
Hierarchical Eigensolver for Transition Matrices
in Spectral Methods

Chakra Chennubhotla∗ and Allan D. Jepson†

∗Department of Computational Biology, University of Pittsburgh
†Department of Computer Science, University of Toronto

Abstract
We show how to build hierarchical, reduced-rank representation for large
stochastic matrices and use this representation to design an efficient al-
gorithm for computing the largest eigenvalues, and the corresponding
eigenvectors. In particular, the eigen problem is first solved at the coars-
est level of the representation. The approximate eigen solution is then
interpolated over successive levels of the hierarchy. A small number of
power iterations are employed at each stage to correct the eigen solution.
The typical speedups obtained by a Matlab implementation of our fast
eigensolver over a standard sparse matrix eigensolver [13] are at least a
factor of ten for large image sizes. The hierarchical representation has
proven to be effective in a min-cut based segmentation algorithm that we
proposed recently [8].

1 Spectral Methods
Graph-theoretic spectral methods have gained popularity in a variety of application do-
mains: segmenting images [22]; embedding in low-dimensional spaces [4, 5, 8]; and clus-
tering parallel scientific computation tasks [19]. Spectral methods enable the study of prop-
erties global to a dataset, using only local (pairwise) similarity or affinity measurements be-
tween the data points. The global properties that emerge are best understood in terms of a
random walk formulation on the graph. For example, the graph can be partitioned into clus-
ters by analyzing the perturbations to the stationary distribution of a Markovian relaxation
process defined in terms of the affinity weights [17, 18, 24, 7]. The Markovian relaxation
process need never be explicitly carried out; instead, it can be analytically expressed using
the leading order eigenvectors, and eigenvalues, of the Markov transition matrix.

In this paper we consider the practical application of spectral methods to large datasets. In
particular, the eigen decomposition can be very expensive, on the order of O(n3), where n
is the number of nodes in the graph. While it is possible to compute analytically the first
eigenvector (see §3 below), the remaining subspace of vectors (necessary for say clustering)
has to be explicitly computed. A typical approach to dealing with this difficulty is to first
sparsify the links in the graph [22] and then apply an efficient eigensolver [13, 23, 3].

In comparison, we propose in this paper a specialized eigensolver suitable for large stochas-
tic matrices with known stationary distributions. In particular, we exploit the spectral prop-
erties of the Markov transition matrix to generate hierarchical, successively lower-ranked
approximations to the full transition matrix. The eigen problem is solved directly at the
coarsest level of representation. The approximate eigen solution is then interpolated over
successive levels of the hierarchy, using a small number of power iterations to correct the
solution at each stage.

2 Previous Work
One approach to speeding up the eigen decomposition is to use the fact that the columns
of the affinity matrix are typically correlated. The idea then is to pick a small number
of representative columns to perform eigen decomposition via SVD. For example, in the
Nystrom approximation procedure, originally proposed for integral eigenvalue problems,
the idea is to randomly pick a small set of m columns; generate the corresponding affinity
matrix; solve the eigenproblem and finally extend the solution to the complete graph [9, 10].
The Nystrom method has also been recently applied in the kernel learning methods for
fast Gaussian process classification and regression [25]. Other sampling-based approaches
include the work reported in [1, 2, 11].

Our starting point is the transition matrix generated from affinity weights and we show
how building a representational hierarchy follows naturally from considering the stochas-
tic matrix. A closely related work is the paper by Lin on reduced rank approximations of
transition matrices [14]. We differ in how we approximate the transition matrices, in par-
ticular our objective function is computationally less expensive to solve. In particular, one
of our goals in reducing transition matrices is to develop a fast, specialized eigen solver for
spectral clustering. Fast eigensolving is also the goal in ACE [12], where successive levels
in the hierarchy can potentially have negative affinities. A graph coarsening process for
clustering was also pursued in [21, 3].

