maximum a posteriori (MAP) estimation:

(ĉ, θ̂) = argmax
c,θ

p(y, y′, c, θ), (13)

wherep(y, y′, c, θ) is obtained from (14) by marginalizing overb andb′:

p(y, y′, c, θ) ∝
n
∏

k=1

(

βδ
[

n′

∑

k′=1

ckk′

]

+ δ
[

n′

∑

k′=1

ckk′ − 1
]

)

n′

∏

k′=1

(

βδ
[

n
∑

k=1

ckk′

]

+ δ
[

n
∑

k=1

ckk′ − 1
]

)

·
n
∏

k=1

n′

∏

k′=1

(

N
( x′

k′ − xk

∆xk + ∆x′
k′

; δt, st

)

N
( f ′

k′ − fk

∆fk + ∆f ′
k′

; δf , sf

)

)c
kk′

p(δt)p
(

st

)

p(δf )p
(

sf

)

.

(14)
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(a) Bump models of two EEG channels.
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(b) Non-spurious bumps (ρspur = 27%); the
black lines connect the centers of non-spurious
bumps.

Figure 3: Spurious and non-spurious activity.
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ttt

p(δt, st, δf , sf ) = p(δt)p(st)p(δf )p(sf )

δ[bn +
∑n′

k′=1 cnk′ − 1]

δ[bn] + βδ[bn − 1]

(

N
(

x′

n′−xn

∆xn+∆x′

n′

; δt, st

)

N
(

f ′

n′−fn

∆fn+∆f ′

n′

; δf , sf

)

)c
nn′

µ↑′

µ↑

µ↓′

µ↓

θ̂(k)

θ̂(k)

=

== === = ===

Σ̄Σ̄ Σ̄Σ̄ Σ̄Σ̄

θ = (δt, st, δf , sf )

N NNNNNNNN

βββββ β

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

C11 C12 C1n′ C21 C22 C2n′ Cn1 Cn2 Cnn′

B1 B2 BnB′
1 B′

2 B′
n′

Figure 4: Factor graph of model (14).

From ĉ, we obtain the estimatêρspur as:

ρ̂spur =

∑n

k=1 b̂k +
∑n′

k=1 b̂′k′

n + n′
=

n + n′ − 2
∑n

k=1

∑n′

k′=1 ĉkk′

n + n′
. (15)

The MAP estimate (13) is intractable, and we try to obtain (13) by cyclic maximization: first, the
parametersθ are initialized: δ̂(0)

t = 0 = δ
(0)
f , ŝ

(0)
t = ŝ0,t, and ŝ

(0)
f = s0,f , then one alternates the

following two update rules until convergence (or until the available time has elapsed):

ĉ(i+1) = argmax
c

p(y, y′, c, θ̂(i)) (16)

θ̂(i+1) = argmax
θ

p(y, y′, ĉ(i+1), θ). (17)

The estimatêθ(i+1) (17) is available in closed-form; indeed, it is easily verified that the point es-
timatesδ̂

(i+1)
t and δ̂

(i+1)
f are the (sample) mean of the timing and frequency offset respectively,

computed over all pairs of non-spurious events. The estimatesŝ
(i+1)
t andŝ

(i+1)
f are obtained simi-

larly.

Update (16), i.e., finding the optimal pairwise alignmentC for given valuesθ̂(i) of the parametersθ,
is less straightforward: it involves an intractable combinatorial optimization problem. We attempt
to solve that problem by applying the max-product algorithm to the (cyclic) factor graph depicted
in Fig. 4 [7]. Let us first point out that, since the alignmentC is computed for givenθ = θ̂(i),
the (upward) messages along the edgesθ are the point estimatêθ(i) (cf. (16)); equivalently, for the
purpose of computing (16), one may remove theθ edges and the two bottom nodes in Fig. 4; the
N -nodes then become leaf nodes. The other messages in the graph are iteratively updated according
to the generic max-product update rule [7].

The resulting inference algorithm for computing (16) is summarized in Table 1. The messages
µ↑(ckk′ ) andµ↑′(ckk′ ) propagateupward along the edgesckk′ towards thēΣ-nodes connected to
the edgesBk andB′

k′ respectively (see Fig. 4, left hand side); the messagesµ↓(ckk′ ) andµ↓′(ckk′ )
propagatedownward along the edgesckk′ from the Σ̄-nodes connected to the edgesBk andB′

k′

respectively. After initialization (18) of the messagesµ↑(ckk′ ) andµ↑′(ckk′ ) (k = 1, 2, . . . ,n; k′

= 1, 2, . . . ,n′), one alternatively updates (i) the messagesµ↓(ckk′) (19) andµ↓′(ckk′ ) (20), (ii) the
messagesµ↑(ckk′ ) (21) andµ↑′(ckk′ ) (22), until convergence; it is noteworthy that, although the
max-product algorithm is not guaranteed to converge on cyclic graphs, we observed in our experi-
ments (see Section 4) that alternating the updates (19)–(22) always converged to a fixed point. At
last, one computes the marginalsp(ckk′ ) (23), and from the latter, one may determine the decisions
ĉkk′ by greedy decimation.

