
Automatic Generation of Social Tags for Music
Recommendation

Douglas Eck∗
Sun Labs, Sun Microsystems

Burlington, Mass, USA
douglas.eck@umontreal.ca

Paul Lamere
Sun Labs, Sun Microsystems

Burlington, Mass, USA
paul.lamere@sun.com

Thierry Bertin-Mahieux
Sun Labs, Sun Microsystems

Burlington, Mass, USA
bertinmt@iro.umontreal.ca

Stephen Green
Sun Labs, Sun Microsystems

Burlington, Mass, USA
stephen.green@sun.com

Abstract

Social tags are user-generated keywords associated with some resource on the
Web. In the case of music, social tags have become an important component of
“Web2.0” recommender systems, allowing users to generate playlists based on
use-dependent terms such as chill or jogging that have been applied to particular
songs. In this paper, we propose a method for predicting these social tags directly
from MP3 files. Using a set of boosted classifiers, we map audio features onto
social tags collected from the Web. The resulting automatic tags (or autotags)
furnish information about music that is otherwise untagged or poorly tagged, al-
lowing for insertion of previously unheard music into a social recommender. This
avoids the ”cold-start problem” common in such systems. Autotags can also be
used to smooth the tag space from which similarities and recommendations are
made by providing a set of comparable baseline tags for all tracks in a recom-
mender system.

1 Introduction

Social tags are a key part of “Web 2.0” technologies and have become an important source of in-
formation for recommendation. In the domain of music, Web sites such as Last.fm use social tags
as a basis for recommending music to listeners. In this paper we propose a method for predicting
social tags using audio feature extraction and supervised learning. These automatically-generated
tags (or “autotags”) can furnish information about music for which good, descriptive social tags
are lacking. Using traditional information retrieval techniques a music recommender can use these
autotags (combined with any available listener-applied tags) to predict artist or song similarity. The
tags can also serve to smooth the tag space from which similarities and recommendations are made
by providing a set of comparable baseline tags for all artists or songs in a recommender.

This is not the first attempt to predict something about textual data using music audio as input.
Whitman & Rifkin [10], for example, provide an audio-driven model for predicting words found
near artists in web queries . One main contribution of the work in this paper lies in the scale of our
experiments. As is described in Section 4 we work with a social tag database of millions of tags
applied to ∼ 100, 000 artists and an audio database of ∼ 90, 000 songs spanning many of the more
popular of these artists. This compares favorably with previous attempts which by and large treat
only very small datasets (e.g. [10] used 255 songs drawn from 51 artists.)

∗Eck and Bertin-Mahieux currently at Dept. of Computer Science, Univ. of Montreal, Montreal , Canada

1

This paper is organized as follows: in Section 2 we describe social tags in more depth, including
a description of how social tags can be used to avoid problems found in traditional collaborative
filtering systems, as well as a description of the tag set we built for these experiments. In Section 3
we present an algorithm for autotagging songs based on labeled data collected from the Internet.
In Section 4 we present experimental results and also discuss the ability to use model results for
visualization. Finally, in Section 5 we describe our conclusions and future work.

2 Using social tags for recommendation

As the amount of online music grows, automatic music recommendation becomes an increasingly
important tool for music listeners to find music that they will like. Automatic music recommenders
commonly use collaborative filtering (CF) techniques to recommend music based on the listening
behaviors of other music listeners. These CF recommenders (CFRs) harness the “wisdom of the
crowds” to recommend music. Even though CFRs generate good recommendations there are still
some problems with this approach. A significant issue for CFRs recommenders is the cold-start
problem. A recommender needs a significant amount of data before it can generate good recom-
mendations. For new music, music by an unknown artist with few listeners, a CFR cannot generate
good recommendations. Another issue is the lack of transparency in recommendations [7]. A CFR
cannot tell a listener why an artist was recommended beyond the description: “people who listen to
X also listen to Y”. Also, a CFR is relatively insensitive to multimodal uses of the same album or
song. For example songs from an album (a single purchase in a standard CFR system) may be used
in the context of dining, jogging and working. In each context, the reason the song was selected
changes.

