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Abstract

We argue that when objects are characterized by many attributes, clus-
tering them on the basis of a relatively smalhdomsubset of these
attributes can capture information on the unobserved attributes as well.
Moreover, we show that under mild technical conditions, clustering the
objects on the basis of such a random subset performs almost as well as
clustering with the full attribute set. We prove a finite sample general-
ization theorems for this novel learning scheme that extends analogous
results from the supervised learning setting. The scheme is demonstrated
for collaborative filtering of users with movies rating as attributes.

1 Introduction

Data clustering is unsupervised classification of objects into groups based on their similar-
ity [1]. Often, it is desirable to have the clusters to match some labels that are unknown
to the clustering algorithm. In this context, a good data clustering is expected to have ho-
mogeneous labels in each cluster, under some constraints on the number or complexity of
the clusters. This can be quantified by mutual information (see e.g. [2]) between the ob-
jects’ cluster identity and their (unknown) labels, for a given complexity of clusters. Since
the clustering algorithm has no access to the labels, it is unclear how the algorithm can
optimize the quality of the clustering. Even worse, the clustering quality depends on the
specific choice of the unobserved labels. For example a good documents clustering with
respect to topics is very different from a clustering with respect to authors.

In our setting, instead of trying to cluster by some “arbitrary” labels, we try to predict
unobserved features from observed ones. In this sense our target “labels” are yet other
features that “happened” to be unobserved. For example, when clustering fruits based on
their observed features, such as shape, color and size, the target of clustering is to match
unobserved features, such as nutritional value and toxicity.

In order to theoretically analyze and quantify this new learning scheme, we make the fol-
lowing assumptions. Consider an infinite set of features, and assume that we observe only
arandomsubset of: features, calledbserved features. The other features are calted
observed features. We assume that the random selection of features is done uniformly and
independently.



Table 1: Analogy with supervised learning

Training set n randomly selected features (observed features)
Test set Unobserved features

Learning algorithm Cluster thanstancesnto & clusters

Hypothesis class All possible partitions ofn instances inté clusters
Min generalization error | Max expected information oanobservedeatures
ERM Observed Information Maximization (OIM)

Good generalization Meanobservedandunobservednformation are similar

The clustering algorithm has access only to the observedrssabfm instances. After the
clustering, one of thanobservedeatures is randomly and uniformly selected to be a target
label, i.e. clustering performance is measured with respect to this feature. Obviously, the
clustering algorithm cannot be directly optimized for this specific feature.

The question is whether we can optimize #ectedperformance on the unobserved
feature, based on the observed features alone. The expectation is aegrdbmselection

of the target feature. In other words, can we find clusters that match as many unobserved
features as possible? Perhaps surprisingly, for large enough number of observed features,
the answer is yes. We show that for any clustering algorithm, the average performance of
the clustering with respect to the observed and unobserved features, is similar. Hence we
can indirectly optimize clustering performance with respect to the unobserved features, in
analogy to generalization in supervised learning. These results are universal and do not
require any additional assumptions such as underling model or a distribution that created
the instances.

In order to quantify these results, we define two terms: the average observed informa-
tion and the expected unobserved information. Léte the variable which represents the
cluster for each instance, af&7, ..., X, } the set of random variables which denotes the
features. The average observed information, denotdg,bis the average mutual informa-

tion betweeril” and each of the observed features. In other words, if the observed features
are{Xy,.., X, } thenl,, = +>" | I(T; X;). The expected unobserved information,
denoted by.,.,, is theexpectedralue of the mutual information betwe&hand arandomly
selected unobserved feature, iB;{I(T; X;)}. Note that wherea$,, can be measured
directly, this paper deals with the question of how to infer and maxirhjze

Our main results consist of two theorems. The first is a generalization theorem. It gives
an upper bound on the probability of large difference betwiggand,,,, for all possible
clusterings. It also statesumiform convergence in probabiligf |1, — I,.,| as the num-

ber of observed features increases. Conceptually, the observed mean inforthgtia,
analogous to the training error in standard supervised learning [3], whereas the unobserved
information, 7,,,,, is similar to the generalization error.

