Bayesian Surprise Attracts Human Attention
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Abstract

The concept of surprise is central to sensory processing, adaptation,
learning, and attention. Yet, no widely-accepted mathematical theory
currently exists to quantitatively characterize surprise elicited by a stim-
ulus or event, for observers that range from single neurons to complex
natural or engineered systems. We describe a formal Bayesian defini-
tion of surprise that is the only consistent formulation under minimal ax-
iomatic assumptions. Surprise quantifies how data affects a natural or ar-
tificial observer, by measuring the difference between posterior and prior
beliefs of the observer. Using this framework we measure the extent to
which humans direct their gaze towards surprising items while watching
television and video games. We find that subjects are strongly attracted
towards surprising locations, with 72% of all human gaze shifts directed
towards locations more surprising than the average, a figure which rises
to 84% when considering only gaze targets simultaneously selected by
all subjects. The resulting theory of surprise is applicable across differ-
ent spatio-temporal scales, modalities, and levels of abstraction.

Life is full of surprises, ranging from a great christmas gift or a new magic trick, to
wardrobe malfunctions, reckless drivers, terrorist attacks, and tsunami waves. Key to sur-
vival is our ability to rapidly attend to, identify, and learn from surprising events, to decide
on present and future courses of action [1]. Yet, little theoretical and computational un-
derstanding exists of the very essence of surprise, as evidenced by the absence from our
everyday vocabulary of a quantitative unit of surprise: Qualities such as the “wow factor”
have remained vague and elusive to mathematical analysis.

Informal correlates of surprise exist at nearly all stages of neural processing. In sensory
neuroscience, it has been suggested that only the unexpected at one stage is transmitted
to the next stage [2]. Hence, sensory cortex may have evolved to adapt to, to predict,
and to quiet down the expected statistical regularities of the world [3, 4, 5, 6], focusing
instead on events that are unpredictable or surprising. Electrophysiological evidence for
this early sensory emphasis onto surprising stimuli exists from studies of adaptation in
visual [7, 8, 4, 9], olfactory [10, 11], and auditory cortices [12], subcortical structures
like the LGN [13], and even retinal ganglion cells [14, 15] and cochlear hair cells [16]:
neural response greatly attenuates with repeated or prolonged exposure to an initially novel
stimulus. Surprise and novelty are also central to learning and memory formation [1], to
the point that surprise is believed to be a necessary trigger for associative learning [17, 18],



as supported by mounting evidence for a role of the hippocampus as a novelty detector [19,
20, 21]. Finally, seeking novelty is a well-identified human character trait, with possible
association with the dopamine D4 receptor gene [22, 23, 24].

In the Bayesian framework, we develop the only consistent theory of surprise, in terms of
the difference between the posterior and prior distributions of beliefs of an observer over
the available class of models or hypotheses about the world. We show that this definition
derived from first principles presents key advantages over more ad-hoc formulations, typ-
ically relying on detecting outlier stimuli. Armed with this new framework, we provide
direct experimental evidence that surprise best characterizes what attracts human gaze in
large amounts of natural video stimuli. We here extend a recent pilot study [25], adding
more comprehensive theory, large-scale human data collection, and additional analysis.

1 Theory

Bayesian Definition of Surprise. We propose that surprise is a general concept, which
can be derived from first principles and formalized across spatio-temporal scales, sensory
modalities, and, more generally, data types and data sources. Two elements are essential
for a principled definition of surprise. First, surprise can exist only in the presence of
uncertainty, which can arise from intrinsic stochasticity, missing information, or limited
computing resources. A world that is purely deterministic and predictable in real-time for
a given observer contains no surprises. Second, surprise can only be defined in a relative,
subjective, manner and is related to the expectations of the observer, be it a single synapse,
neuronal circuit, organism, or computer device. The same data may carry different amount
of surprise for different observers, or even for the same observer taken at different times.

In probability and decision theory it can be shown that the only consistent and optimal
way for modeling and reasoning about uncertainty is provided by the Bayesian theory of
probability [26, 27, 28]. Furthermore, in the Bayesian framework, probabilities correspond
to subjective degrees of beliefs in hypotheses or models which are updated, as data is ac-
quired, using Bayes’ theorem as the fundamental tool for transforming prior belief distribu-
tions into posterior belief distributions. Therefore, within the same optimal framework, the
only consistent definition of surprise must involve: (1) probabilistic concepts to cope with
uncertainty; and (2) prior and posterior distributions to capture subjective expectations.

