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Abstract

This technical report contains the proofs of Lemmas 1 and 2 in the paper ’Cluster
Stability for Finite Samples’.

1 Proof of Lemma 1

Proof. The proof idea is essentially identical for all values ofk. We have thatdD(Ak(S1), Ak(S2))
is governed by the the probability mass ofD which switches between clusters inAk(S1) and
Ak(S2), in expectation overS1 andS2. For reasonably large samples, all this probability mass
is tightly concentrated in small border regions between the clusters, and is governed by small fluc-
tuations in the border positions. For allk, these fluctuations become smaller as the sample sizem
increases. The important point is that the location of the border points are different for different
choices ofk. For the ’right’ model, the borders lie in areas of very low probability density, and as a
result the probability mass ofD which switches between clusters is relatively small in expectation.
In contrast, for the ’wrong’ models, some of the border points lie in areas of higher density, so the
probability mass ofD which switches between clusters is relatively much higher. From this, we get
thatstab(Ak,D, m) is relatively smaller for the ’right’ value ofk, compared to the other values.

We will consider the casek = 2 in some detail, and then go over the other two cases more quickly.
To simplify the analysis, the proof involves some approximations, with approximation errors which
are asymptotically negligible asm → ∞, or that are arbitrarily small ifµ is large enough. Ap-
proximations of the first type form theo(1) term in the lemma, while approximations of the second
type can be absorbed into the derived (non-tight) bounds. We will use the formulationN (µ, σ2) to
denote a normally distributed real random variable, with expectationµ and varianceσ2. Also, we
will make frequent use of the following basic facts: Ifa1, a2 are independent random variables such
thata1 ∼ N (µ1, σ

2
1) andb ∼ N (µ2, σ

2
2), then the distribution ofa1 + a2 isN (µ1 + µ2, σ

2
1 + σ2

2),
and the expected value of|a1| is

√
2/πσ1.

For k = 2, let α1 andα2 be random variables (over the draw of a sample of sizem from D),
representing the centroids inR returned by the algorithm, such thatα1 ≤ α2 (see figure 1). If the
Gaussians are well separated, we can assume that they are approximately independent: the value of
α1 is equal to the sample mean derived from the region of the larger Gaussian, whileα2 is equal
to the sample mean derived from the mixture of the two smaller Gaussians. The distribution of a
sample mean of a unit variance Gaussian is also Gaussian, with variance1/n wheren is the sample
size on which the mean is estimated. Therefore, we have that the distribution ofα1 is approximately
N (−µ, 3/2m). Since the two smaller Gaussians are well separated and equal, the distribution ofα2

is approximately the average of the sample means of the Gaussians, namelyN (µ/2, 3/m).

Let β = (α1 + α2)/2 be a random variable denoting the border point between the two clusters.
Sinceα1 andα2 are approximately independent, we have that the distribution ofβ is approximately
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N (−µ/4, 9/8m). As a result, if we letβ′ andβ′′ be two independent copies ofβ, we have thatβ′−
β′′ is distributed asN (0, 9/4m). Finally, since for large values ofm we have thatβ is concentrated
around−µ/4, it follows that the probability mass ofD which switches between clusters (over the
draw and clustering of two independent samples) is approximately distributed as|β′−β′′|p(−µ/4),
wherp(·) is the probability density function ofD. Informally, this is the probability mass which was
on ’one side of the border’ under the first clustering, and on the ’other side of the border’ under the
second clustering.

Recall thatdD(Ak(S1), Ak(S2)) is defined as the probability that two instances sampled fromD
will be in the same cluster for clusteringAk(S1) and in different clusters for clusteringAk(S2), or
vice versa. Fork = 2 clusters, this reduces to2t(1 − t), wheret is a random variable defined over
a pair of independent samplesS1 andS2, and represents the probability mass ofD which switches
clusters betweenA2(S1) andA2(S2). By the results of the previous paragraph,t is distributed as
|β′ − β′′|p(−µ/4). Therefore, we have that:

stab(A2,D,m) = E[dD(A2(S1), A2(S2))]
= E[2t(1− t)]
≈ 2E[p(−µ/4)|β′ − β′′|]− 2E[(p(−µ/4))2(β′ − β′′)2]

≈ 2
6
√

2π
exp

(−µ2/32
)
E[|β′ − β′′|]− 2

72π
exp

(−µ2/16
)
var(β′ − β′′)

≈ 1
3
√

2π
exp

(−µ2/32
) √

2
π

√
9

4m
− 1

36π
exp

(−µ2/16
) 9

4m

(1)≈ 1
2π
√

m
exp

(−µ2/32
)

>
1

7
√

m
exp

(−µ2/32
)
.

Step(1) is due to the fact that for largem and/orµ, the second term is negligible compared to the
first term.

Fork = 3 (see figure 1), each centroid is approximately independent and equal to the sample mean
of each Gaussian, and therefore the distributions of the two cluster border pointsβ1 andβ2 are
N (−µ/2, 15/8m) andN (µ/2, 3/m) respectively. Lett1 denote the probability mass ofD which
switches between the two leftmost clusters (over drawing and clustering two independent samples),
and lett2 denote the probability mass ofD which switches between the two rightmost clusters.
Since the two leftmost clusters constitute approximately5/6 of the sample, and the two rightmost
clusters constitute approximately1/3 of the sample, we have that the probability that two instances
will be in the same cluster under one clustering, and in different clusters under another clustering, is
approximately2t1(5/6 − t1) + 2t2(1/3 − t2). As before, letβ′1, β

′′
1 be two identical independent

copies ofβ1, andβ′2, β
′′
2 be two identical independent copies ofβ2. We have thatβ′1 − β′′1 is

distributed asN (0, 15/4m) andβ′2 − β′′2 is distributed asN (0, 6/m). Therefore:

stab(A3,D,m) = E[dD(A3(S1), A3(S2))]

