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Abstract

We describe an approach to building brain-computer interfaces (BCI)
based on graphical models for probabilistic inference and learning. We
show how a dynamic Bayesian network (DBN) can be used to infer
probability distributions over brain- and body-states during planning and
execution of actions. The DBN is learned directly from observed data
and allows measured signals such as EEG and EMG to be interpreted in
terms of internal states such as intent to move, preparatory activity, and
movement execution. Unlike traditional classification-based approaches
to BCI, the proposed approach (1) allows continuous tracking and predic-
tion of internal states over time, and (2) generates control signals based
on an entire probability distribution over states rather than binary yes/no
decisions. We present preliminary results of brain- and body-state es-
timation using simultaneous EEG and EMG signals recorded during a
self-paced left/right hand movement task.

1 Introduction

The problem of building a brain-computer interface (BCI) has received considerable atten-
tion in recent years. Several researchers have demonstrated the feasibility of using EEG
signals as a non-invasive medium for building human BCIs [1, 2, 3, 4, 5] (see also [6] and
articles in the same issue). A central theme in much of this research is the postulation of
a discrete brain state that the user maintains while performing one of a set of physical or
imagined actions. The goal is to decode the hidden brain state from the observable EEG
signal, and to use the decoded state to control a robot or a cursor on a computer screen.

Most previous approaches to BCI (e.g., [1, 2, 4]) have utilized classification methods ap-
plied to time slices of EEG data to discriminate between a small set of brain states (e.g., left
versus right hand movement). These methods typically involve various forms of prepro-
cessing (such as band-pass filtering or temporal smoothing) as well as feature extraction on
time slices known to contain one of the chosen set of brain states. The output of the clas-
sifier is typically a yes/no decision regarding class membership. A significant drawback of
such an approach is the need to have a “point of reference” for the EEG data, i.e., a synchro-
nization point in time where the behavior of interest was performed. Also, classifier-based
approaches typically do not model the uncertainty in their class estimates. As a result, it



is difficult to have a continuous estimate of the brain state and to associate an uncertainty
with the current estimate.

In this paper, we propose a new framework for BCI based on probabilistic graphical mod-
els [7] that overcomes some of the limitations of classification-based approaches to BCI.
We model the dynamics of hidden brain- and body-states using a Dynamic Bayesian Net-
work (DBN) that is learned directly from EEG and EMG data. We show how a DBN can be
used to infer probability distributions over hidden state variables, where the state variables
correspond to brain states useful for BCI (such as “Intention to move left hand”, “Left hand
in motion”, etc). Using a DBN gives us several advantages in addition to providing a contin-
uous probabilistic estimate of brain state. First, it allows us to explicitly model the hidden
causal structure and dependencies between different brain states. Second, it facilitates the
integration of information from multiple modalities such as EEG and EMG signals, allow-
ing, for example, EEG-derived estimates to be bootstrapped from EMG-derived estimates.
In addition, learning a dynamic graphical model for time-varying data such as EEG allows
other useful operations such as prediction, filling in of missing data, and smoothing of state
estimates using information from future data points. These capabilities are difficult to ob-
tain while working exclusively in the frequency domain or using whole slices of the data
(or its features) for training classifiers. We illustrate our approach in a simple Left versus
Right hand movement task and present preliminary results showing supervised learning and
Bayesian inference of hidden state for a dataset containing simultaneous EEG and EMG
recordings.

2 The DBN Framework

We study the problem of modeling spontaneous movement of the left/right arm using EEG
and EMG signals. It is well known that EEG signals show a slow potential drift prior to
spontaneous motor activity. This potential drift, known as the Bereitschaftspotential (BP,
see [8] for an excellent survey), shows variation in distribution over scalp with respect to
the body part being moved. In particular, the BP related to movement of left versus right
arm shows a strong lateral asymmetry. This allows one to not only estimate the intent to
move prior to actual movement, but also distinguish between left and right movements.
Previous approaches [1, 2] have utilized BP signals in classification-based BCI protocols
based on synchronization cues that identify points of movement onset. In our case, the
challenge was to model the structure of BPs and related movement signals using the states
of the DBN, and to recognize actions without explicit synchronization cues.