Consistently with this Bayesian approach, the background information of an observer is
captured by his/her/its prior probability distribution {P(M)}areaq Over the hypotheses
or models M in a model space M. Given this prior distribution of beliefs, the funda-
mental effect of a new data observation D on the observer is to change the prior distri-
bution { P(M)} prerm into the posterior distribution { P(M|D)} arem Via Bayes theorem,
whereby
P(D|M)

VM e M, P(M|D) = PD) P(M). (1)
In this framework, the new data observation D carries no surprise if it leaves the observer
beliefs unaffected, that is, if the posterior is identical to the prior; conversely, D is sur-
prising if the posterior distribution resulting from observing D significantly differs from
the prior distribution. Therefore we formally measure surprise elicited by data as some
distance measure between the posterior and prior distributions. This is best done using the
relative entropy or Kullback-Leibler (K L) divergence [29]. Thus, surprise is defined by
the average of the log-odd ratio:

P(M|D)
P(M)
taken with respect to the posterior distribution over the model class M. Note that K L is not
symmetric but has well-known theoretical advantages, including invariance with respect to

S(Dwt):KL(P(M\D),P(M)):/ P(M|D)log dM o)
M
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Figure 1: Computing surprise in early sensory neurons. (a) Prior data observations, tuning prefer-
ences, and top-down influences contribute to shaping a set of “prior beliefs” a neuron may have over
a class of internal models or hypotheses about the world. For instance, M may be a set of Poisson
processes parameterized by the rate A, with {P(M)}arem = {P(X)}rem+~ the prior distribution
of beliefs about which Poisson models well describe the world as sensed by the neuron. New data
D updates the prior into the posterior using Bayes’ theorem. Surprise quantifies the difference be-
tween the posterior and prior distributions over the model class M. The remaining panels detail
how surprise differs from conventional model fitting and outlier-based novelty. (b) In standard it-
erative Bayesian model fitting, at every iteration N, incoming data Dy is used to update the prior
{P(M|D1, D2, ...,Dn—1)} mem into the posterior { P(M|D1, D, ..., Dn)}nmem. Freezing this
learning at a given iteration, one then picks the currently best model, usually using either a maxi-
mum likelihood criterion, or a maximum a posteriori one (yielding M;ap shown). (c) This best
model is used for a number of tasks at the current iteration, including outlier-based novelty detec-
tion. New data is then considered novel at that instant if it has low likelihood for the best model
(e.g., D% is more novel than D%). This focus onto the single best model presents obvious limita-
tions, especially in situations where other models are nearly as good (e.g., M.. in panel (b) is entirely
ignored during standard novelty computation). One palliative solution is to consider mixture mod-
els, or simply P(D), but this just amounts to shifting the problem into a different model class. (d)
Surprise directly addresses this problem by simultaneously considering all models and by measuring
how data changes the observer’s distribution of beliefs from {P(M|D1, D2, ..., DnN—1) }mem tO
{P(M|D:, D2, ..., Dn)} merm over the entire model class M (orange shaded area).

reparameterizations. A unit of surprise — a “wow” — may then be defined for a single
model M as the amount of surprise corresponding to a two-fold variation between P(M | D)
and P(M), i.e., as log P(M|D)/P(M) (with log taken in base 2), with the total number
of wows experienced for all models obtained through the integration in eq. 2.

Surprise and outlier detection. Outlier detection based on the likelihood P(D|Mpest) Of
D given a single best model Mgt is at best an approximation to surprise and, in some



cases, is misleading. Consider, for instance, a case where D has very small probability
both for a model or hypothesis M and for a single alternative hypothesis /. Although D
is a strong outlier, it carries very little information regarding whether M or M is the better
model, and therefore very little surprise. Thus an outlier detection method would strongly
focus attentional resources onto D, although D is a false positive, in the sense that it carries
no useful information for discriminating between the two alternative hypotheses A/ and M.
Figure 1 further illustrates this disconnect between outlier detection and surprise.

2 Human experiments

To test the surprise hypothesis — that surprise attracts human attention and gaze in natu-
ral scenes — we recorded eye movements from eight naive observers (three females and
five males, ages 23-32, normal or corrected-to-normal vision). Each watched a subset
from 50 videoclips totaling over 25 minutes of playtime (46,489 video frames, 640 x 480,
60.27 Hz, mean screen luminance 30 cd/m?, room 4 cd/m?, viewing distance 80cm, field
of view 28° x 21°). Clips comprised outdoors daytime and nighttime scenes of crowded
environments, video games, and television broadcast including news, sports, and commer-
cials. Right-eye position was tracked with a 240 Hz video-based device (ISCAN RK-464),
with methods as previously [30]. Two hundred calibrated eye movement traces (10,192
saccades) were analyzed, corresponding to four distinct observers for each of the 50 clips.
Figure 2 shows sample scanpaths for one videoclip.