The second theorem states that under constraint on the number of clusters, and large enough
number of observed features, one can achieve nearly the best possible performance, in
terms of[,,,,. Analogous to the principle of Empirical Risk Minimization (ERM) in statis-

tical learning theory [3], this is done by maximizitdg,.

Table 1 summarizes the correspondence of our setting to that of supervised learning. The
key difference is that in supervised learning, the set of features is fixed and the training
instances (samples) are assumed to be randomly drawn from some distribution. In our
setting, the set of instances is fixed, but the set of observed features is assumed to be
randomly selected.

Our new theorems are evaluated empirically in section 3, on a data set of movie ratings.



This empirical test also suggests one future research winectise the framework sug-
gested in this paper for collaborative filtering. Our main point in this paper, however, is the
new conceptual framework and not a specific algorithm or experimental performance.

Related work The idea of an information tradeoff between complexity and information
on target variables is similar to the idea of the information bottleneck [4]. But unlike the
bottleneck method, here we are trying to maximize informatiomobserved/ariables,
using finite samples.

In the framework of learning with labeled and unlabeled data [5], a fundamental issue is the
link between the marginal distributioR(x) over examplesx and the conditionaP(y|x)
for the labely [6]. From this point of view our approach assumes thata feature in itself.

2 Mathematical Formulation and Analysis

Consider a set of discrete random variab{é$,, ..., X }, where L is very large (I—

o). We randomly, uniformly and independently select < /L variables from this set.
These variables are the observed features and their indexes are denfofed.hy;,, }. The
remainingl — n variables are thanobserved features. A clustering algorithm has access
only to theobservedeatures overn instancesx[1], ..., x[m]}. The algorithm assigns a
cluster labet; € {1, ..., k} for each instance[i], wherek is the number of clusters. L&t
denote the cluster label assigned by the algorithm.

Shannon’s mutual information between two variables is a function of their joint distribu-

tion, defined ad (T; X;) = Zt@j P(t,x;)log (%). Since we are dealing with a

finite number of samplesy, the distributionP is taken as thempiricaljoint distribution
of (T, X;), for everyj. For a randony, this empirical mutual information is a random
variable on its own.

The average observed informatiaofy,, is now defined ad,, = %2?21 I(T; Xg,). In
general,l,;, is higher when clusters are more coherent, i.e. elements within each cluster
have many similar attributes. The expected unobserved informatign,is defined as

I., = E; {I(T; X;)}. We can assume that the unobserved feature is with high probability
from the unobserved set. Equivalently,, can be the mean mutual information between
the clusters and each of the unobserved featdress 725 > a0, 0y 115 X5)-

n

The goal of the clustering algorithm is to find cluster labgls, ..., ¢, }, that maximize
L., subject to a constraint on their complexity - henceforth considered as the number of
clusters (k< D) for simplicity, whereD is an integer bound.

Before discussing how to maximizg,,,, we consider first the problem of estimating it.
Similar to the generalization error in supervised learniiyg,cannot be estimated directly

in the learning algorithm, but we may be able to bound the difference between the observed
information,;, - our “training error” - andl,,,, - the “generalization error”. To obtain gen-
eralization this bound should heiform over all possible clusteringsith a high proba-

bility over the randomly selected features. The following lemma argues thausifchm
convergence in probabilitgf 7, to I,,,, always occurs.

Lemma 1 With the definitions above,
Pr{ sup | Iop — Tun| > e} < e 2ne/(logk)* tmlogk e 5
{t17...,tm,}

where the probability is over the random selection of the observed features.



Proof: For fixed cluster labels{t,, ..., ¢}, and a random featurg the mutual infor-
mationI(7T'; X,) is a function of the random variable and hencd (T'; X,) is a random
variable in itself.1,,; is the average of such independent random variables dpglis its
expected value. Clearly, for gi| 0 < I(T’; X;) < log k. Using Hoeffding’s inequality [7],
Pr{|lp — Iun| > €} < 2e=21<"/(08k)* " Since there are at most™ possible partitions,
the union bound is sufficient to prove the lemma 1.