3 Markov Chain Terminology
We first provide a brief overview of the Markov chain terminology here (for more details
see [17, 15, 6]). We consider an undirected graph G = (V,E) with vertices vi, for i =
{1, . . . , n}, and edges ei,j with non-negative weights ai,j . Here the weight ai,j represents
the affinity between vertices vi and vj . The affinities are represented by a non-negative,
symmetric n × n matrix A having weights ai,j as elements. The degree of a node j is
defined to be: dj =

∑n
i=1

ai,j =
∑n

j=1
aj,i, where we define D = diag(d1, . . . , dn).

A Markov chain is defined using these affinities by setting a transition probability matrix
M = AD−1, where the columns of M each sum to 1. The transition probability matrix
defines the random walk of a particle on the graph G.

The random walk need never be explicitly carried out; instead, it can be analytically ex-
pressed using the leading order eigenvectors, and eigenvalues, of the Markov transition
matrix. Because the stochastic matrices need not be symmetric in general, a direct eigen
decomposition step is not preferred for reasons of instability. This problem is easily circum-
vented by considering a normalized affinity matrix: L = D−1/2AD−1/2, which is related
to the stochastic matrix by a similarity transformation: L = D−1/2MD1/2. Because L
is symmetric, it can be diagonalized: L = UΛUT , where U = [~u1, ~u2, · · · , ~un] is an
orthogonal set of eigenvectors and Λ is a diagonal matrix of eigenvalues [λ1, λ2, · · · , λn]
sorted in decreasing order. The eigenvectors have unit length ‖~uk‖ = 1 and from the
form of A and D it can be shown that the eigenvalues λi ∈ (−1, 1], with at least one
eigenvalue equal to one. Without loss of generality, we take λ1 = 1. Because L and M
are similar we can perform an eigen decomposition of the Markov transition matrix as:
M = D1/2LD−1/2 = D1/2U Λ UT D−1/2. Thus an eigenvector ~u of L corresponds to
an eigenvector D1/2~u of M with the same eigenvalue λ.

The Markovian relaxation process after β iterations, namely Mβ , can be represented as:
Mβ = D1/2UΛβUT D−1/2. Therefore, a particle undertaking a random walk with an
initial distribution ~p 0 acquires after β steps a distribution ~p β given by: ~p β = Mβ~p 0.
Assuming the graph is connected, as β → ∞, the Markov chain approaches a unique
stationary distribution given by ~π = diag(D)/

∑n
i=1

di, and thus, M∞ = ~π1
T , where 1 is

a n-dim column vector of all ones. Observe that ~π is an eigenvector of M as it is easy to
show that M~π = ~π and the corresponding eigenvalue is 1. Next, we show how to generate
hierarchical, successively low-ranked approximations for the transition matrix M .

4 Building a Hierarchy of Transition Matrices
The goal is to generate a very fast approximation, while simultaneously achieving sufficient
accuracy. For notational ease, we think of M as a fine-scale representation and M̃ as some
coarse-scale approximation to be derived here. By coarsening M̃ further, we can generate
successive levels of the representation hierarchy. We use the stationary distribution ~π to
construct a corresponding coarse-scale stationary distribution ~δ. As we just discussed a
critical property of the fine scale Markov matrix M is that it is similar to the symmetric
matrix L and we wish to preserve this property at every level of the representation hierarchy.
4.1 Deriving Coarse-Scale Stationary Distribution
We begin by expressing the stationary distribution ~π as a probabilistic mixture of latent
distributions. In matrix notation, we have

~π = K~δ, (1)

where ~δ is an unknown mixture coefficient vector of length m, K is an n×m non-negative
kernel matrix whose columns are latent distributions that each sum to 1:

∑n
i=1

Ki,j = 1

and m � n. It is easy to derive a maximum likelihood approximation of ~δ using an EM
type algorithm [16]. The main step is to find a stationary point

(
~δ, λ

)
for the Lagrangian:

E ≡ −

n∑

i=1

πi ln

m∑

j=1

Ki,jδj + λ

(m∑

j=1

δj − 1

)
. (2)

An implicit step in this EM procedure is to compute the the ownership probability ri,j of
the j th kernel (or node) at the coarse scale for the ith node on the fine scale and is given by

ri,j =
δjKi,j∑m

k=1
δkKi,k

. (3)

The EM procedure allows for an update of both ~δ and the latent distributions in the kernel
matrix K (see §8.3.1 in [6]).