To characterize image regions selected by participants, we process videoclips through com-
putational metrics that output a topographic dynamic master response map, assigning in
real-time a response value to every input location. A good master map would highlight,
more than expected by chance, locations gazed to by observers. To score each metric we
hence sample, at onset of every human saccade, master map activity around the saccade’s
future endpoint, and around a uniformly random endpoint (random sampling was repeated
100 times to evaluate variability). We quantify differences between histograms of master

Figure 2: (a) Sample eye movement
traces from four observers (squares de-
note saccade endpoints). (b) Our data
exhibits high inter-individual overlap,
shown here with the locations where
one human saccade endpoint was nearby
(=~ 5°) one (white squares), two (cyan
squares), or all three (black squares)
other humans. (c) A metric where the
master map was created from the three
eye movement traces other than that be-
ing tested yields an upper-bound KL
score, computed by comparing the his-
tograms of metric values at human (nar-
row blue bars) and random (wider green
. bars) saccade targets. Indeed, this met-
_Human-derived metric  ric’s map was very sparse (many random
KL=0.679+0.011 saccades landing on locations with near-
zero response), yet humans preferen-
tially saccaded towards the three active
hotspots corresponding to the eye posi-
tions of three other humans (many hu-
Immmmmrmmrlw man saccades landing on locations with
Metricvalue 1 Near-unity responses).
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map samples collected from human and random saccades using again the Kullback-Leibler
(K L) distance: metrics which better predict human scanpaths exhibit higher distances from
random as, typically, observers non-uniformly gaze towards a minority of regions with
highest metric responses while avoiding a majority of regions with low metric responses.
This approach presents several advantages over simpler scoring schemes [31, 32], includ-
ing agnosticity to putative mechanisms for generating saccades and the fact that applying
any continuous nonlinearity to master map values would not affect scoring.

Experimental results. We test six computational metrics, encompassing and extending the
state-of-the-art found in previous studies. The first three quantify static image properties
(local intensity variance in 16 x 16 image patches [31]; local oriented edge density as
measured with Gabor filters [33]; and local Shannon entropy in 16 x 16 image patches
[34]). The remaining three metrics are more sensitive to dynamic events (local motion
[33]; outlier-based saliency [33]; and surprise [25]).

For all metrics, we find that humans are significantly attracted by image regions with higher
metric responses. However, the static metrics typically respond vigorously at numerous vi-
sual locations (Figure 3), hence they are poorly specific and yield relatively low K L scores
between humans and random. The metrics sensitive to motion, outliers, and surprising
events, in comparison, yield sparser maps and higher K L scores.

The surprise metric of interest here quantifies low-level surprise in image patches over
space and time, and at this point does not account for high-level or cognitive beliefs of our
human observers. Rather, it assumes a family of simple models for image patches, each
processed through 72 early feature detectors sensitive to color, orientation, motion, etc.,
and computes surprise from shifts in the distribution of beliefs about which models better
describe the patches (see [25] and [35] for details). We find that the surprise metric sig-
nificantly outperforms all other computational metrics (p < 10~1°9 or better on ¢-tests for
equality of K L scores), scoring nearly 20% better than the second-best metric (saliency)
and 60% better than the best static metric (entropy). Surprising stimuli often substantially
differ from simple feature outliers; for example, a continually blinking light on a static
background elicits sustained flicker due to its locally outlier temporal dynamics but is only
surprising for a moment. Similarly, a shower of randomly-colored pixels continually ex-
cites all low-level feature detectors but rapidly becomes unsurprising.

Strongest attractors of human attention. Clearly, in our and previous eye-tracking ex-
periments, in some situations potentially interesting targets were more numerous than in
others. With many possible targets, different observers may orient towards different loca-
tions, making it more difficult for a single metric to accurately predict all observers. Hence
we consider (Figure 4) subsets of human saccades where at least two, three, or all four
observers simultaneously agreed on a gaze target. Observers could have agreed based on
bottom-up factors (e.g., only one location had interesting visual appearance at that time),
top-down factors (e.g., only one object was of current cognitive interest), or both (e.g., a
single cognitively interesting object was present which also had distinctive appearance).
Irrespectively of the cause for agreement, it indicates consolidated belief that a location
was attractive. While the K L scores of all metrics improved when progressively focusing
onto only those locations, dynamic metrics improved more steeply, indicating that stimuli
which more reliably attracted all observers carried more motion, saliency, and surprise.
Surprise remained significantly the best metric to characterize these agreed-upon attractors
of human gaze (p < 10719 or better on ¢-tests for equality of K L scores).

