
Large Scale Hidden Semi-Markov SVMs

Gunnar Rätsch∗
Friedrich Miescher Laboratoy, Max Planck Society

Spemannstr. 39, 72070 Tübingen, Germany
Gunnar.Raetsch@tuebingen.mpg.de

Sören Sonnenburg
Fraunhofer FIRST.IDA

Kekuléstr. 7, 12489 Berlin, Germany
sonne@first.fhg.de

Abstract

We describe Hidden Semi-Markov Support Vector Machines (SHM SVMs), an
extension of HM SVMs to semi-Markov chains. This allows us to predict seg-
mentations of sequences based on segment-based features measuring properties
such as the length of the segment. We propose a novel technique to partition the
problem into sub-problems. The independently obtained partial solutions can then
be recombined in an efficient way, which allows us to solve label sequence learn-
ing problems with several thousands of labeled sequences. We have tested our
algorithm for predicting gene structures, an important problem in computational
biology. Results on a well-known model organism illustrate the great potential of
SHM SVMs in computational biology.

1 Introduction
Hidden Markov SVMs are a recently-proposed method for predicting a label sequence given the
input sequence [3, 17, 18, 1, 2]. They combine the benefits of the power and flexibility of kernel
methods with the idea of Hidden Markov Models (HMM) [11] to predict label sequences. In this
work we introduce a generalization of Hidden Markov SVMs, called Hidden Semi-Markov SVMs
(HSM SVMs). In HM SVMs and HMMs there is a state transition for every input symbol. In semi-
Markov processes it is allowed to persist in a state for a number of time steps before transitioning
into a new state. During this segment of time the system’s behavior is allowed to be non-Markovian.
This adds flexibility for instance to model segment lengths or to use non-linear content sensors that
may depend on the start and end of the segment.

One of the largest problems with HM SVMs and also SHM SVMs is their high computational
complexity. Solving the resulting optimization problems may become computationally infeasible
already for a few hundred examples. In the second part of the paper we consider the case of using
content sensors (for whole segments) and signal detectors (at segment boundaries) in SHM SVMs.
We motivate a simple, but very effective strategy of partitioning the problem into independent sub-
problems and discuss how one can reunion the different parts. We propose to solve a relatively
small optimization problem that can be solved rather efficiently. This strategy allows us to tackle
significantly larger label sequence problems (with several thousands of sequences).

To illustrate the strength of our approach we have applied our algorithm to an important problem
in computational biology: the prediction of the segmentation of a pre-mRNA sequence into exons
and introns. On problems derived from sequences of the model organism Caenorhabditis elegans
we can show that the SHM SVM approach consistently outperforms HMM based approaches by a
large margin (see also [13]).

The paper is organized as follows: In Section 2 we introduce the necessary notation, HM SVMs and
the extension to semi-Markov models. In Section 3 we propose and discuss a technique that allows
us to train SHM SVMs on significantly more training examples. Finally, in Section 4 we outline
the gene structure prediction problem, discuss additional techniques to apply SHM SVMs to this
problem and show surprisingly large improvements compared to state-of-the-art methods.

∗Corresponding author, http://www.fml.mpg.de/raetsch

2 Hidden Markov SVMs
In label sequence learning one learns a function that assigns to a sequence of objects x = χ1χ2 . . . χl

a sequence of labels y = υ1υ2 . . . υl (χi ∈ X, υi ∈ Υ, i = 1, . . . , l). While objects can be of rather
arbitrary kind (e.g. vectors, letters, etc), the set of labels Υ has to be finite.1 A common approach is to
determine a discriminant function F : X ×Y → R that assigns a score to every input x ∈ X := X∗

and every label sequence y ∈ Y := Υ∗, where X∗ denotes the Kleene closure of X . In order to
obtain a prediction f(x) ∈ Y , the function is maximized with respect to the second argument:

f(x) = argmax
y∈Y

F (x,y). (1)