For initialization, ~δ is taken to be uniform over the coarse-scale states. But in choosing
kernels K, we provide a good initialization for the EM procedure. Specifically, the Markov
matrix M is diffused using a small number of iterations to get Mβ . The diffusion causes
random walks from neighboring nodes to be less distinguishable. This in turn helps us
select a small number of columns of Mβ in a fast and greedy way to be the kernel matrix
K. We defer the exact details on kernel selection to a later section (§4.3).
4.2 Deriving the Coarse-Scale Transition Matrix
In order to define M̃ , the coarse-scale transition matrix, we break it down into three steps.
First, the Markov chain propagation at the coarse scale can be defined as:

~q k+1 = M̃~q k, (4)

where ~q k is the coarse scale probability distribution after k steps of the random walk.
Second, we expand ~q k into the fine scale using the kernels K resulting in a fine scale
probability distribution ~p k:

~p k = K~q k. (5)

Finally, we lift ~p k back into the coarse scale by using the ownership probability of the j th

kernel for the ith node on the fine grid:

q k+1

j =
n∑

i=1

ri,jp
k
i (6)

Substituting for Eqs.(3) and (5) in Eq. 6 gives

q k+1

j =

n∑

i=1

ri,j

m∑

t=1

Ki,tq
k

t =

n∑

i=1

(
δjKi,j∑m

k=1
δkKi,k

) m∑

t=1

Ki,tq
k

t . (7)

We can write the preceding equation in a matrix form:

~q k+1 = diag(~δ)KT diag
(
K~δ

)−1

K~q k. (8)

Comparing this with Eq. 4, we can derive the transition matrix M̃ as:

M̃ = diag(~δ)KT diag
(
K~δ

)−1

K. (9)

It is easy to see that ~δ = M̃~δ, so ~δ is the stationary distribution for M̃ . Following the
definition of M̃ , and its stationary distribution ~δ, we can generate a symmetric coarse scale
affinity matrix Ã given by

Ã = M̃diag(~δ) =
(

diag(~δ)KT
) (

diag
(
K~δ

)−1
)(

Kdiag(~δ)
)

, (10)

where we substitute for the expression M̃ from Eq. 9. The coarse-scale affinity matrix Ã is
then normalized to get:

L̃ = D̃−1/2ÃD̃−1/2; D̃ = diag(d̃1, d̃2, · · · , d̃m), (11)

where d̃j is the degree of node j in the coarse-scale graph represented by the matrix Ã (see
§3 for degree definition). Thus, the coarse scale Markov matrix M̃ is precisely similar to a
symmetric matrix L̃.
4.3 Selecting Kernels
For demonstration purpose, we present the kernel selection details on the image of an eye
shown below. To begin with, a random walk is defined where each pixel in the test image
is associated with a vertex of the graph G. The edges in G are defined by the standard
8-neighbourhood of each pixel. For the demonstrations in this paper, the edge weight
ai,j between neighbouring pixels xi and xj is given by a function of the difference in the
corresponding intensities I(xi) and I(xj): ai,j = exp(−(I(xi) − I(xj))

2/2σ2
a), where

σa is set according to the median absolute difference |I(xi) − I(xj)| between neighbours
measured over the entire image. The affinity matrix A with the edge weights is then used
to generate a Markov transition matrix M .

The kernel selection process we use is fast and greedy. First, the fine scale Markov matrix
M is diffused to Mβ using β = 4. The Markov matrix M is sparse as we make the
affinity matrix A sparse. Every column in the diffused matrix Mβ is a potential kernel. To
facilitate the selection process, the second step is to rank order the columns of M β based
on a probability value in the stationary distribution ~π. Third, the kernels (i.e. columns of
Mβ) are picked in such a way that for a kernel Ki all of the neighbours of pixel i which are
within the half-height of the the maximum value in the kernel Ki are suppressed from the
selection process. Finally, the kernel selection is continued until every pixel in the image is
within a half-height of the peak value of at least one kernel. If M is a full matrix, to avoid
the expense of computing Mβ explicitly, random kernel centers can be selected, and only
the corresponding columns of Mβ need be computed.