Overall, surprise explained the greatest fraction of human saccades, indicating that humans
are significantly attracted towards surprising locations in video displays. Over 72% of all
human saccades were targeted to locations predicted to be more surprising than on average.
When only considering saccades where two, three, or four observers agreed on a common
gaze target, this figure rose to 76%, 80%, and 84%, respectively.
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Figure 3: (a) Sample video frames, with corresponding human saccades and predictions from the

entropy, surprise, and human-derived metrics. Entropy maps, like intensity variance and orientation

maps, exhibited many locations with high responses, hence had low specificity and were poorly
discriminative. In contrast, motion, saliency, and surprise maps were much sparser and more specific,
with surprise significantly more often on target. For three example frames (first column), saccades
from one subject are shown (arrows) with corresponding apertures over which master map activity

at the saccade endpoint was sampled (circles). (b) K L scores for these metrics indicate significantly
different performance levels, and a strict ranking of variance < orientation < entropy < motion

< saliency < surprise < human-derived. K L scores were computed by comparing the number of

human saccades landing onto each given range of master map values (narrow blue bars) to the number

of random saccades hitting the same range (wider green bars). A score of zero would indicate equality

between the human and random histogrames, i.e., humans did not tend to hit various master map values

any differently from expected by chance, or, the master map could not predict human saccades better

than random saccades. Among the six computational metrics tested in total, surprise performed best,

in that surprising locations were relatively few yet reliably gazed to by humans.
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3 Discussion

While previous research has shown with either static scenes or dynamic synthetic stimuli
that humans preferentially fixate regions of high entropy [34], contrast [31], saliency [32],
flicker [36], or motion [37], our data provides direct experimental evidence that humans
fixate surprising locations even more reliably. These conclusions were made possible by
developing new tools to quantify what attracts human gaze over space and time in dynamic
natural scenes. Surprise explained best where humans look when considering all saccades,
and even more so when restricting the analysis to only those saccades for which human
observers tended to agree. Surprise hence represents an inexpensive, easily computable
approximation to human attentional allocation.

In the absence of quantitative tools to measure surprise, most experimental and modeling
work to date has adopted the approximation that novel events are surprising, and has fo-
cused on experimental scenarios which are simple enough to ensure an overlap between
informal notions of novelty and surprise: for example, a stimulus is novel during testing if
it has not been seen during training [9]. Our definition opens new avenues for more sophis-
ticated experiments, where surprise elicited by different stimuli can be precisely compared
and calibrated, yielding predictions at the single-unit as well as behavioral levels.

The definition of surprise — as the distance between the posterior and prior distributions
of beliefs over models — is entirely general and readily applicable to the analysis of audi-
tory, olfactory, gustatory, or somatosensory data. While here we have focused on behavior
rather than detailed biophysical implementation, it is worth noting that detecting surprise in
neural spike trains does not require semantic understanding of the data carried by the spike
trains, and thus could provide guiding signals during self-organization and development of
sensory areas. At higher processing levels, top-down cues and task demands are known to
combine with stimulus novelty in capturing attention and triggering learning [1, 38], ideas
which may now be formalized and quantified in terms of priors, posteriors, and surprise.
Surprise, indeed, inherently depends on uncertainty and on prior beliefs. Hence surprise
theory can further be tested and utilized in experiments where the prior is biased, for ex-



ample by top-down instructions or prior exposures to stimuli [38]. In addition, simple
surprise-based behavioral measures such as the eye-tracking one used here may prove use-
ful for early diagnostic of human conditions including autism and attention-deficit hyper-
active disorder, as well as for quantitative comparison between humans and animals which
may have lower or different priors, including monkeys, frogs, and flies. Beyond sensory
biology, computable surprise could guide the development of data mining and compres-
sion systems (giving more bits to surprising regions of interest), to find surprising agents in
crowds, surprising sentences in books or speeches, surprising sequences in genomes, sur-
prising medical symptoms, surprising odors in airport luggage racks, surprising documents
on the world-wide-web, or to design surprising advertisements.
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