2.1 Representation & Optimization Problem
In Hidden Markov SVMs (HM SVMs) [3], the function F (x,y) := 〈w,Φ(x,y)〉 is linearly
parametrized by a weight vector w, where Φ(x,y) is some mapping into a feature space F . Given
a set of training examples (xn,yn), n = 1, . . . , N , the parameters are tuned such that the true
labeling yn scores higher than all other labelings y ∈ Yn := Y \ yn with a large margin, i.e.
F (xn,yn) � argmaxy∈Yn

F (xn,y). This goal can be achieved by solving the following opti-
mization problem (appeared equivalently in [3]):

min
ξ∈RN ,w∈F

C
N∑

n=1

ξi + P (w) (2)

s.t. 〈w,Φ(x,yn)〉 − 〈w,Φ(x,y)〉 ≥ 1− ξn for all n = 1, . . . , N and y ∈ Yn,

where P is a suitable regularizer (e.g. P (w) = ‖w‖2) and the ξ’s are slack variables to implement
a soft margin. Note that the linear constraints in (2) are equivalent to the following set of nonlinear
constraints: F (xn,yn)−maxy∈Yn

F (xn,y) ≥ 1− ξn for n = 1, . . . , N [3].

If P (w) = ‖w‖2, it can be shown that the solution w∗ of (2) can be written as

w∗ =
N∑

n=1

∑
y∈Y

αn(y)Φ(xn,y),

where αn(y) is the Lagrange multiplier of the constraint involving example n and labeling y (see
[3] for details). Defining the kernel as k((x,y), (x′,y′)) := 〈Φ(x,y),Φ(x′,y′)〉, we can rewrite
F (x,y) as

F (x′,y′) =
N∑

n=1

∑
y∈Y

αn(y)k((xn,y), (x′,y′)).

2.2 Outline of an Optimization Algorithm
The number of constraints in (2) can be very large, which may constitute challenges for efficiently
solving problem (2). Fortunately, only a few of the constraints usually are active and working set
methods can be applied in order to solve the problem for larger number of examples. The idea is to
start with small sets of negative (i.e. false) labelings Yn for every example. One solves (2) for the
smaller problem and then identifies labelings y ∈ Yn that maximally violate constraints, i.e.

y = argmax
y∈Yn

F (xn,y), (3)

where w is the intermediate solution of the restricted problem. The new constraint generated by the
negative labeling is then added to the optimization problem. The method described above is also
known as column generation method or cutting-plane algorithm and can be shown to converge to the
optimal solution w∗ [18]. However, since the computation of F involves many kernel computations
and also the number of non-zero α’s is often large, solving the problem with more than a few hundred
labeled sequences often seems computationally too expensive.

2.3 Viterbi-like Decoding
Determining the optimal labeling in (1) efficiently is crucial during optimization and prediction. If
F (x, ·) satisfies certain conditions, one can use a Viterbi-like algorithm [20] for efficient decoding

1Note that the number of possible labelings grows exponentially in the length of the sequence.

of the optimal labeling. This is particularly the case when Φ can be written as a sum over the length
of the sequence and decomposed as

Φ(x,y) =

l(x)∑
i=1

Φσ,τ (υi, υi+1,x, i)


σ,τ∈Υ

where l(x) is the length of the sequence x.2 By (φγ)γ∈Γ we denote the concatenation of feature
vectors, i.e. (φ>γ1

, φ>γ2
, . . .)>. It is essential that Φ is composed of mapping functions that depend

only on labels at position i and i + 1, x as well as i. We can rewrite F using w = (wσ,τ)σ,τ∈Υ:

F (x,y) =
∑

σ,τ∈Υ

〈
wσ,τ ,

l(x)∑
i=1

Φσ,τ (υi, υi+1,x, i)

〉
=

l(x)∑
i=1

∑
σ,τ∈Υ

〈wσ,τ ,Φσ,τ (υi, υi+1,x, i)〉︸ ︷︷ ︸
=:g(υi,υi+1,x,i)

. (4)

Thus we have positionally decomposed the function F . The score at position i + 1 only depends on
x, i and labels at positions i and i + 1 (Markov property).