We show results from a three-scale hierarchy on the eye image (below). The image has
25 × 20 pixels but is shown here enlarged for clarity. At the first coarse scale 83 kernels
are picked. The kernels each correspond to a different column in the fine scale transition
matrix and the pixels giving rise to these kernels are shown numbered on the image.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2021

22

23

24

25
26

27

28

29

30

31

32

33

34

35

36
37

38

39

40

41

42
43

44

45

46

47

48
49

50

51

52

53

54

55

56

57

5859

60

61

62

63

64

65

66

6768

69
70

71

72

73

74

75
76

77

78

79

80
81

82

83

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Coarse Scale 1 Coarse Scale 2

Using these kernels as an initialization, the EM pro-
cedure derives a coarse-scale stationary distribution ~δ
(Eq. 2), while simultaneously updating the kernel ma-
trix. Using the newly updated kernel matrix K and the
derived stationary distribution ~δ a transition matrix M̃
is generated (Eq. 9). The coarse scale Markov matrix
is then diffused to M̃β , again using β = 4. The kernel
selection algorithm is reapplied, this time picking 32

kernels for the second coarse scale. Larger values of β cause the coarser level to have fewer
elements. But the exact number of elements depends on the form of the kernels themselves.
For the random experiments that we describe later in §6 we found β = 2 in the first iteration
and 4 thereafter causes the number of kernels to be reduced by a factor of roughly 1/3 to
1/4 at each level.

At coarser levels of the hierarchy, we expect the kernels to get less sparse and so will the
affinity and the transition matrices. In order to promote sparsity at successive levels of
the hierarchy we sparsify Ã by zeroing out elements associated with “small” transition
probabilities in M̃ . However, in the experiments described later in §6, we observe this
sparsification step to be not critical. To summarize, we use the stationary distribution ~π

at the fine-scale to derive a transition matrix M̃ , and its stationary distribution ~δ, at the
coarse-scale. The coarse scale transition in turn helps to derive an affinity matrix Ã and
its normalized version L̃. It is obvious that this procedure can be repeated recursively. We
describe next how to use this representation hierarchy for building a fast eigensolver.

5 Fast EigenSolver
Our goal in generating a hierarchical representation of a transition matrix is to develop a
fast, specialized eigen solver for spectral clustering. To this end, we perform a full eigen
decomposition of the normalized affinity matrix only at the coarsest level. As discussed
in the previous section, the affinity matrix at the coarsest level is not likely to be sparse,
hence it will need a full (as opposed to a sparse) version of an eigen solver. However it is
typically the case that e ≤ m � n (even in the case of the three-scale hierarchy that we
just considered) and hence we expect this step to be the least expensive computationally.
The resulting eigenvectors are interpolated to the next lower level of the hierarchy by a
process which will be described next. Because the eigen interpolation process between
every adjacent pair of scales in the hierarchy is similar, we will assume we have access to
the leading eigenvectors Ũ (size: m×e) for the normalized affinity matrix L̃ (size: m×m)
and describe how to generate the leading eigenvectors U (size: n × e), and the leading
eigenvalues S (size: e × 1), for the fine-scale normalized affinity matrix L (size: n × n).
There are several steps to the eigen interpolation process and in the discussion that follows
we refer to the lines in the pseudo-code presented below.

First, the coarse-scale eigenvectors Ũ can be interpolated using the kernel matrix K to
generate U = KŨ , an approximation for the fine-scale eigenvectors (line 9). Second,
interpolation alone is unlikely to set the directions of U exactly aligned with UL, the
vectors one would obtain by a direct eigen decomposition of the fine-scale normalized
affinity matrix L. We therefore update the directions in U by applying a small number of
power iterations with L, as given in lines 13-15.

function (U, S) = CoarseToFine(L, K, eU, eS)