Note that for any > 0, the probability thatl,, — I,.,,| > € goes to zero, as — oo. The
convergence rate df,, to I,,,, is bounded by (log n//n). As expected, this upper bound
decreases as the number of clustiérslecreases.

Unlike the standard bounds in supervised learning, this bound increases with the number
of instances (m), and decreases with increasing number of observed features (n). This
is because in our scheme the training size is not the number of instances, but rather the
number of observed features (See Table 1). However, in the next theorem we obtain an
upper bound that is independentraf and hence is tighter for large.

Theorem 1 (Generalization Theorem) With the definitions above,

4k max ; |XJ |
€

log k—log e

’7l62
Pr{ sup  |Lop — Lun| > e} < 8(logk)e S 2 Ve > 0

{tla--<7t7n}

where |X;| denotes the alphabet size &f; (i.e. the number of different values it can
obtain). Again, the probability is over the random selection of the observed features.

The convergence rate here is boundedtgyog n/3\/n). However, for relatively large.
one can use the bound in lemma 1, which converge faster.

A detailed proof of theorem 1 can be found in [8]. Here we provide the outline of the proof.

Proof outline: From the givenn instances and any given cluster labls, ..., t,,, }, draw
uniformly and independenthyn’ instances (repeats allowed) and denote their indexes by
{i1,...,im’ }. We can estimaté(7’; X;) from the empirical distribution ofT’, X;) over

the m’ instances. This distribution is denoted Byt, z;) and the corresponding mutual
information is denoted by (7 X;). Theorem 1 is build up from the following upper
bounds, which are independentaf but depend on the choice of'. The first bound is on
E{|I(T; X;) — I5(T; X;)|}, where the expectation is over random selection ofrttie

instances. From this bound we derive upper bounddgn- E(I,)| and|, — E(1.y)|,
wherel,;,, I, are the estimated values &f,, I.,,, based on the subset of’ instances.
The last required bound is on the probability thap, ;. 1 [E(Lop) — E(lun)| > €1,
for anye; > 0. This bound is obtained from lemma 1. The choicedfis independent on

m. Its value should be large enough for the estimatibpsi,,, to be accurate, but not too
large, so as to limit the number of possible clusterings overthimstances.

We now describe the above mentioned upper bounds in more details. Using Paninski [9]
(proposition 1) it is easy to show that the bias betw&€F; X ;) and its maximum likeli-

hood estimation, based d?(z, x;) is bounded as follows.

< k|X/j\

k|X;| -1
Bl {1755) = (T X)) < o (14 21T &

m

From this equation we obtain,
|Iob - E{?‘,l,.“,im/}(jobﬂv ‘Iun - E{il,...,im/}(jun)‘ < kmjax |Xj|/m/ 2



Using lemma 1 we have an upper bound on the probabilitythat, ;. 4 fob—fun| > €
over the random selection é¢atures, as a function of.’. However, the upper bound

.....

expectations?(fob), E(I,,) are done over random selection of the subsetohstances,
for a set of features that were randomly seleaade. In order to link between these two
probabilities, we need the following lemma.

Lemma 2 Consider a functiory of two independent random variabl€g, 7). We assume
that f(y, z) < ¢, Yy, z, wherec is some constant. Fr { f(Y, Z) > €} < 4, then

c—¢€ ~
PZT{EZ/ (f(y,2)) 2 e} < :5 Ve > €

The proof of this lemma is rather standard and is given in [8]. From lemmas 1 and 2 it is
easy to show that

PrqEg, . i, sup
ST

Lemma 2 is used, wherg represents the random selection of featutésepresents the
random selection ofn’ instances.f(y,z) = supy, .3 Hob — Lun|, ¢ = logk, and
€ = €1/2. From eq. 2 and 3 it can be shown that