Using this decomposition we can define

V (i, υ) :=

{
max
υ′∈Υ

(V (i− 1, υ′) + g(υ′, υ,x, i− 1)) i > 1

0 otherwise

as the maximal score for all labelings with label υ at position i. Via dynamic programming one can
compute maxυ∈Υ V (l(x), υ), which can be proven to solve (1) for the considered case. Moreover,
using backtracking one can recover the optimal label sequence.3

The above decoding algorithm requires to evaluate g at most |Υ|2l(x) times. Since computing g
involves computing potentially large sums of kernel functions, the decoding step can be computa-
tionally quite demanding–depending on the kernels and the number of examples.

2.4 Extension to Hidden Semi-Markov SVMs
Semi-Markov models extend hidden Markov models by allowing each state to persist for a non-
unit number δi of symbols. Only after that the system will transition to a new state, which only
depends on x and the current state. During the interval (i, i + δi) the behavior of the system may
be non-Markovian [14]. Semi-Markov models are fairly common in certain applications of statistics
[6, 7] and are also used in reinforcement learning [16]. Moreover, [15, 9] previously proposed an
extension of HMMs, called Generalized HMMs (GHMMs) that is very similar to the ideas above.
Also, [14] proposed a semi-Markov extension to Conditional Random Fields.

In this work we extend Hidden Markov-SVMs to Hidden Semi-Markov SVMs by considering se-
quences of segments instead of simple label sequences. We need to extend the definition of the
labeling with s segments: y = (υ1, π1), (υ2, π2), . . . , (υs, πs), where πj is the start position of the
segment and υj its label.4 We assume π1 = 1 and let πj = πj−1 + δj . To simplify the notation we
define πs+1 := l(x) + 1, s := s(y) to be the number of segments in y and υs+1 := ∅. We can now
generalize the mapping Φ to:

Φ(x,y) =

s(y)∑
j=1

Φσ,τ (υj , υj+1,x, πj , πj+1)


σ,τ∈Υ

.

2We define υl+1 := ∅ to keep the notation simple.
3Note that one can extend the outlined decoding algorithm to produce not only the best path, but the K best

paths. The 2nd best path may be required to compute the structure in (3). The idea is to duplicate tables K times
as follows:

V (i, υ, k) :=

(
max(k)

υ′∈Υ,k′=1,...,K
(V (i− 1, υ′, k′) + g(υ′, υ, x, i− 1)) i > 1

0 otherwise

where max(k) is the function computing the kth largest number and is −∞ if there are fewer numbers.
V (i, υ, k) now is the k-best score of labelings with label υ at position i.

4For simplicity, we associate the label of a segment with the signal at the boundary to the next segment. A
generalization is straightforward.

With this definition we can extract features from segments: As πj and πj+1 are given one can for
instance compute the length of the segment or other features that depend on the start and the end of
the segment. Decomposing F results in:

F (x,y) =
s(y)∑
j=1

∑
σ,τ∈Υ

〈wσ,τ ,Φσ,τ (υj , υj+1,x, πj , πj+1)〉︸ ︷︷ ︸
=:g(υj ,υj+1,x,πj ,πj+1)

. (5)

Analogously we can extend the formula for the Viterbi-like decoding algorithm [14]:

V (i, υ) :=

{
max

υ′∈Υ,d=1,...,min(i−1,S)
(V (i− d, υ′) + g(υ′, υ,x, i− d, i)) i > 1

0 otherwise
(6)

where S is the maximal segment length and maxυ∈Υ V (l(x), υ) is the score of the best segment
labeling. The function g needs to be evaluated at most |Υ|2l(x)S times. The optimal label sequence
can be obtained as before by backtracking. Also the above method can be easily extended to produce
the K best labelings (cf. Footnote 3).

