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Abstract

We describe a hierarchy of motif-based kernels for multiple alignments
of biological sequences, particularly suitable to process regulatory re-
gions of genes. The kernels incorporate progressively more information,
with the most complex kernel accounting for a multiple alignment of
orthologous regions, the phylogenetic tree relating the species, and the
prior knowledge that relevant sequence patterns occur in conserved mo-
tif blocks. These kernels can be used in the presence of a library of
known transcription factor binding sites, orde novoby iterating over all
k-mers of a given length. In the latter mode, a discriminative classi-
fier built from such a kernel not only recognizes a given class of pro-
moter regions, but as a side effect simultaneously identifies a collec-
tion of relevant, discriminative sequence motifs. We demonstrate the
utility of the motif-based multiple alignment kernels by using a collec-
tion of aligned promoter regions from five yeast species to recognize
classes of cell-cycle regulated genes. Supplementary data is available at
http://noble.gs.washington.edu/proj/pkernel.

1 Introduction

In a eukaryotic cell, a variety of DNA switches—promoters, enhancers, silencers, etc.—
regulate the production of proteins from DNA. These switches typically contain multiple
binding site motifs, each of length 5–15 nucleotides, for a class of DNA-binding proteins
known as transcription factors. As a result, the detection of such regulatory motifs proximal
to a gene provides important clues about its regulation and, therefore, its function. These
motifs, if known, are consequently interesting features to extract from genomic sequences
in order to compare genes, or cluster them into functional families.

These regulatory motifs, however, usually represent a tiny fraction of the intergenic se-
quence, and their automatic detection remains extremely challenging. For well-studied
transcription factors, libraries of known binding site motifs can be used to scan the inter-
genic sequence. A common approach for thede novodetection of regulatory motifs is to



start from a set of genes known to be similarly regulated, for example by clustering gene ex-
pressiondata, and search for over-represented short sequences in their proximal intergenic
regions. Alternatively, some authors have proposed to represent each intergenic sequence
by its content in short sequences, and to correlate this representation with gene expression
data [1]. Finally, additional information to characterize regulatory motifs can be gained by
comparing the intergenic sequences of orthologous genes, i.e., genes from different species
that have evolved from a common ancestor, because regulatory motifs are more conserved
than non-functional intergenic DNA [2].

We propose in this paper a hierarchy of increasingly complex representations for inter-
genic sequences. Each representation yields a positive definite kernel between intergenic
sequences. While various motif-based sequence kernels have been described in the liter-
ature (e.g., [3, 4, 5]), these kernels typically operate on sequences from a single species,
ignoring relevant information from orthologous sequences. In contrast, our hierarchy of
motif-based kernels accounts for a multiple alignment of orthologous regions, the phylo-
genetic tree relating the species, and the prior knowledge that relevant sequence patterns
occur in conserved motif blocks. These kernels can be used in the presence of a library
of known transcription factor binding sites, orde novoby iterating over allk-mers of a
given length. In the latter mode, a discriminative classifier built from such a kernel not
only recognizes a given class of regulatory sequences, but as a side effect simultaneously
identifies a collection of discriminative sequence motifs. We demonstrate the utility of the
motif-based multiple alignment kernels by using a collection of aligned intergenic regions
from five yeast species to recognize classes of co-regulated genes.

From a methodological point of view, this paper can be seen as an attempt to incorporate
an increasing amount of prior knowledge into a kernel. In particular, this prior information
takes the form of a probabilistic model describing with increasing accuracy the object we
want to represent. All kernels were designed before any experiment was conducted, and
we then performed an objective empirical evaluation of each kernel without further param-
eter optimization. In general, classification performance improved as the amount of prior
knowledge increased. This observation supports the notion that tuning a kernel with prior
knowledge is beneficial. However, we observed no improvement in performance following
the last modification of the kernel, highlighting the fact that a richer model of the data does
not always lead to better performance accuracy.

2 Kernels for intergenic sequences

In a complex eukaryotic genome, regulatory switches may occur anywhere within a rel-
atively large genomic region near a given gene. In this work we focus on a well-studied
model organism, the budding yeastSaccharomyces cerevisiae, in which the typical in-
tergenic region is less than 1000 bases long. We refer to the intergenic region upstream
of a yeast gene as itspromoter region. Denoting the four-letter set of nucleotides as
A = {A,C,G, T}, the promoter region of a gene is a finite-length sequence of nucleotides
x ∈ A∗ =

⋃∞
i=0Ai. Given several sequenced organisms,in silico comparison of genes

between organisms often allows the detection of orthologous genes, that is, genes that
evolved from a common ancestor. If the species are evolutionarily close, as are different
yeast strains, then the promoter regions are usually quite similar and can be represented as
a multiple alignment. Each position in this alignment represents one letter in the shared
ancestor’s promoter region. Mathematically speaking, a multiple alignment of lengthn of
p sequences is a sequencec = c1, c2, . . . , cn, where eachci ∈ Āp, for i = 1, . . . , n, is
a column ofp letters in the alphabet̄A = A ∪ {−}. The additional letter “−” is used
to represent gaps in sequences, which represent insertion or deletion of letters during the
evolution of the sequences.