An alternative style of recommendation that addresses many of the shortcomings of a CFR is to
recommend music based upon the similarity of “social tags” that have been applied to the music.
Social tags are free text labels that music listeners apply to songs, albums or artists. Typically, users
are motivated to tag as a way to organize their own personal music collection. The real strength
of a tagging system is seen when the tags of many users are aggregated. When the tags created by
thousands of different listeners are combined, a rich and complex view of the song or artist emerges.
Table 1 show the top 21 tags and frequencies of tags applied to the band “The Shins”. Users have
applied tags associated with the genre (Indie, Pop, etc.), with the mood (mellow, chill), opinion
(favorite, love), style (singer-songwriter) and context (Garden State). From these tags and their
frequencies we learn much more about “The Shins” than we would from a traditional single genre
assignment of “Indie Rock”.

In this paper, we investigate the automatic generation of tags with properties similar to those gener-
ated by social taggers. Specifically, we introduce a machine learning algorithm that takes as input
acoustic features and predicts social tags mined from the web (in our case, Last.fm). The model
can then be used to tag new or otherwise untagged music, thus providing a partial solution to the
cold-start problem.

For this research, we extracted tags and tag frequencies for nearly 100,000 artists from the social
music website Last.fm using the Audioscrobbler web service [1]. The majority of tags describe
audio content. Genre, mood and instrumentation account for 77% of the tags. See “extra material”
for a breakdown of tag types.

Overcoming the cold-start problem is the primary motivation for this area of research. For new music
or sparsely tagged music, we predict social tags directly from the audio and apply these automati-
cally generated tags (called autotags) in lieu of traditionally applied social tags. By automatically
tagging new music in this fashion, we can reduce or eliminate much of the cold-start problem.

3 An autotagging algorithm

We now describe a machine learning model which uses the meta-learning algorithm AdaBoost [5]
to predict tags from acoustic features. This model is an extension of a previous model [3] which won
the Genre Prediction Contest and was the 2nd place performer in the Artist Identification Contest at
MIREX 2005 (ISMIR conference, London, 2005). The model has two principal advantages. First
it selects features based on a feature’s ability to minimize empirical error. We can therefore use the

2

Tag Freq Tag Freq Tag Freq
Indie 2375 The Shins 190 Punk 49

Indie rock 1138 Favorites 138 Chill 45
Indie pop 841 Emo 113 Singer-songwriter 41

Alternative 653 Mellow 85 Garden State 39
Rock 512 Folk 85 Favorite 37

Seen Live 298 Alternative rock 83 Electronic 36
Pop 231 Acoustic 54 Love 35

Table 1: Top 21 tags applied to The Shins

A r t i s t A 80s

rockcool

S o n g 1 80s

rockcool

SONG TAGGING LEARNING ’80s’ TAG

S o n g 1

a u d i o f e a t u r e s

 t a r g e t : ’ 8 0 s ’
n o n e / s o m e / a l o t

’ 8 0 s ’ b o o s t e r

t ra in ing

PREDICTION

SET OF
BOOSTERS

n e w s o n g

p r e d i c t e d t a g s

Figure 1: Overview of our model

model to eliminate useless feature sets by looking at the order in which those features are selected.
We used this property of the model to discard many candidate features such as chromagrams (which
map spectral energy onto the 12 notes of the Western musical scale) because the weak learners
associated with those features were selected very late by AdaBoost. Second, though AdaBoost may
need relatively more weak learners to achieve the same performance on a large dataset than a small
one, the computation time for a single weak learner scales linearly with the number of training
examples. Thus AdaBoost has the potential to scale well to very large datasets. Both of these
properties are general to AdaBoost and are not explored further in this short paper. See [5, 9] for
more.

3.1 Acoustic feature extraction

The features we use include 20 Mel-Frequency Cepstral Coefficients, 176 autocorrelation coeffi-
cients computed for lags spanning from 250msec to 2000msec at 10ms intervals, and 85 spectro-
gram coefficients sampled by constant-Q (or log-scaled) frequency (see [6] for descriptions of these
standard acoustic features.)