3 An Algorithm for Large Scale Learning
3.1 Preliminaries
In this section we consider a specific case that is relevant for the application that we have in mind.
The idea is that the feature map should contain information about segments such as the length or the
content as well as segment boundaries, which may exhibit certain detectable signals. For simplicity
we assume that it is sufficient to consider the string χπj ..πj+1 := χπj

χπj+1 . . . χπj+1−2 χπj+1−1

for extracting content information about segment j. Also, for considering signals we assume it
to be sufficient to consider a window ±ω around the end of the segment, i.e. we only consider
χπj+1±ω := χπj+1−ω . . . χπj+1+ω. To keep the notation simple we do not consider signals at the
start of the segment. Moreover, we assume for simplicity that xπ±ω is appropriately defined for
every π = 1, . . . , l(x). We may therefore define the following feature map:

Φ(x,y) =



s(y)∑
j=1

[[υj = σ]][[υj+1 = τ]]Φc(χπj ..πj+1)


σ,τ∈Υs(y)∑

j=1

[[υj+1 = τ]]Φs(χπj+1±ω)


τ∈Υ


%content

%signal

where [[true]] = 1 and 0 otherwise. Then the kernel between two examples using this feature map
can be written as:
k((x,y), (x′,y′)) =

∑
σ,τ∈Υ

∑
j:(υj ,υj)=(σ,τ)

j′:(υ′
j′ ,υ

′
j′)=(σ,τ)

kc(χπj ..πj+1 , χ
′
π′

j′ ..π
′
j′+1

) +
∑
τ∈Υ

∑
j:υj+1=τ

j′:υj′+1=τ

ks(χπj+1±ω, χ′π′
j′+1

±ω)

where kc(·, ·) := 〈Φ1(·),Φ1(·)〉 and ks(·, ·) := 〈Φs(·),Φs(·)〉. The above formulation has the
benefit of keeping the signals and content kernels separated for each label, which we can exploit for
rewriting F (x,y)

F (x,y) =
∑

σ,τ∈Υ

∑
j:(υj ,υj+1)=(σ,τ)

Fσ,τ (χπj ..πj+1) +
∑
τ∈Υ

∑
j:υj+1=τ

Fτ (χπj+1±ω),

where

Fσ,τ (χ) :=
N∑

n=1

∑
y′∈Y

αn(y′)
∑

j′:(υ′
j′ ,υ

′
j′+1)=(σ,τ)

kc(χ, χn
π′

j′ ..π
′
j′+1

)

and

Fτ (χ) =
N∑

n=1

∑
y′∈Y

αn(y′)
∑

j′:υj′+1=τ

ks(χ, χn
π′

j′+1
±ω).

Hence, we have partitioned F (x,y) into |Υ|2 + |Υ| functions characterizing the content and the
signals.

3.2 Two-Stage Learning

By enumerating all non-zero α’s and valid settings of j′ in Fτ and Fσ,τ , we can define sets of
sequences {χτ,σ

m }m=1,...,Mσ,τ
and {χτ

m}m=1,...,Mτ
where every element is of the form χn

πj ..πj+1

and χn
πj+1±ω, respectively. Hence, Fτ and Fσ,τ can be rewritten as a (single-sum) linear combi-

nation of kernels: Fσ,τ (χ) :=
∑Mσ,τ

m=1 ασ,τ
m kc(χ,χτ,σ

m) and Fτ (χ) :=
∑Mτ

m=1 ατ
mks(χ,χτ

m) for
appropriately chosen α’s. For sequences χτ

m that do not correspond to true segment boundaries,
the coefficient ατ

m is either negative or zero (since wrong segment boundaries can only appear in
wrong labelings y 6= yn and αn(y) ≤ 0). True segment boundaries in correct label sequences have
non-negative ατ

m’s. Analogously with segments χτ,σ
m . Hence, we may interpret these functions as

SVM classification functions recognizing segments and boundaries of all kinds.