1: INPUT
2: L, K ⇐ {L is n × n and K is n × m where m � n}

3: eU/eS ⇐ {leading coarse-scale eigenvectors/eigenvalues of eL. eU is of size m × e, e ≤ m}
4: OUTPUT
5: U, S ⇐ {leading fine-scale eigenvectors/eigenvalues of L. U is n × e and S is e × 1.}

5 10 15 20 25 30

0.88

0.9

0.92

0.94

0.96

0.98

1

Eigen Index

Ei
ge

n
Va

lu
e

Eigen Spectrum

5 10 15 20 25 30

0.5

1

1.5

2

2.5

3

x 10−3

Eigen Index

Ab
so

lu
te

 R
el

at
iv

e
Er

ro
r

|δλ|λ−1

5 10 15 20 25 30

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Eigen Index

R
el

at
iv

e
Er

ro
r

(a) (b) (c)

Figure 1: Hierarchical eigensolver results. (a) comparing ground truth eigenvalues SL
(red circles) with multi-scale eigensolver spectrum S (blue line) (b) Relative absolute error
between eigenvalues: |S−SL|

SL

(c) Eigenvector mismatch: 1 − diag
(
|UT UL|

)
, between

eigenvectors U derived by the multi-scale eigensolver and the ground truth UL. Observe
the slight mismatch in the last few eigenvectors, but excellent agreement in the leading
eigenvectors (see text).

6: CONSTANTS: TOL = 1e-4; POWER ITERS = 50
7:
8: TPI = min

“
POWER ITERS, log(e × eps/TOL)/ log(min(eS))

”
{eps: machine accuracy}

9: U = K eU {interpolation from coarse to fine}
10: while not converged do
11: Uold = U {n × e matrix, e � n}
12: for i = 1 to TPI do
13: U ⇐ LU
14: end for
15: U ⇐ Gram-Schmidt(U) {orthogonalize U}
16: Le = UT LU {L may be sparse, but Le need not be.}
17: UeSeU

T

e = svd(Le) {eigenanalysis of Le, which is of size e × e.}
18: U ⇐ UUe {update the leading eigenvectors of L}
19: S = diag(Se) {grab the leading eigenvalues of L}
20: innerProd = 1 − diag(UT

old U) {1 is a e × 1 vector of all ones}
21: converged = max[abs(innerProd)] < TOL
22: end while

The number of power iterations TPI can be bounded as discussed next. Suppose ~v =
Uc where U is a matrix of true eigenvectors and c is a coefficient vector for an arbitrary
vector ~v. After TPI power iterations ~v becomes ~v = Udiag(STPI)c, where S has the exact
eigenvalues. In order for the component of a vector ~v in the direction Ue (the eth column of
U) not to be swamped by other components, we can limit it’s decay after TPI iterations as
follows: (S(e)/S(1))

TPI
>= e×eps/TOL, where S(e) is the exact eth eigenvalue, S(1) =

1, eps is the machine precision, TOL is requested accuracy. Because we do not have access
to the exact value S(e) at the beginning of the interpolation procedure, we estimate it from
the coarse eigenvalues S̃. This leads to a bound on the power iterations TPI, as derived on
the line 9 above. Third, the interpolation process and the power iterations need not preserve
orthogonality in the eigenvectors in U . We fix this by Gram-Schmidt orthogonalization
procedure (line 16). Finally, there is a still a problem with power iterations that needs
to be resolved, in that it is very hard to separate nearby eigenvalues. In particular, for
the convergence of the power iterations the ratio that matters is between the (e + 1)st and
eth eigenvalues. So the idea we pursue is to use the power iterations only to separate the
reduced space of eigenvectors (of dimension e) from the orthogonal subspace (of dimension
n − e). We then use a full SVD on the reduced space to update the leading eigenvectors
U , and eigenvalues S, for the fine-scale (lines 17-20). This idea is similar to computing the
Ritz values and Ritz vectors in a Rayleigh-Ritz method.

6 Interpolation Results
Our multi-scale decomposition code is in Matlab. For the direct eigen decomposition, we
have used the Matlab program svds.m which invokes the compiled ARPACKC routine
[13], with a default convergence tolerance of 1e-10.