Figure 1 shows the complete DBN (referred to as Nfull in this paper) used to model the left-
right hand movement task. The hidden state Bt in Figure 1(a) tracks the higher-level brain
state over time and generates the hidden EEG and EMG states Et and Mt respectively.
These hidden states in turn generate the observed EEG and EMG signals. The dashed
arrows indicate that the hidden states make transitions over time. As shown in Figure 1(b),
the state Bt is intended to model the high-level intention of the subject. The figure shows
both the values Bt can take as well the constraints on the transition between values. The
actual probabilities of the allowed transitions are learned from data.

The hidden states Et and Mt are intended to model the temporal structure of the EEG and
EMG signals, which are generated using a mixture of Gaussians conditioned on Et and
Mt respectively. In the same way as the values of Bt are customized for our particular
experiment, we would like the state transitions of Et and Mt to also reflect their respective
constraints. This is important since it allows us to independently learn the simpler DBN
Nemg consisting of only the node Mt and the observed EMG signal. Similarly, we can
also independently learn the model Neeg consisting of the node Et and the observed EEG
signal. We use the models shown in Figure 2 for allowed transitions of the states Mt and Et

respectively. In particular, Figure 2(a) indicates that the EMG state can transition along one
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Figure 1: Dynamic graphical model for modeling brain and body processes in a self-
paced movement task: (a) At each time instant t, the brain state Bt generates the EEG
and EMG internal states Et and Mt respectively, which in turn generate the observed EEG
and EMG. The dotted arrows represent transitions to a state at the next time step. (b) The
transition graph for the brain state Bt. The probability of each allowed transition is learned
from input data.

of three chains of states (labeled (1), (2), and (3)), representing the rest state, a left-hand
action and a right-hand action respectively. In each chain, the state Mt in each time step
either retains its old value with a given probability (self-pointing arrow) or transitions to the
next state value in that particular chain. The transition graph of Figure 2(b) shows similar
constraints on the EEG, except that the left and right action chains are further partitioned
into intent, action, and post-action subgroups of states, since each of these components are
discernible from the BP in EEG (but not from EMG) signals.
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Figure 2: Constrained transition graphs for the hidden EMG and EEG states Et and
Mt respectively. (a) The EMG state transitions between its values mi are constrained to
be in one of three chains: the chains model (1) rest, (2) left arm movement, and (3) right
arm movement. (b) In the EEG state transition graph, the left and right movement chains
are further divided into state values encoding intent (LI/RI), movement (LM/RM), and post
movement (LPM/RPM).

3 Experiments and Results

3.1 Data Collection and Processing

The task: The subject pressed two distinct keys on a keyboard with the left hand or right



hand at random at a self-initiated pace. We recorded 8 EEG channels around the motor area
of cortex (C3, Cz, C4, FC1, FC2, CP1, CP2, Pz) using averaged ear electrodes as reference,
and 2 differential pairs of EMG (one on each arm). Data was recorded at 2048Hz for a
period of 20 minutes, with the movements being separated by approximately 3-4s.
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Figure 3: Movement-related potential drift recorded during the hand-movement task:
The two plots show the EEG signals averaged over all trials from the motor-related channels
C3 and C4 for left (left panel) and right hand movement (right panel). The averages indicate
the onset and laterality of upcoming movements.

Processing: The EEG channels were bandpass-filtered 0.5Hz-5Hz, before being downsam-
pled and smoothed at 128Hz. The EMG channels were converted to RMS values computed
over windows for an effective sampling rate of 128Hz.

Data Analysis: The recorded data were first analyzed in the traditional manner by aver-
aging across all trials. Figure 3 shows the average of EEG channels C3 and C4 for left
and right hand movement actions respectively. As can be seen, the averages for both chan-
nels are different for the two classes. Furthermore, there is a slow potential drift preceding
the action and a return to the baseline potential after the action is performed. Previous
researchers [1] have classified EEG data over a window leading up to the instant of action
with high accuracy (over 90%) into left or right movement classes. Thus, there appears to
be a reliable amount of information in the EEG signal for at least discriminating between
left versus right movements.