Hidden Semi-Markov SVMs simultaneously optimize all these functions and also determine the
relative importance of the different signals and sensors. In this work we propose to separate the
learning of the content sensors and signal detectors from learning how they have to act together
in order to produce the correct labeling. The idea is to train SVM-based classifiers F̄σ,τ and F̄τ

using the kernels kc and ks on examples with known labeling. For every segment type and seg-
ment boundary we generate a set of positive examples from observed segments and boundaries. As
negative examples we use all boundaries and segments that were not observed in a true labeling.
This leads to a set of sequences that may potentially also appear in the expansions of Fσ,τ and Fτ .
However, the expansion coefficients ᾱσ,τ

m and ᾱτ
m are expected to be different as the functions are

estimated independently.

The advantage of this approach is that solving two-class problems–for which we can reuse existing
large scale learning methods–is much easier than solving the full HSM SVM problem. However,
while the functions F̄σ,τ and F̄τ might recognize the same contents and signals as Fσ,τ and Fτ , the
functions are obtained independently from each other and might not be scaled correctly to jointly
produce the correct labeling. We therefore propose to learn transformations tσ,τ and tτ such that
Fσ,τ (χ) ≈ tσ,τ (F̄σ,τ (χ)) and Fτ (χ) ≈ tτ (F̄τ (χ)). The transformation functions t : R → R
are one-dimensional mappings and it seems fully sufficient to use for instance piece-wise linear
functions (PLiFs) pµ,θ(λ) := 〈ϕµ(λ),θ〉 with fixed abscissa boundaries µ and θ-parametrized
ordinate values (ϕµ(λ) can be appropriately defined). We may define the mapping Φ(x,y) for our
case as

Φ(x,y) =



s(y)∑
j=1

[[υj = σ]][[υj+1 = τ]] ϕµσ,τ
(F̄σ,τ (χπj ..πj+1))


σ,τ∈Υs(y)∑

j=1

[[υj+1 = τ]] ϕµτ
(F̄τ (χπj+1±ω))


τ∈Υ

 , (7)

where we simply replaced the feature with PLiF features based on the outcomes of precomputed
predictions. Note that Φ(x,y) has only (|Υ|2 + |Υ|)P dimensions, where P is the number of
support points used in the PLiFs.

If the alphabet Υ is reasonably small then the dimensionality is low enough to solve the optimization
problem (2) efficiently in the primal domain. In the next section we will illustrate how to successfully
apply a version of the outlined algorithm to a problem where we have several thousands of relatively
long labeled sequences.

4 Application to Gene Structure Prediction
The problem of gene structure prediction is to segment nucleotide sequences (so-called pre-mRNA
sequences generated by transcription; cf. Figure 4) into exons and introns. In a complex biochemical
process called splicing the introns are removed from the pre-mRNA sequence to form the mature
mRNA sequence that can be translated into protein. The exon-intron and intron-exon boundaries
are defined by sequence motifs almost always containing the letters GT and AG (cf. Figure 4), re-
spectively. However, these dimers appear very frequently and one needs sophisticated methods to
recognize true splice sites [21, 12, 13].

So far mostly HMM-based methods such as Genscan [5], Snap [8] or ExonHunter [4] have been
applied to this problem and also to the more difficult problem of gene finding. In this work we show

that our newly developed method is applicable to this task and achieves very competitive results.
We call it mSplicer. Figure 2 illustrates the “grammar” that we use for gene structure prediction.
We only require four different states (start, exon-end, exon-start and end) and two different segment
labels (exon & intron). Biologically it makes sense to distinguish between first, internal, last and
single exons, as their typical lengths are quite different. Each of these exon types correspond to one
transition in the model. States two and three recognize the two types of splice sites and the transition
between these states defines an intron.