Iob - Iun

€1

ne? /
) g } < HOBE st

2(log k)2

Pr{ sup  |Top — Lun| > €1 +

2k max; | X} < 4log/<;e_"—%+m’ log k
{t1,--,tm} m/ a

€1

By selectinge; = €/2, m' = 4k max; | X;|/€, we obtain theorem 1. UJ

Note that the selection of.” depends ork max; |X;|. This reflects the fact that in order
to accurately estimat&(T’, X ;), we need a number of instances,, which is much larger
than the product of the alphabet sizegptX ;.

We can now return to the problem of specifying a clustering that maxindjzgsising only
the observed features. For a reference, we will first ddfjneof the best possible clusters.

Definition 1 Maximally achievable unobserved information: Let /7, ,, be the maximum

value of[,,,, that can be achieved by any clusterifig, ..., t,, }, subject to the constraint
k < D, for some constanb

zn,D = sup Lun
{{t1,...,tm }:k<D}

The clustering that achieves this value is callbd best clustering. The average observed
information of this clustering is denoted B, 1.

Definition 2 Observed information maximization algorithm: LetlobMax be any cluster-
ing algorithm that, based on the values of observed features alone, selects the cluster labels
{t1, ..., t;m } having the maximum possible valuelgf, subject to the constrairit < D.

Let fob, p be the average observed information achieved by lobMax algorithmfulngﬁ
be the expected unobserved information achieved by the lobMax algorithm.

The next theorem states tHabMaxnot only maximized , but alsol,,, .



Theorem 2 With the definitions above,

8k max; |X;|
€

= —__ne og k—log(e
Pr {Tunp < Linp — €} < 8(logk)e” e " OEhosleD) e s 0 (4)

where the probability is over the random selection of the observed features.

Proof: We now define dad clusteringas a clustering whose expected unobserved infor-
mation satisfies,,, < I}, , — €. Using Theorem 1, the probability thit, — I,.,,| > €/2

for any of the clusterings is upper bounded by the right term of equation 4. If for all clus-
terings| o, — Lun| < €/2, then surelyly, , > I, , — €/2 (see Definition 1) and,;, of

all bad clusterings satisfids, < I, ;, — ¢/2. Hence the probability that a bad clustering

has a higher average observed information than the best clustering is upper bounded as in
Theorem 2.

As a result of this theorem, whenis large enough, even an algorithm that knows the value
of all the features (observed and unobserved) cannot find a clustering with the same com-
plexity (k) which is significantly better than the clustering foundtayM ax algorithm.

3 Empirical Evaluation

In this section we describe an experimental evaluation of the generalization properties of
the lobMax algorithm for a finite large number of features. We examine the difference
betweeni,, and I,,,, as function of the number of observed features and the number of
clusters used. We also compare the valud,gf achieved bylobMax algorithm to the
maximum achievablé;,, ,, (See definition 1).

Our evaluation uses a data set typically used for collaborative filtering. Collaborative fil-
tering refers to methods of making predictions about a user’s preferences, by collecting
preferences of many users. For example, collaborative filtering for movie ratings could
make predictions about rating of movies by a user, given a partial list of ratings from this
user and many other users. Clustering methods are used for collaborative filtering by cluster
users based on the similarity of their ratings (see e.g. [10]).

In our setting, each user is described as a vector of movie ratings. The rating of each movie
is regarded as a feature. We cluster users based on the set of observed features, i.e. rated
movies. In our context, the goal of the clustering is to maximize the information between
the clusters and unobserved features, i.e. movies that have not yet been rated by any of the
users. By Theorem 2, given large enough number of rated movies, we can achieve the best
possible clustering of users with respect to unseen movies. In this region, no additional
information (such as user age, taste, rating of more movies) beyond the observed features
can improvel,,,, by more than some smail

The purpose of this section it to suggest a new algorithm for collaborative filtering or
compare it to other methods, but simply to illustrate our new theorems on empirical data.