We are now in the position to describe a family of representations and kernels for promoter



regions, incorporating an increasing amount of prior knowledge about the properties of reg-
ulatorymotifs. All kernels below are simple inner products between vector representations
of promoter regions. These vector representations are always indexed by a setM of short
sequences of fixed lengthd, which can either be alld-mers, i.e.,M = Ad, or a predefined
library of indexing sequences. A promoter regionP (either single sequence or multiple
alignment) is therefore always represented by a vectorΦM(P ) = (Φa(P ))a∈M.

Motif kernel on a single sequence The simplest approach to index asinglepromoter
regionx ∈ A∗ with an alphabetM is to define

ΦSpectrum
a (x) = na(x) , ∀a ∈M ,

wherena(x) counts the number of occurrences ofa in x. WhenM = Ad, the resulting
kernel is the spectrum kernel [3] between single promoter regions.

Motif kernel on multiple sequences When a gene hasp orthologs in other species, then a
set ofp promoter regions{x1,x2, . . . ,xp} ∈ (A∗)p, which are expected to contain similar
regulatory motifs, is available. We propose the following representation for such a set:

ΦSummation
a ({x1,x2, . . . ,xp}) =

p∑
i=1

ΦSpectrum
a (xi) , ∀a ∈M .

We call the resulting kernel thesummationkernel. It is essentially the spectrum kernel on
the concatenation of the available promoter regions—ignoring, however,k-mers that over-
lap different sequences in the concatenation. The rationale behind this kernel, compared to
the spectrum kernel, is two-fold. First, if all promoters contain common functional motifs
and randomly varying nonfunctional motifs, then the signal-to-noise ratio of the relevant
regulatory features compared to other irrelevant non-functional features increases by taking
the sum (or mean) of individual feature vectors. Second, even functional motifs represent-
ing transcription factor binding sites are known to have some variability in some positions,
and merging the occurrences of a similar motif in different sequences is a way to model
this flexibility in the framework of a vector representation.

Marginalized motif kernel on a multiple alignment The summation kernel might suffer
from at least two limitations. First, it does not include any information about the relation-
ships between orthologs, in particular their relative similarities. Suppose for example that
three species are compared, two of them being very similar. Then the promoter regions
of two out of three orthologs would be virtually identical, giving an unjustified double
weight to this duplicated species compared to the third one in the summation kernel. Sec-
ond, although mutations in functional motifs between different species would correspond
to different short motifs in the summation kernel feature vector, these varying short motifs
might not cover all allowed variations in the functional motifs, especially if the motifs are
extracted from a small number of orthologs. In such cases, probabilistic models such as
weight matrices, which estimate possible variations for each position independently, are
known to make more efficient use of the data.

In order to overcome these limitations, we propose to transform the set of promoter regions
into a multiple alignment. We therefore assume that a fixed number ofq species has been
selected, and that a probabilistic modelp(h, c), with h ∈ Ā andc ∈ Āq has been tuned on
these species. By “tuned,” we mean thatp(h, c) is a distribution that accurately describes
the probability of a given letterh in the common ancestor of the species, together with
the set of lettersc at the corresponding position in the set of species. Such distributions
are commonly used in computational genomics, often resulting from the estimation of a
phylogenetic tree model [6]. We also assume that all sets ofq promoter regions of groups
of orthologous genes in theq species have been turned into multiple alignments.



Given an alignmentc = c1, c2, . . . , cn, suppose for the moment that we know the corre-
sponding true sequence of nucleotides of the common ancestorh = h1, h2, . . . , hn. Then
the spectrum of the sequenceh, that is,ΦSpectrum

M (h), would be a good summary for the
multiple alignment, and the inner product between two such spectra would be a candidate
kernel between multiple alignments. The sequenceh being of course unknown, we pro-
pose to estimate its conditional probability given the multiple alignmentc, under the model
where all columns are independent and identically distributed according to the evolutionary
model, that is,p(h|c) =

∏n
i=1 p (hi|ci). Under this probabilistic model, it is now possible

to define the representation of the multiple alignment as the expectation of the spectrum
representation ofh with respect to this conditional probability, that is:

ΦMarginalized
a (c) =

∑
h

ΦSpectrum
a (h)p(h|c) , ∀a ∈M . (1)

In order to compute this representation, we observe that ifh has lengthn anda = a1 . . . ad

has lengthd, then

ΦSpectrum
a (h) =

n−d+1∑
i=1

δ(a, hi . . . hi+d−1) ,

whereδ is the Kronecker function. Therefore,

ΦMarginalized
a (c) =

∑
h∈An

{(
n−d+1∑

i=1

δ(a, hi . . . hi+d−1)

)
n∏

i=1

p (hi|ci)

}

=
n−d+1∑

i=1

d−1∏
j=0

p(aj+1|ci+j)

 .

This computation can be performed explicitly by computingp(aj+1|ci+j) at each position
i = 1, . . . , n, and performing the sum of the products of these probabilities over a moving
window. We call the resulting kernel themarginalizedkernel because it corresponds to the
marginalization of the spectrum kernel under the phylogenetic probabilistic model [7].

Marginalized motif kernel with phylogenetic shadowing The marginalized kernel is
expected to be useful when relevant information is distributed along the entire length of the
sequences analyzed. In the case of promoter regions, however, the relevant information is
more likely to be located within a few short motifs. Because only a small fraction of the
total set of promoter regions lies within such motifs, this information is likely to be lost
when the whole sequence is represented by its spectrum. In order to overcome this lim-
itation, we exploit the observation that relevant motifs are more evolutionarily conserved
on average than the surrounding sequence. This hypothesis has been confirmed by many
studies that show that functional parts, being under more evolutionary pressure, are more
conserved than non-functional ones.

Given a multiple alignmentc, let us assume (temporarily) that we know which parts are rel-
evant. We can encode this information into a sequence of binary variabless = s1 . . . sn ∈
{0, 1}n, wheresi = 1 means that theith position is relevant, and irrelevant ifsi = 0. A
typical sequence for a promoter region consist primarily of0’s, except for a few positions
indicating the position of the transcription factor binding motifs. Let us also assume that
we know the nucleotide sequenceh of the common ancestor. Then it would make sense to
use a spectrum kernel based on the spectrum ofh restricted to the relevant positions only.
In other words, all positions wheresi = 0 could be thrown away, in order to focus only on
the relevant positions. This corresponds to defining the features:

ΦRelevant
a (h, s) =

n−d+1∑
i=1

δ(a, hi . . . hi+d−1)δ(si, 1) . . . δ(si+d−1, 1) , ∀a ∈M .



Given only a multiple alignmentc, the sequencesh ands are not known but can be es-
timated. This is where the hypothesis that relevant nucleotides are more conserved than
irrelevant nucleotides can be encoded, by using two models of evolution with different
rates of mutations, as in phylogenetic shadowing [2]. Let us therefore assume that we have
a modelp(c|h, s = 0) that describes “fast” evolution from an ancestral nucleotideh to a
columnc in a multiple alignment, and a second modelp1(c|h, s = 1) that describes “slow”
evolution. In practice, we take these models to be two classical evolutionary models with
different mutation rates, but any reasonable pair of random models could be used here, if
one had a better model for functional sites, for example. Given these two models of evolu-
tion, let us also define a prior probabilityp(s) that a position is relevant or not (related to
the proportion of relevant parts we expect in a promoter region), and prior probabilities for
the ancestor nucleotidep(h|s = 0) andp(h|s = 1).

The joint probability of being in states, having an ancestor nucleotideh and a resulting
alignmentc is thenp(c, h, s) = p(s)p(h|s)p(c|h, s). Under the probabilistic model where
all columns are independent from each other, that is,p(h, s|c) =

∏n
i=1 p(hi, si|ci), we can

now replace (1) by the following features:

ΦShadow
a (c) =

∑
h,s

ΦRelevant
a (h, s)p(h, s|c) , ∀a ∈M . (2)

Like the marginalized spectrum kernel, this kernel can be computed by computing the
explicit representation of each multiple sequence alignmentc as a vector(Φa(c))a∈M as
follows:

Φ
Shadow
a (c) =

∑
h∈An

∑
s∈{0,1}n


n−d+1∑

i=1

δ(a, hi . . . hi+d−1)δ(si, 1) . . . δ(si+d−1, 1)
n∏

i=1

p (hi, si|ci)


=

n−d+1∑
i=1

d−1∏
j=0

p(h = aj+1, s = 1|ci+j)

 .