4 Diagnosis of MCI from EEG

We analyzed rest eyes-closed EEG data recorded from 21 sites on the scalp based on the 10–20
system. The sampling frequency was 200 Hz, and the signals were bandpass filtered between 4
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Initialization

µ↑(ckk′ ) = µ↑′(ckk′ ) ∝

(

N
( x′

k′ − xk

∆xk + ∆x′
k′

; δt, st

)

N
( f ′

k′ − fk

∆fk + ∆f ′
k′

; δf , sf

)

)c
kk′

(18)

Iteratively compute messages until convergence
A. Downward messages:

(

µ↓(ckk′ = 0)
µ↓(ckk′ = 1)

)

∝

(

max (β, max`′ 6=k′ µ↑(ck`′ = 1)/µ↑(ck`′ = 0))
1

)

(19)
(

µ↓′(ckk′ = 0)
µ↓′(ckk′ = 1)

)

∝

(

max (β, max` 6=k µ↑′(c`k′ = 1)/µ↑′(c`k′ = 0))
1

)

(20)

B. Upward messages:

µ↑(ckk′ ) ∝ µ↓′(ckk′ )

(

N
( x′

k′ − xk

∆xk + ∆x′
k′

; δt, st

)

N
( f ′

k′ − fk

∆fk + ∆f ′
k′

; δf , sf

)

)c
kk′

(21)

µ↑′(ckk′ ) ∝ µ↓(ckk′ )

(

N
( x′

k′ − xk

∆xk + ∆x′
k′

; δt, st

)

N
( f ′

k′ − fk

∆fk + ∆f ′
k′

; δf , sf

)

)c
kk′

(22)

Marginals

p(ckk′ ) ∝ µ↓(ckk′ )µ↓′(ckk′ )

(

N
( x′

k′ − xk

∆xk + ∆x′
k′

; δt, st

)

N
( f ′

k′ − fk

∆fk + ∆f ′
k′

; δf , sf

)

)c
kk′

(23)

Table 1: Inference algorithm.

and 30Hz. The subjects comprised two study groups: the first consisted of a group of 22 patients
diagnosed as suffering from MCI, who subsequently developed mild AD. The other group was a
control set of 38 age-matched, healthy subjects who had no memory or other cognitive impairments.
Pre-selection was conducted to ensure that the data were of a high quality, as determined by the
presence of at least 20s of artifact free data. We computed a large variety of synchrony measures
for both data sets; the results are summarized in Table 2. We report results for global synchrony,
obtained by averaging the synchrony measures over 5 brain regions (frontal, temporal left and right,
central, occipital). For SES, the bump models were clustered by means of the aggregation algorithm
described in [17].

The strongest observed effect is a significantly higher degree of background noise (ρspur) in MCI
patients, more specifically, a high number of spurious, non-synchronous oscillatory events (p =
0.00021). We verified that the SES measures are not correlated (Pearsonr) with other synchrony
measures (p > 0.10); in contrast to the other measures, SES quantifies the synchrony of oscillatory
events (instead of more conventional amplitude or phase synchrony). Combiningρspur with ffDTF
yields good classification of MCI vs. Control patients (see Fig.5(a)). Interestingly, we did not ob-
serve a significant effect on the timing jitterst of the non-spurious events (p = 0.91). In other words,
AD seems to be associated with a significant increase of spurious background activity, while the
non-spurious activity remains well synchronized. Moreover, only the non-spurious activity slows
down (p = 0.0012; see Fig.5(c)), the average frequency of the spurious activity is not affected in MCI
patients (see Fig.5(c)). In future work, we will verify those observations by means of additional data
sets.

Measure Cross-correlation Coherence Phase Coherence Corr-entropy Wave-entropy

p-value 0.028∗ 0.060 0.72 0.27 0.012∗

References [16] [18] [20]

Measure Granger coherence Partial Coherence PDC DTF ffDTF dDTF

p-value 0.15 0.16 0.60 0.34 0.0012∗∗ 0.030∗

References [13]

Measure Kullback-Leibler Rényi Jensen-Shannon Jensen-Rényi IW I

p-value 0.072 0.076 0.084 0.12 0.060 0.080

References [23] [22]

Measure Nk Sk Hk S-estimator

p-value 0.032∗ 0.29 0.090 0.33

References [15] [21]

Measure Hilbert Phase Wavelet Phase Evolution Map Instantaneous Period

p-value 0.15 0.082 0.072 0.020∗

References [24] [19]

Measure st ρspur

p-value 0.91 0.00021∗∗

Table 2: Sensitivity of synchrony measures for early prediction of AD (p-values for Mann-Whitney
test; * and ** indicatep < 0.05 andp < 0.005 respectively).Nk, Sk, andHk are three measures
of nonlinear interdependence [15].
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Figure 5: Results.
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