Dataset. We used MovielLens (www.movielens.umn.edu), which is a movie rating data
set. It was collected distributed by GroupLens Research at the University of Minnesota. It
contains approximately 1 million ratings for 3900 movies by 6040 users. Ratings are on
a scale of 1 to 5. We used only a subset consisting of 2400 movies by 4000 users. In our
setting, each instance is a vector of ratifgs, ..., z2400) by specific user. Each movie is
viewed as a feature, where the rating is the value of the feature.

Experimental Setup. We randomly split the 2400 movies into two groups, denoted by
“A’” and “B”, of 1200 movies (features) each. We used a subset of the movies from group
“A” as observed features and all movies from group “B” as the unobserved features. The
experiment was repeated with 10 random splits and the results averaged. We esltispated
by the mean information between the clusters and ratings of movies from group “B”.
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Figure 1: 1., L., andI}, per number of training movies and clusters. In (a) and (b) the
number of movies is variable, and the number of clusters is fixed. In (c) The number of
observed movies is fixed (1200), and the number of clusters is variable. The overall mean
information is low, since the rating matrix is sparse.

Handling Missing Values. In this data set, most of the values are missing (not rated). We
handle this by defining the feature variable as 1,2,...,5 for the ratings and O for missing
value. We maximize the mutual information based on the empirical distribution of values
that are present, and weight it by the probability of presence for this feature. Hegnee,
weighting prevents 'overfitting’ to movies with few ratings. Since the observed features
were selected at random, the statistics of missing values of the observed and unobserved
features are the same. Hence, all theorems are applicable to these definifigrenal,,,,

as well.

Greedy |l obMax Algorithm

We cluster the users using a simple greedy clustering algorithm . The input to the algorithm
is all users, represented solely by the observed features. Since this algorithm can only find
a local maximum ofl,;, we ran the algorithm 10 times (each used a different random
initialization) and selected the results that had a maximum valiig oMore details about

this algorithm can be found in [8].

In order to estimaté; , ., (see definition 1), we also ran the same algorithm, where all the
features are available to the algorithm (i.e. also features from group “B”). The algorithm
finds clusters that maximize the mean mutual information on features from group "B".

Results

The results are shown in Figure 1. Adncreases],, decreases and,,, increases, until
they converge to each other. For smalthe clustering 'overfits’ to the observed features.
This is similar to training and test errors in supervised learning. For targg, approaches
to I;,, o, which means théobMax algorithm found nearly the best possible clustering -
as expected from the theorem 2. As the number of clusters increased, patd 7,,,,
increase, but the difference between them also increases.

4 Discussion and Summary

We introduce a new learning paradigm: clustering based on observed features that gen-
eralizes to unobserved features. Our results are summarized by two theorems that tell us
how, without knowing the value of the unobserved features, one can estimate and maximize
information between the clusters and the unobserved features.



The key assumption that enables us to prove the theoremsrigrttiem independestlec-

tion of the observed features. Another interpretation of the generalization theorem, without
using this assumption, might be combinatorial. The difference between the observed and
unobserved information is large only for a small portion of all possible partitions into ob-
served and unobserved features. This means that almost any arbitrary partition generalizes
well.

The importance of clustering which preserves information on unobserved features is that
it enables us to learn new - previously unobserved - attributes from a small number of
examples. Suppose that after clustering fruits based on their observed features, we eat a
chinaberry and thus, we "observe” (by getting sick), the previously unobserved attribute of
toxicity. Assuming that in each cluster, all fruits have similar unobserved attributes, we can
conclude that all fruits in the same cluster, i.e. all chinaberries, are likely to be poisonous.

We can even relate the@bMax principle to cognitive clustering in sensory information
processing. In general, a symbolic representation (e.g. assigning object names in language)
may be based on a similar principle - find a representation (clusters) that contain significant
information on as many observed features as possible, while still remaining simple. Such
representations are expected to contain information on other rarely viewed salient features.
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