The computation can then be carried out by exploiting the observation that each term can
be computed by:

p(h, s = 1|c) =
p(s = 1)p(h|s = 1)p(c|h, s = 1)

p(s = 0)p(c|s = 0) + p(s = 1)p(c|s = 1)
.

Moreover, it can easily be seen that, like the marginalized kernel, the shadow kernel is the
marginalization of the kernel corresponding toΦRelevantwith respect top(h, s|c).

Incorporating Markov dependencies between positions The probabilistic model used
in the shadow kernel models each position independently from the others. As a result, a
conserved position has the same contribution to the shadow kernel if it is surrounded by
other conserved positions, or by varying positions. In order to encode our prior knowledge
that the pattern of functional / nonfunctional positions along the sequence is likely to be a
succession of short functional regions and longer nonfunctional regions, we propose to re-
place this probabilistic model by a probabilistic model with a Markov dependency between
successive positions for the variables, that is, to consider the probability:

pMarkov(c,h, s) = p(s1)p(h1, c1|s1)
n∏

i=2

p (si|si−1) p(hi, ci|si).

This suggests replacing (2) by

ΦMarkov
a (c) =

∑
h,s

Φa(h, s)pMarkov(h, s|c) , ∀a ∈M .



Once again, this feature vector can be computed as a sum of window weights over se-
quencesby

ΦMarkov
a (c) =

n−d+1∑
i=1

(
p (si = 1|c) p (hi = aj+1|ci, si = 1)

×
d−1∏
j=1

p(hi+j = aj+1, si+j = 1|ci+j , si+j−1 = 1)
)

.

The main difference with the computation of the shadow kernel is the need to compute the
termP (si = 1|c), which can be done using the general sum-product algorithm.

3 Experiments

We measure the utility of our hierarchy of kernels in a cross-validated, supervised learning
framework. As a starting point for the analysis, we use various groups of genes that show
co-expression in a microarray study. Eight gene groups were derived from a study that ap-
plied hierarchical clustering to a collection of 79 experimental conditions, including time
series from the diauxic shift, the cell cycle series, and sporulation, as well as various tem-
perature and reducing shocks [8]. We hypothesize that co-expression implies co-regulation
of a given group of genes by a common set of transcription factors. Hence, the correspond-
ing promoter regions should be enriched for a corresponding set of transcription factor
binding motifs. We test the ability of a support vector machine (SVM) classifier to learn to
recapitulate the co-expression classes, based only upon the promoter regions. Our results
show that the SVM performance improves as we incorporate more prior knowledge into
the promoter kernel.

We collected the promoter regions from five closely related yeast species [9, 10]. Promoter
regions from orthologous genes were aligned using ClustalW, discarding promoter regions
that aligned with less than 30% sequence identity relative to the other sequences in the
alignment. This procedure produced 3591 promoter region alignments. For the phyloge-
netic kernels, we inferred a phylogenetic tree among the five yeast species from alignments
of four highly conserved proteins—MCM2, MCM3, CDC47 and MCM6. The concate-
nated alignment was analyzed with fastDNAml [11] using the default parameters. The
resulting tree was used in all of our analyses.

SVMs were trained using Gist (microarray.cpmc.columbia.edu/gist) with the default pa-
rameters. These include a normalized kernel, and a two-norm soft margin with asymmetric
penalty based upon the ratio of positive and negative class sizes. All kernels were com-
puted by summing over all45 k-mers of width 5. Each class was recognized in a one-vs-all
fashion. SVM testing was performed using balanced three-fold cross-validation, repeated
five times.

The results of this experiment are summarized in Table 1. For every gene class, the
worst-performing kernel is one of the three simplest kernels: “simple,” “summation” or
“marginalization.” The mean ROC scores across all eight classes for these three kernels
are 0.733, 0.765 and 0.748. Classification performance improves dramatically using the
shadow kernel with either a small (2) or large (5) ratio of fast-to-slow evolutionary rates.
The mean ROC scores for these two kernels are 0.854 and 0.844. Furthermore, across five
of the eight gene classes, one of the two shadow kernels is the best-performing kernel.
The Markov kernel performs approximately as well as the shadow kernel. We tried six
different parameterizations, as shown in the table, and these achieved mean ROC scores
ranging from 0.822 to 0.850. The differences between the best parameterization of this
kernel (“Markov 5 90/90”) and “shadow 2” are not significant. Although further tuning



Table 1:Mean ROC scores for SVMs trained using various kernels to recognize classes
of co-expressed yeast genes.The second row in the table gives the number of genes in each
class. All other rows contain mean ROC scores across balanced three-fold cross-validation,
repeated five times. Standard errors (not shown) are almost uniformly 0.02, with a few
values of 0.03. Values in bold-face are the best mean ROC for the given class of genes. The
classes of genes (columns) are, respectively, ATP synthesis, DNA replication, glycolysis,
mitochondrial ribosome, proteasome, spindle-pole body, splicing and TCA cycle. The
kernels are as described in the text. For the shadow and Markov kernels, the values “2”
and “5” refer to the ratio of fast to slow evolutionary rates. For the Markov kernel, the
values “90” and “99” refer to the self-transition probabilities (times 100) in the conserved
and varying states of the model.