≈ E[2t1(
5
6
− t1)] + [E2t2(

1
3
− t2)]

≈ 5
3
E[t1] +

2
3
E[t2]

≈ 5
3
p(−µ/2)E[|β′1 − β′′1 |] +

2
3
p(µ/2)E[|β′2 − β′′2 |]

≈ 5
3

5
6
√

2π
exp

(−µ2/8
) √

2
π

√
15
4m

+
2
3

1
3
√

2π
exp

(−µ2/8
) √

2
π

√
6
m

=

√
6250

864π2m
exp

(−µ2/8
)

+

√
8

27π2m
exp

(−µ2/8
)

<
1.1√
m

exp
(−µ2/8

)
.
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Figure 1: Illustration of centroids and cluster border positions fork = 2 (upper sub-figure),k = 3
(middle sub-figure), andk = 4 (lower sub-figure). The curve represents the density function of
D. For large enough sample sizes, the cluster centroids (denoted byα) and cluster border points
(denoted byβ) will be tightly concentrated around the positions indicated in the sub-figures.

For k = 4 (see figure 1), we have two centroidsα1, α2 on the larger Gaussian, and two centroids
α3, α4 on the two smaller Gaussians. In this case, the expected probability mass which switches
clusters over different samplings is overwhelmingly in the region between the clusters ofα1 andα2,
because all other border areas are in low density areas ofD (taking them into account only improves
the derived lower bound).

By theorem 2 in [1], the distribution ofβ1 has an asymptotically Gaussian distribution, with a
variance which for simplicity will be lower bounded by3/2m1.

As a result, ifβ′1 andβ′′1 are two identical copies ofβ1, we have thatβ′1 − β′′1 is approximately
distributed as a Gaussian centered on0 with a variance of at least3/m. We can repeat an argument
similar to the other cases (and with the same notation) to get that:

stab(A4,D,m) = E[dD(A4(S1), A4(S2))]

≥ E[2t1(
2
3
− t1)]

≈ 4
3
E[t1]

≈ 4
3
p(−µ)E[|β′1 − β′′1 |]

≥ 8
3π
√

3m

>
0.4√
m

.

1In fact, this bound on the variance can be derived directly without resorting to the asymptotic assumption.
Sinceβ1 may be viewed as an unbiased estimator of the larger Gaussian’s mean, we can get the result by a
direct application of the Crámmer-Rao lower bound.
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2 Proof of Lemma 2

Proof. dD(A3(S1), A3(S2)) is a random variable (over the draw ofS1 andS2). Its expected value
is stab(A3,D,m), which by the previous lemma can be upper bounded (up to asymptotically negli-
gible approximation errors) by1.1 exp(−µ2/8)/

√
m. Therefore, by Markov’s inequality, we have

that

Pr
(

dD(A3(S′1), A3(S′2)) ≥
1

2
√

m
exp(−µ2/16)

)
< 2.2 exp(−µ2/16). (1)

We now wish to prove a lower bound ondD(A2(S1), A2(S2)) which would hold with high prob-
ability. In the proof of lemma1, we have shown that the distribution ofdD(A2(S1), A2(S2)) is
approximately (up to negligible factors)2p(−µ/4)|β′ − β′′|, whereβ′ − β′′ has a normal distribu-
tionN (0, 9/4m), andp(·) is the probability density function ofD. Therefore:

Pr
(

dD(A2(S1), A2(S2)) <
1√
m

exp(−µ2/16)
)

≈ Pr
(

1
3
√

2π
exp(−µ2/32)|β′ − β′′| <

1√
m

exp(−µ2/16)
)

= Pr

(
|β′ − β′′| <

3
√

2π√
m

exp(−µ2/32)

)
(2)

(1)≈ 2Pr

(
β′ − β′′ <

3
√

2π√
m

exp(−µ2/32)

)
− 1

(1)≈ erf
(
2
√

π exp(−µ2/32)
)

(2)

≤ 4 exp(−µ2/32).

Step(1) is by the normal distribution ofβ′ − β′′ as specified above, and(2) is due to the bound
erf(x) ≤ 2x/

√
π for x ≥ 0.

In the same way, we can derive a high-probability lower bound ondD(A4(S1), A4(S2)). In the
proof of lemma1, we have shown that the distribution ofdD(A4(S1), A4(S2)) is approximately (up
to negligible factors)(4/3)p(−µ)|β′1 − β′′1 |, whereβ′1 − β′′1 has a normal distribution with variance
of at least3/m. Repeating the same argument as above, we have that

Pr
(

dD(A4(S1), A4(S2)) <
1√
m

exp(−µ2/16)
)

≈ Pr
(

8
9
√

2π
|β′1 − β′′1 | <

1√
m

exp(−µ2/16)
)

≈ 2Pr
(

8
9
√

2π
(β′1 − β′′1 ) <

1√
m

exp(−µ2/16)
)
− 1

= 2 Pr

(
β′1 − β′′1 <

9
√

2π

8
√

m
exp(−µ2/16)

)
(3)

≤ erf

(
3
√

3π

8
exp(−µ2/16)

)

≤ 3
√

3
4

exp(−µ2/16).
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Combining inequalities 1,2,3, using the union bound, and taking into account the approximations
along the way, we have that:

Pr
(

min {dD(A2(S′1), A2(S′2)), dD(A4(S′′1 ), A4(S′′2 ))}
dD(A3(S1), A3(S2))

≤ 2
)

< (4 + o(1))
(

exp
(
−µ2

16

)
+ exp

(
−µ2

32

))
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