In Fig. 1a we compare the spectrum S obtained from a three-scale decomposition on the
eye image (blue line) with the ground truth, which is the spectrum SL resulting from direct
eigen decomposition of the fine-scale normalized affinity matrices L (red circles). There
is an excellent agreement in the leading eigenvalues. To illustrate this, we show absolute
relative error between the spectra: |S−SL|

SL

in Fig. 1b. The spectra agree mostly, except for
the last few eigenvalues. For a quantitative comparison between the eigenvectors, we plot
in Fig. 1c the following measure: 1−diag(|UT UL|), where U is the matrix of eigenvectors
obtained by the multi-scale approximation, UL is the ground-truth resulting from a direct
eigen decomposition of the fine-scale affinity matrix L and 1 is a vector of all ones. The
relative error plot demonstrates a close match, within the tolerance threshold of 1e-4 that
we chose for the multi-scale method, in the leading eigenvector directions between the
two methods. The relative error is high with the last few eigen vectors, which suggests
that the power iterations have not clearly separated them from other directions. So, the
strategy we suggest is to pad the required number of leading eigen basis by about 20%
before invoking the multi-scale procedure. Obviously, the number of hierarchical stages
for the multi-scale procedure must be chosen such that the transition matrix at the coarsest
scale can accommodate the slight increase in the subspace dimensions. For lack of space
we are omitting extra results (see Ch.8 in [6]).

Next we measure the time the hierarchical eigensolver takes to compute the leading eigen-
basis for various input sizes, in comparison with the svds.m procedure [13]. We form
images of different input sizes by Gaussian smoothing of i.i.d noise. The Gaussian func-
tion has a standard deviation of 3 pixels. The edges in graph G are defined by the standard
8-neighbourhood of each pixel. The edge weights between neighbouring pixels are sim-
ply given by a function of the difference in the corresponding intensities (see §4.3). The
affinity matrix A with the edge weights is then used to generate a Markov transition matrix
M . The fast eigensolver is run on ten different instances of the input image of a given size
and the average of these times is reported here. For a fair comparison between the two
procedures, we set the convergence tolerance value for the svds.m procedure to be 1e-4,
the same as the one used for the fast eigensolver. We found the hierarchical representation
derived from this tolerance threshold to be sufficiently accurate for a novel min-cut based
segmentation results that we reported in [8]. Also, the subspace dimensionality is fixed to
be 51 where we expect (and indeed observe) the leading 40 eigenpairs derived from the
multi-scale procedure to be accurate. Hence, while invoking svds.m we compute only the
leading 41 eigenpairs.

In the table shown below, the first column corresponds to the number of nodes in the graph,
while the second and third columns report the time taken in seconds by the svds.m pro-
cedure and the Matlab implementation of the multi-scale eigensolver respectively. The
fourth column reports the speedups of the multi-scale eigensolver over svds.m procedure
on a standard desktop (Intel P4, 2.5GHz, 1GB RAM). Lowering the tolerance threshold for
svds.m made it faster by about 20 − 30%. Despite this, the multi-scale algorithm clearly
outperforms the svds.m procedure. The most expensive step in the multi-scale algorithm
is the power iteration required in the last stage, that is interpolating eigenvectors from the
first coarse scale to the required fine scale. The complexity is of the order of n × e where
e is the subspace dimensionality and n is the size of the graph. Indeed, from the table we
can see that the multi-scale procedure is taking time roughly proportional to n. Deviations
from the linear trend are observed at specific values of n, which we believe are due to the

n svds.m Multi-Scale Speedup
322 1.6 1.5 1.1
632 10.8 4.9 2.2
642 20.5 5.5 3.7
652 12.6 5.1 2.5