Kernel ATP DNA Glyc Ribo Prot Spin Splic TCA Mean
15 5 17 22 27 11 14 16

single 0.711 0.777 0.814 0.743 0.735 0.716 0.683 0.6840.733
summation 0.773 0.768 0.824 0.750 0.763 0.756 0.739 0.7400.764
marginalized 0.799 0.805 0.833 0.729 0.748 0.721 0.676 0.6730.748
shadow 2 0.881 0.929 0.928 0.840 0.867 0.827 0.787 0.770 0.854
shadow 5 0.889 0.935 0.927 0.819 0.849 0.821 0.766 0.7520.845
Markov 2 90/90 0.848 0.891 0.908 0.830 0.853 0.801 0.773 0.7580.833
Markov 2 90/99 0.868 0.911 0.915 0.826 0.850 0.782 0.752 0.7350.830
Markov 2 99/99 0.869 0.910 0.912 0.816 0.840 0.773 0.737 0.7240.823
Markov 5 90/90 0.875 0.922 0.924 0.844 0.868 0.814 0.788 0.769 0.851
Markov 5 90/99 0.872 0.916 0.920 0.834 0.858 0.794 0.774 0.7550.840
Markov 5 99/99 0.868 0.917 0.921 0.830 0.853 0.774 0.751 0.7330.831

of kernel parameters might yield significant improvement, our results thus far suggest that
incorporating dependencies between adjacent positions does not help very much.

Finally, we test the ability of the SVM to identify sequence regions that corre-
spond to biologically significant motifs. As a gold standard, we use the JASPAR
database (jaspar.cgb.ki.se), searching each class of promoter regions using MONKEY
(rana.lbl.gov/˜alan/Monkey.htm) with ap-value threshold of10−4. For each gene class,
we identify the three JASPAR motifs that occur most frequently within that class, and we
create a list of all 5-mers that appear within those motif occurrences. Next, we create a cor-
responding list of 5-mers identified by the SVM. We do this by calculating the hyperplane
weight associated with each 5-mer and retaining the top 20 5-mers for each of the 15 cross-
validation runs. We then take the union over all runs to come up with a list of between 40
and 55 top 5-mers for each class. Table 2 indicates that the discriminative 5-mers identified
by the SVM are significantly enriched in 5-mers that appear within biologically significant
motif regions, with significantp-values for all eight gene classes (see caption for details).

4 Conclusion

We have described and demonstrated the utility of a class of kernels for characterizing
gene regulatory regions. These kernels allow us to incorporate prior knowledge about the
evolution of a set of orthologous sequences and the conservation of transcription factor
binding site motifs. We have also demonstrated that the motifs identified by an SVM trained
using these kernels correspond to biologically significant motif regions. Our future work
will focus on automating the process of agglomerating the identifiedk-mers into a smaller
set of motif models, and on applying these kernels in combination with gene expression,
protein-protein interaction and other genome-wide data sets.

This work was funded by NIH awards R33 HG003070 and U01 HG003161.



Table 2: SVM features correlate with discriminative motifs. The first row lists the
number of non-redundant 5-mers constructed from high-scoring SVM features. Row two
gives the number of 5-mers constructed from JASPAR motif occurrences in the 5-species
alignments. Row three is a tally of all 5-mers appearing in the sequences making up the
class. The fourth row gives the size of the intersection between the SVM and motif-based
5-mer lists. The final two rows give the expected value and p-value for the intersection
size. The p-value is computed using the hypergeometric distribution by enumerating all
possibilites for the intersection of two sets selected from a larger set given the sizes in the
first three rows.

ATP DNA Glyc Ribo Prot Spin Splic TCA
SVM 46 40 55 50 49 43 48 50
Motif 180 68 227 38 148 152 52 104
Class 1006 839 967 973 1001 891 881 995
Inter 24 8 23 18 23 19 14 21
Expect 8.23 3.24 12.91 1.95 7.25 7.34 2.83 5.23
p-value 6.19e-8 1.15e-2 1.44e-3 3.88e-15 3.24e-8 1.74e-5 1.15e-7 2.00e-9
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