The audio features described above are calculated over short windows of audio (100ms with 25ms
overlap). This yields too many features per song for our purposes. To address this, we create “aggre-
gate” features by computing individual means and standard deviations (i.e., independent Gaussians)
of these features over 5s windows of feature data. When fixing hyperparameters for these experi-
ments, we also tried a combination of 5s and 10s features, but saw no real improvement in results.
For reasons of computational efficiency we used random sampling to retain a maximum of 12 ag-
gregate features per song, corresponding to 1 minute of audio data.

3.2 Labels as a classification problem

Intuitively, automatic labeling would be a regression task where a learner would try to predict tag
frequencies for artists or songs. However, because tags are sparse (many artist are not tagged at all;
others like Radiohead are heavily tagged) this proves to be too difficult using our current Last.fm

3

dataset. Instead, we chose to treat the task as a classification one. Specifically, for each tag we try to
predict if a particular artist has “none”, “some” or “a lot” of a particular tag relative to other tags.

We normalize the tag frequencies for each artist so that artists having many tags can be compared to
artists having few tags. Then for each tag, an individual artist is placed into a single class “none”,
“some” or “a lot” depending on the proportion of times the tag was assigned to that artist relative
to other tags assigned to that artist. Thus if an artist received only 50 rock tags and nothing else, it
would be treated as having “a lot” of rock. Conversely, if an artist received 5000 rock tags but 10,000
jazz tags it would be treated as having “some” rock and “a lot” of jazz. The specific boundaries
between “none”, “some” and “a lot” were decided by summing the normalized tag counts or all
artists, generating a 100-bin histogram for each tag and moving the category boundaries such that
an equal number of artists fall into each of the categories. In Figure 2 the histogram for “rock” is
shown (with only 30 bins to make the plot easier to read). Note that most artists fall into the lowest
bin (no or very few instances of the “rock” tag) and that otherwise most of the mass is in high bins.
This was the trend for most tags and one of our motivations for using only 3 bins. As described in
the paper we do not directly use the predictions of the “some” bin. Rather it serves as a class for
holding those artists for which we cannot confidently say “none” or “a lot”. See Figure 2 for an
example.

Figure 2: A 30-bin histogram of the proportion of “rock” tags to other tags for all songs in the dataset.

3.3 Tag prediction with AdaBoost

AdaBoost [5] is a meta-learning method that constructs a strong classifier from a set of simpler
classifiers, called weak learners in an iterative way. Originally intended for binary classification,
there exist several ways to extend it to multiclass classification. We use AdaBoost.MH [9] which
treats multiclass classification as a set of one-versus-all binary classification problems. In each
iteration t, the algorithm selects the best classifier, called h(t) from a pool of weak learners, based
on its performance on the training set, and assigns it a coefficient α(t). The input to the weak
learner is a d-dimensional observation vector x ∈ <d containing audio features for one segment of
aggregated data (5 seconds in our experiments). The output of h(t) is a binary vector y ∈ {−1, 1}k

over the k classes. h
(t)
l = 1 means a vote for class l by a weak learner while h(t), −1 is a vote

against. After T iterations, the algorithm output is a vector-valued discriminant function:

g(x) =
T∑

t=1

α(t)h(y)(x) (1)

As weak learners we used single stumps, e.g. a binary threshold on one of the features. In previous
work we also tried decision trees without any significant improvement. Usually we obtain a single
label by taking the class with the most votes i.e f(x) = arg maxl gl(x), but in our model, we use
the output value for each class rather than the argmax.

3.4 Generating autotags

For each aggregate segment, a booster yields a prediction over the classes “none”, “some”, and “a
lot”. A booster’s raw output for a single segment might be (none:−3.56) (some:0.14) (a lot:2.6).

4

These segment predictions can then be combined to yield artist-level predictions. This can be
achieved in two ways: a winning class can be chosen for each segment (in this example the class “a
lot” would win with 2.6) and the mean over winners can be tallied for all segments belonging to an
artist. Alternately we can skip choosing a winner and simply take the mean of the raw outputs for an
artist’s segments. Because we wanted to estimate tag frequencies using booster magnitude we used
the latter strategy.