1002 44.2 13.1 3.4
1272 91.1 20.4 4.5
1282 230.9 35.2 6.6
1292 96.9 20.9 4.6
1602 179.3 34.4 5.2
2552 819.2 90.3 9.1
2562 2170.8 188.7 11.5
2572 871.7 93.3 9.3
5112 7977.2 458.8 17.4
5122 20269 739.3 27.4
5132 7887.2 461.9 17.1
6002 10841.4 644.2 16.8
7002 15048.8 1162.4 12.9
8002 1936.6

variations in the difficulty of the specific eigen-
value problem (eg. nearly multiple eigenvalues).
The hierarchical representation has proven to be
effective in a min-cut based segmentation algo-
rithm that we proposed recently [8]. Here we ex-
plored the use of random walks and associated
spectral embedding techniques for the automatic
generation of suitable proposal (source and sink)
regions for a min-cut based algorithm. The multi-
scale algorithm was used to generate the 40 lead-
ing eigenvectors of large transition matrices (eg.
size 20K×20K). In terms of future work, it will
be useful to compare our work with other approx-
imate methods for SVD such as [23].

Ack: We thank S. Roweis, F. Estrada and M. Sakr for valuable comments.
References
[1] D. Achlioptas and F. McSherry. Fast Computation of Low-Rank Approximations. STOC, 2001.
[2] D. Achlioptas et alSampling Techniques for Kernel Methods. NIPS, 2001.
[3] S. Barnard and H. Simon Fast Multilevel Implementation of Recursive Spectral Bisection for

Partitioning Unstructured Problems. PPSC, 627-632.
[4] M. Belkin et al Laplacian Eigenmaps and Spectral Techniques for Embedding. NIPS, 2001.
[5] M. Brand et al A unifying theorem for spectral embedding and clustering. AI & STATS, 2002.
[6] C. Chennubhotla. Spectral Methods for Multi-scale Feature Extraction and Spectral Clustering.

http://www.cs.toronto.edu/˜chakra/thesis.pdf Ph.D Thesis, Department of
Computer Science, University of Toronto, Canada, 2004.

[7] C. Chennubhotla and A. Jepson. Half-Lives of EigenFlows for Spectral Clustering. NIPS, 2002.
[8] F. Estrada, A. Jepson and C. Chennubhotla. Spectral Embedding and Min-Cut for Image Seg-

mentation. Manuscript Under Review, 2004.
[9] C. Fowlkes et al Efficient spatiotemporal grouping using the Nystrom method. CVPR, 2001.
[10] S. Belongie et al Spectral Partitioning with Indefinite Kernels using Nystrom app. ECCV,

2002.
[11] A. Frieze et al Fast Monte-Carlo Algorithms for finding low-rank approximations. FOCS,

1998.
[12] Y. Koren et al ACE: A Fast Multiscale Eigenvectors Computation for Drawing Huge Graphs

IEEE Symp. on InfoVis 2002, pp. 137-144
[13] R. B. Lehoucq, D. C. Sorensen and C. Yang. ARPACK User Guide: Solution of Large Scale

Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM 1998.
[14] J. J. Lin. Reduced Rank Approximations of Transition Matrices. AI & STATS, 2002.
[15] L. Lova’sz. Random Walks on Graphs: A Survey Combinatorics, 1996, 353–398.
[16] G. J. McLachlan et al Mixture Models: Inference and Applications to Clustering. 1988
[17] M. Meila and J. Shi. A random walks view of spectral segmentation. AI & STATS, 2001.
[18] A. Ng, M. Jordan and Y. Weiss. On Spectral Clustering: analysis and an algorithm NIPS, 2001.
[19] A. Pothen Graph partitioning algorithms with applications to scientific computing. Parallel

Numerical Algorithms, D. E. Keyes et al (eds.), Kluwer Academic Press, 1996.
[20] G. L. Scott et al Feature grouping by relocalization of eigenvectors of the proximity matrix.

BMVC, pg. 103-108, 1990.
[21] E. Sharon et alFast Multiscale Image Segmentation CVPR, I:70-77, 2000.
[22] J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI, August, 2000.
[23] H. Simon et al Low-Rank Matrix Approximation Using the Lanczos Bidiagonalization Process

with Applications SIAM J. of Sci. Comp. 21(6):2257-2274, 2000.
[24] N. Tishby et al Data clustering by Markovian Relaxation NIPS, 2001.
[25] C. Williams et al Using the Nystrom method to speed up the kernel machines. NIPS, 2001.