For our specific problem we only need signal detectors for segments ending in state two and three.
In the next subsection we outline how we obtain F̄2 and F̄3. Additionally we need content sensors
for every possible transition. While the “content” of the different exon segments is essentially the
same, the length of them can vary quite drastically. We therefore decided to use one content sensor
F̄I for the intron transition 2 → 3 and the same content sensor F̄E for all four exon transitions
1 → 2, 1 → 4, 3 → 2 and 3 → 4. However, in order to capture the different length characteristics,
we include s(y)∑

j=1

[[υj = σ]][[υj+1 = τ]]ϕγσ,τ
(πj+1 − πj)


σ,τ∈Υ

(8)

in the feature map (7), which amounts to using PLiFs for the lengths of all transitions. Also, note
that we can drop those features in (7) and (8) that correspond to transitions that are not allowed (e.g.
4 → 1; cf. Figure 2).5

We have obtained data for training, validation and testing from public sequence databases (see [13]
for details).For the considered genome of C. elegans we have split the data into four different sets:
Set 1 is used for training the splice site signal detectors and the two content sensors; Set 2 is used
for model selection of the latter signal detectors and content sensors and for training the HSM SVM;
Set 3 is used for model selection of the HSM SVM; and Set 4 is used for the final evaluation. These
are large scale datasets, with which current Hidden-Markov-SVMs are unable to deal with: The
C. elegans training set used for label-sequence learning contains 1,536 sequences with an average
length of ≈ 2, 300 base pairs and about 9 segments per sequence, and the splice site signal detectors
where trained on more than a million examples. In principle it is possible to join sets 1 & 2, however,
then the predictions of F̄σ,τ and F̄τ on the sequences used for the HSM SVM are skewed in the
margin area (since the examples are pushed away from the decision boundary on the training set).
We therefore keep the two sets separated.

4.1 Learning the Splice Site Signal Detectors

From the training sequences (Set 1) we extracted sequences of confirmed splice sites (intron start and
end). For intron start sites we used a window of [−80,+60] around the site. For intron end sites we
used [−60,+80]. From the training sequences we also extracted non-splice sites, which are within
an exon or intron of the sequence and have AG or GT consensus. We train an SVM [19] with soft-
margin using the WD kernel [12]: k(x,x′) =

∑d
j=1 βj

∑l−j
i=1 [[(x[i,i+j] = x′[i,i+j])]], where l = 140

is the length of the sequence and x[a,b] denotes the sub-string of x from position a to (excluding) b

and βj := d− j + 1. We used a normalization of the kernel k̃(x,x′) = k(x,x′)√
k(x,x)k(x′,x′)

. This leads

to the two discriminative functions F̄2 and F̄3. All model parameters (including the window size)
have been tuned on the validation set (Set 2). SVM training for C. elegans resulted in 79,000 and
61,233 support vectors for detecting intron start and end sites, respectively.

5We also excluded these transitions during the Viterbi-like algorithm.

Figure 1: The major steps in protein syn-
thesis [10]. A transcript of a gene starts
with an exon and may then be interrupted
by an intron, followed by another exon, in-
tron and so on until it ends in an exon.
In this work we learn the unknown for-
mal mapping from the pre-mRNA to the
mRNA.

Figure 2: An elementary state
model for unspliced mRNA: The
start is either directly followed by
the end or by an arbitrary number
of donor-acceptor splice site pairs.

4.2 Learning the Exon and Intron Content Sensors
To obtain the exon content sensor we derived a set of exons from the training set. As negative
examples we used sub-sequences of intronic sequences sampled such that both sets of strings have
roughly the same length distribution. We trained SVMs using a variant of the Spectrum kernel [21]
of degree d = 6, where we count 6-mers appearing at least once in both sequences. We applied
the same normalization as in Sec. 4.1 and proceeded analogously for the intron content sensor. The
model parameters have been obtained by tuning them on the validation set.