The next step is to transform these class for our individual social tag boosters into a bag of words to
be associated with an artist. The most naive way to obtain a single value for rock is to look solely
at the prediction for the “a lot” class. However this discards valuable information such as when a
booster votes strongly “none”. A better way to obtain a measure for rock-ness is to take the center
of mass of the three values. However, because the values are not scaled well with respect to one
another, we ended up with poorly scaled results. Another intuitive idea is simply to subtract the
value of the “none” bin from the value of the “a lot” bin, the reasoning being that “none” is truly
the opposite of “a lot”. In our example, this would yield a rock strength of 7.16. In experiments
for setting hyperparameters, this was shown to work better than other methods. Thus to generate
our final measure of rock-ness, we ignore the middle bin (“some”). However this should not be
taken to mean that the middle “some” bin is useless: the booster needed to learn to predict “some”
during training thus forcing it to be more selective in predicting “none” and “a lot”. As a large-
margin classifier, AdaBoost tries to separate the classes as much as possible, so the magnitude of the
values for each bin are not easily comparable. To remedy this, we normalize by taking the minimum
and maximum prediction for each booster, which seems to work for finding similar artists. This
normalization would not be necessary if we had good tagging data for all artists and could perform
regression on the frequency of tag occurrence across artists.

4 Experiments

To test our model we selected the 60 most popular tags from the Last.fm crawl data described in
Section 2. These tags included genres such as “Rock”, “Electronica”, and “Post Punk”, mood-
related terms such as “Chillout”. The full list of tags and frequencies are available in the “extra
materials”. We collected MP3s for a subset of the artists obtained in our Audioscrobbler crawl.
From those MP3s we extracted several popular acoustic features. In total our training and testing
data included 89924 songs for 1277 artists and yielded more than 1 million 5s aggregate features.

4.1 Booster Errors

As described above, a classifier was trained to map audio features onto aggregate feature segments
for each of the 60 tags. A third of the data was withheld for testing. Because each of the 60
boosters needed roughly 1 day to process, we did not perform cross-validation. However each
booster was trained on a large amount of data relative to the number of decision stumps learned,
making overfitting a remote possibility. Classification errors are shown in Table 2. These errors are
broken down by tag in the annex for this paper. Using 3 bins and balanced classes, the random error
is about 67%.

Mean Median Min Max
Segment 40.93 43.1 21.3 49.6
Song 37.61 39.69 17.8 46.6

Table 2: Summary of test error (%) on predicting bins for songs and segments.

4.2 Evaluation measures

We use three measures to evaluate the performance of the model. The first TopN compares two
ranked lists, a target “ground truth” list A and our predicted list B. This measure is introduced in
[2], and is intended to place emphasis on how well our list predicts the top few items of the target
list. Let kj be the position in list B of the jth element from list A. αr = 0.51/3, and αc = 0.52/3,

5

as in [2]. The result is a value between 0 (dissimilar) and 1 (identical top N),

si =

∑N
j=1 αj

rα
kj
c∑N

l=1(αr ∗ αc)l
(2)

For the results produced below, we look at the top N = 10 elements in the lists.

Our second measure is Kendall’s Tau, a classic measure in collaborative filtering which measures
the number of discordant pairs in 2 lists. Let RA(i) be the rank of the element i in list A, if i is not
explicitly present, RA(i) = length(A) + 1. Let C be the number of concordant pairs of elements
(i, j), e.g. RA(i) > RA(j) and RB(i) < RB(j). In a similar way, D is the number of discordant
pairs. We use τ ’s approximation in [8]. We also define TA and TB the number of ties in list A and
B. In our case, it’s the number of pairs of artists that are in A but not in B, because they end up
having the same position RB = length(B) + 1, and reciprocally. Kendall’s tau value is defined as:

τ =
C −D

sqrt((C + D + TA)(C + D + TB))
(3)

Unless otherwise noted, we analyzed the top 50 predicted values for the target and predicted lists.
Finally, we compute what we call the TopBucket, which is simply the percentage of common ele-
ments in the top N of 2 ranked lists. Here as in Kendall we compare the top 50 predicted values
unless otherwise noted.