Note that the resulting content sensors F̄I and F̄E need to be evaluated several times during the
Viterbi-like algorithm (cf. (6)): One needs to extend segments ending at the same position i to
several different starting points. By re-using the shorter segment’s outputs this computation can be
made drastically faster.

4.3 Combination
For datasets 2-4 we can precompute all candidate splice sites using the classifiers F̄2 and F̄3. We
decided to use PLiFs with P = 30 support points and chose the boundaries for F̄2, F̄3, F̄E , and
F̄I uniformly between −5 and 5 (typical range of outputs of our SVMs). For the PLiFs concerned
with length of segments we chose appropriate boundaries in the range 30 − 1000. With all these
definitions the feature map as in (7) and (8) is fully defined. The model has nine PLiFs as parameters,
with a total of 270 parameters.

Finally, we have modified the regularizer for our particular case, which favors smooth PLiFs:

P(w) :=
∑

σ,τ∈Υ

|wσ,τ
P − wσ,τ

1 |+
∑
τ∈Υ

|wτ
P − wτ

1 |+
∑
τ∈Υ

P−1∑
i=1

|wτ,l
i − wτ,l

i+1|,

where w =
(
(wσ,τ)σ,τ∈Υ; (wτ)τ∈Υ; (wτ,l)τ∈Υ

)
and we constrain the PLiFs for the signal and

content sensors to be monotonically increasing.6

Having defined the feature map and the regularizer, we can now apply the HSM SVM algorithm
outlined in Sections 2.4 and 3. Since the feature space is rather low dimensional (270 dimensions),
we can solve the optimization problem in the primal domain even with several thousands of examples
employing a standard optimizer (we used ILOG CPLEX and column generation) within a reasonable
time.7

4.4 Results
To estimate the out-of-sample accuracy, we apply our method to the independent test dataset 4. For
C. elegans we can compare it to ExonHunter8 on 1177 test sequences. We greatly outperform the
ExonHunter method: our method obtains almost 1/3 of the test error of ExonHunter (cf. Table 1).
Simplifying the problem by only considering sequences between the start and stop codons allows us
to also include SNAP in the comparison on the dataset 4’, a slightly modified version of dataset 4
with 1138 sequences.9 The results are shown in Table 1. On dataset 4’ the best competing method
achieves an error rate of 9.8% which is more than twice the error rate of our method.

5 Conclusion
We have extended the framework of Hidden Markov SVMs to Hidden Semi-Markov SVMs and
suggested an very efficient two-stage learning algorithm to train an approximation to Hidden Semi-
Markov SVMs. Moreover, we have successfully applied our method on large scale gene structure

6This implements our intuition that large SVM scores should lead to larger scores for a labeling.
7It takes less than one hour to solve the HSM SVM problem with about 1,500 sequences on a single CPU.

Training the content and signal detectors on several hundred thousand examples takes around 5 hours in total.
8The method was trained by their authors on the same training data.
9In this setup additional biological information about the so-called “open reading frame” is used: As there

was only a version of SNAP available that uses this information, we incorporated this extra knowledge also in
our model (marked ∗) and also used another version of Exonhunter that also exploits that information in order
to allow a fair comparison.

C. elegans Dataset 4
Method error rate exon Sn exon Sp exon nt Sn exon nt Sp
Our Method 13.1% 96.7% 96.8% 98.9% 97.2%
ExonHunter 36.8% 89.1% 88.4% 98.2% 97.4%

C. elegans Dataset 4’
Our Method∗ 4.8% 98.9% 99.2% 99.2% 99.9%
ExonHunter∗ 9.8% 97.9% 96.6% 99.4% 98.1%
SNAP∗ 17.4% 95.0% 93.3% 99.0% 98.9%

Table 1: Shown are the rates of predicting a wrong gene structure, sensitivity (Sn) and specificity (Sp) on exon
and nucleotide levels (see e.g. [8]) for our method, ExonHunter and SNAP. The methods exploiting additional
biological knowledge have an advantage and are marked with ∗.

prediction appearing in computational biology, where our method obtains less than a half of the
error rate of the best competing HMM-based method. Our predictions are available at Wormbase:
http://www.wormbase.org. Additional data and results are available at the project’s website
http://www.fml.mpg.de/raetsch/projects/msplicer.

Acknowledgments We thank K.-R. Müller, B. Schölkopf, E. Georgii, A. Zien, G. Schweikert and
G. Zeller for inspiring discussions. The latter three we also thank for proofreading the manuscript.
Moreover, we thank D. Surendran for naming the piece-wise linear functions PLiF and optimizing
the Viterbi-implementation.

References
[1] Y. Altun, T. Hofmann, and A. Smola. Gaussian process classification for segmenting and annotating

sequences. In Proc. ICML 2004, 2004.
[2] Y. Altun, D. McAllester, and M. Belkin. Maximum margin semi-supervised learning for structured vari-

ables. In Proc. NIPS 2005, 2006.
[3] Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden Markov support vector machines. In T. Fawcett,

editor, Proc. 20th Int. Conf. Mach. Learn., pages 3–10, 2003.
[4] B. Brejova, D.G. Brown, M. Li, and T. Vinar. ExonHunter: a comprehensive approach to gene finding.

Bioinformatics, 21(Suppl 1):i57–i65, 2005.
[5] C. Burge and S. Karlin. Prediction of complete gene structures in human genomic DNA. Journal of

Molecular Biology, 268:78–94, 1997.
[6] X. Ge. Segmental Semi-Markov Models and Applications to Sequence Analysis. PhD thesis, University

of California, Irvine, 2002.
[7] J. Janssen and N. Limnios. Semi-Markov Models and Applications. Kluwer Academic, 1999.
[8] I. Korf. Gene finding in novel genomes. BMC Bioinformatics, 5(59), 2004.
[9] D. Kulp, D. Haussler, M.G. Reese, and F.H. Eeckman. A generalized hidden markov model for the

recognition of human genes in DNA. ISMB 1996, pages 134–141, 1996.
[10] B. Lewin. Genes VII. Oxford University Press, New York, 2000.
[11] L.R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. Pro-

ceedings of the IEEE, 77(2):257–285, February 1989.
[12] G. Rätsch and S. Sonnenburg. Accurate splice site prediction for Caenorhabditis elegans. In B. Schölkopf,

K. Tsuda, and J.-P. Vert, editors, Kernel Methods in Computational Biology. MIT Press, 2004.
[13] G. Rätsch, S. Sonnenburg, J. Srinivasan, H. Witte, K.-R. Müller, R. Sommer, and B. Schölkopf. Improving

the C. elegans genome annotation using machine learning. PLoS Computational Biology, 2007. In press.
[14] S. Sarawagi and W.W. Cohen. Semi-markov conditional random fields for information extraction. In

Proc. NIPS 2004, 2005.
[15] G.D. Stormo and D. Haussler. Optimally parsing a sequence into different classes based on multiple types

of information. In Proc. ISMB 1994, pages 369–375, Menlo Park, CA, 1994. AAAI/MIT Press.
[16] R. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal abstraction

in reinforcement learrning. Artificial Intelligence, 112:181–211, 1999.
[17] B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. In Proc. NIPS 2003, 16, 2004.
[18] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Large margin methods for structured output

spaces. Journal for Machine Learning Research, 6, September 2005.
[19] V.N. Vapnik. The nature of statistical learning theory. Springer Verlag, New York, 1995.
[20] A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimal decoding algorithm.

IEEE Trans. Informat. Theory, IT-13:260–269, Apr 1967.
[21] X.H. Zhang, K.A. Heller, I. Hefter, C.S. Leslie, and L.A. Chasin. Sequence information for the splicing

of human pre-mRNA identified by SVM classification. Genome Res, 13(12):2637–50, 2003.