4.3 Constructing ground truth

As has long been acknowledged [4] one of the biggest challenges in addressing this task is to find a
reasonable “ground truth” against which to compare our results. We seek a similarity matrix among
artists which is not overly biased by current popularity, and which is not built directly from the
social tags we are using for learning targets. Furthermore we want to derive our measure using
data that is freely available data on the web, thus ruling out commercial services such as AllMusic
(www.allmusic.com). Our solution is to construct our ground truth similarity matrix using correla-
tions from the listening habits of Last.fm users. If a significant number of users listen to artists A
and B (regardless of the tags they may assign to that artist) we consider those two artists similar.

One challenge, of course, is that some users listen to more music than others and that some artists
are more popular than others. Text search engines must deal with a similar problem: they want
to ensure that frequently used words (e.g., system) do not outweigh infrequently used words (e.g.,
prestidigitation) and that long documents do not always outweigh short documents. Search engines
assign a weight to each word in a document. The weight is meant to represent how important that
word is for that document. Although many such weighting schemes have been described (see [11]
for a comprehensive review), the most popular is the term frequency-inverse document frequency
(or TF×IDF) weighting scheme. TF×IDF assigns high weights to words that occur frequently in a
given document and infrequently in the rest of the collection. The fundamental idea is that words
that are assigned high weights for a given document are good discriminators for that document from
the rest of the collection. Typically, the weights associated with a document are treated as a vector
that has its length normalized to one.

In the case of LastFM, we can consider an artist to be a “document”, where the “words” of the
document are the users that have listened to that artist. The TF×IDF weight for a given user for a
given artist takes into account the global popularity of a given artist and ensures that users who have
listened to more artists do not automatically dominate users who have listened to fewer artists. The
resulting similarity measure seems to us to do a reasonable enough job of capturing artist similarity.
Furthermore it does not seem to be overly biased towards popular bands. See “extra material” for
some examples.

4.4 Similarity Results

One intuitive way to compare autotags and social tags is to look at how well the autotags reproduce
the rank order of the social tags. We used the measures in Section 4.2 to measure this on 100 artists
not used for training (Table 3). The results were well above random. For example, the top 5 autotags
were in agreement with the top 5 social tags 61% of the time.

6

TopN 10 Kendall (N=5) TopBucket (N=5)
autotags 0.636 -0.099 61.0%
random 0.111 -0.645 8.1%

Table 3: Results for all three measures on tag order for 100 out-of-sample artists.

A more realistic way to compare autotags and social tags is via their artist similarity predictions.
We construct similarity matrices from our autotag results and from the Last.fm social tags used for
training and testing. The similarity measure we used wascosine similarity scos(A1, A2) = A1 ∗
A2/(||A1|| ||A2||) where A1 and A2 are tag magnitudes for an artist. In keeping with our interest in
developing a commercial system, we used all available data for generating the similarity matrices,
including data used for training. (The chance of overfitting aside, it would be unwise to remove The
Beatles from your recommender simply because you trained on some of their songs). The similarity
matrix is then used to generate a ranked list of similar artists for each artist in the matrix. These lists
are used to compute the measures describe in Section 4.2. Results are found at the top in Table 4.

One potential flaw in this experiment is that the ground truth comes from the same data source as
the training data. Though the ground truth is based on user listening counts and our learning data
comes from aggregate tagging counts, there is still a clear chance of contamination. To investigate
this, we selected the autotags and social tags for 95 of the artists from the USPOP database [2]. We
constructed a ground truth matrix based on the 2002 MusicSeer web survey eliciting similarity rank-
ings between artists from appro 1000 listeners [2]. These results show much closer correspondence
between our autotag results and the social tags from Last.fm than the previous test. See bottom,
Table 4.

Groundtruth Model TopN 10 Kendall 50 TopBucket 20
Last.FM social tags 0.26 -0.23 34.6%

autotags 0.118 -0.406 22.5%
random 0.005 -0.635 3.9%

MusicSeer social tags 0.237 -0.182 29.7%
autotags 0.184 -0.161 28.2%
random 0.051 -0.224 21.5%

Table 4: Performance against Last.Fm (top) and MusicSeer (bottom) ground truth.

It is clear from these previous two experiments that our autotag results do not outperform the social
tags on which they were trained. Thus we asked whether combining the predictions of the autotags
with the social tags would yield better performance than either of them alone. To test this we blended
the autotag similarity matrix Sa with the social tag matrix Ss using αSa + (1 − α)Ss. The results
shown in Figure 3 show a consistent performance increase when blending the two similarity sources.
It seems clear from these results that the autotags are of value. Though they do not outperform the
social tags on which they were trained, they do yield improved performance when combined with
social tags. At the same time they are driven entirely by audio and so can be applied to new, untagged
music. With only 60 tags the model makes some reasonable predictions. When more boosters are
trained, it is safe to assume that the model will perform better.

5 Conclusion and future work

The work presented here is preliminary, but we believe that a supervised learning approach to au-
totagging has substantial merit. Our next step is to compare the performance of our boosted model
to other approaches such as SVMs and neural networks. The dataset used for these experiments
is already larger than those used for published results for genre and artist classification. However,
a dataset another order of magnitude larger is necessary to approximate even a small commercial
database of music. A further next step is comparing the performance of our audio features with other
sets of audio features.

7

Figure 3: Similarity performance results when autotag similarities are blended with social tag simi-
larities. The horizontal line is the performance of the social tags against ground truth.

We plan to extend our system to predict many more tags than the current set of 60 tags. We expect
the accuracy of our system to improve as we extend our tag set, especially as we add tags such as
Classical and Folk that are associated with whole genres of music. We will also continue exploring
ways in which the autotag results can drive music visualization. See “extra examples” for some
preliminary work.

Our current method of evaluating our system is biased to favor popular artists. In the future, we
plan to extend our evaluation to include comparisons with music similarity derived from human
analysis of music. This type of evaluation should be free of popularity bias. Most importantly, the
machine-generated autotags need to be tested in a social recommender. It is only in such a context
that we can explore whether autotags, when blended with real social tags, will in fact yield improved
recommendations.

References
[1] Audioscrobbler. Web Services described at http://www.audioscrobbler.net/data/webservices/.

[2] A. Berenzweig, B. Logan, D. Ellis, and B. Whitman. A large-scale evaluation of acoustic and subjective
music similarity measures. In Proceedings of the 4th International Conference on Music Information
Retrieval (ISMIR 2003), 2003.

[3] J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B. Kégl. Aggregate features and AdaBoost for music
classification. Machine Learning, 65(2-3):473–484, 2006.

[4] D. Ellis, B. Whitman, A. Berenzweig, and S. Lawrence. The quest for ground truth in musical artist
similarity. In Proceedings of the 3th International Conference on Music Information Retrieval (ISMIR
2002), 2002.

[5] Y. Freund and R.E. Shapire. Experiments with a new boosting algorithm. In Machine Learning: Pro-
ceedings of the Thirteenth International Conference, pages 148–156, 1996.

[6] B. Gold and N. Morgan. Speech and Audio Signal Processing: Processing and Perception of Speech and
Music. Wiley, Berkeley, California., 2000.

[7] Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl. Explaining collaborative filtering recommen-
dations. In Computer Supported Cooperative Work, pages 241–250, 2000.

[8] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl. Evaluating collaborative
filtering recommender systems. ACM Trans. Inf. Syst., 22(1):5–53, 2004.

[9] R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine
Learning, 37(3):297–336, 1999.

[10] Brian Whitman and Ryan M. Rifkin. Musical query-by-description as a multiclass learning problem. In
IEEE Workshop on Multimedia Signal Processing, pages 153–156. IEEE Signal Processing Society, 2002.

[11] Justin Zobel and Alistair Moffat. Exploring the similarity space. SIGIR Forum, 32(1):18–34, 1998.

8