Data Evaluation using SVMs: To obtain a baseline and to evaluate the quality of our
recorded data, we tested the performance of linear support vector machines (SVMs) on
classifying our EEG data into left and right movement classes. The choice of linear SVMs
was motivated by their successful use on similar problems by other researchers [1]. Time
slices of 0.5 seconds before each movement were concatenated from all EEG channels and
used for classification. We performed hyper-parameter selection using leave-one-out cross-
validation on 15 minutes of data and obtained an error of 15% on the remaining 5 minutes
of data. Such an error rate is comparable to those obtained in previous studies on similar
tasks, suggesting that the recorded data contains sufficient movement-related information
to be tested in experiments involving DBNs.

Learning the parameters of the DBN: We used the Graphical Models Toolkit
(GMTK) [9] for learning the parameters of our DBN. GMTK provides support for express-
ing constraints on state transitions (as described in Section 2). It learns the constrained
conditional probability tables and the parameters for the mixture of Gaussians using the
expectation-maximization (EM) algorithm.

We constructed a supervisory signal from the recorded key-presses as follows: A period of



100ms around each keystroke was labeled “motor action” for the appropriate hand. This
signal was used to train the network Nemg in a supervised manner. To generate a super-
visory signal for the network Neeg , or the full combined network Nfull (Figure 1), we
added prefixes and postfixes of 150ms each to each action in this signal, and labeled them
“preparatory” and “post-movement” activity respectively. These time-periods were chosen
by examining the average EEG and EMG activity over all actions. Thus, we can use partial
(EEG only) or full evidence in the inference step to obtain probability distributions over
brain state. The following sections describe our learning procedure and inference results in
greater detail.

3.2 Learning and Inference with EMG

Our first step is to learn the simpler model Nemg that has only the hidden Mt state and the
observed EMG signal. This is to test inference using the EMG signal alone. The parameters
of this DBN were learned in a supervised manner.

We used 15 minutes of EMG data to train our simplified model, and then tested it on the
remaining 5 minutes of data. The model was tested using Viterbi decoding (a single pass
of max-product inference over the network). In other words, the maximum a posteriori
(MAP) sequence of values for hidden states was computed. Figure 4 shows a 100s slice of
data containing 2 channels of EMG, and the predicted hidden EMG state Mt. The states 0,
1 and 2 correspond to “no action”, left, and right actions respectively. In the shown figure,
the state Mt successfully captures not only all the obvious arm movements but also the
actions that are obscured by noise.

3.3 Learning the EEG Model

We used the supervisory signal described earlier to learn the corresponding EEG model
Neeg . Note that the brain-state can be inferred from the hidden EEG state Et directly, since
the state space is appropriately partitioned as shown in Figure 2(b).

Figure 5 shows the result of inference on the learned model Neeg using only the EEG
signals as evidence. The figure shows a subset of the EEG channels (C3,Cz,C4), the super-
visory signal, and the predicted brain state Bt (the MAP estimate). The figure shows that
many of the instances of action (but not all) are correctly identified by the model.

Our model gives us at each time instant a MAP-estimated state sequence that best describes
the past, and the probability associated with that state sequence. This gives us, at each time
instant, a measure of how likely each brain state Bt is, with reference to the others. For
convenience, we can use the probability associated with the REST state (see Figure 1) as
reference. Figure 6 shows a graphical illustration of this instantaneous time estimate. The
plotted graphs are, in order, the supervisory signal (i.e., the “ground truth value”) and the
instantaneous measures of likelihood of intention/movement/post-movement states for the
left and right hand respectively. For convenience, we represent the likelihood ratio of each
state’s MAP probability estimate to that of the rest state, and use a logarithmic scale. We
see that the true hand movements are correctly inferred in a surprisingly large number of
cases (log likelihood ratio crosses 0). Furthermore, the actual likelihood values convey a
measure of the uncertainty in the inference, a property that would be of great value for
critical BCI applications such as controlling a robotic wheelchair.

In summary, our graphical models Nemg and Neeg have shown promising results in cor-
rectly identifying movement onset from EMG and EEG signals respectively. Ongoing work
is focused on improving accuracy by using features extracted from EEG, and inference us-
ing both EEG and EMG in Nfull (the full model).
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Figure 4: Bayesian Inference of Movement using EMG: The figure shows 100 seconds of
EMG data from two channels along with the MAP state sequence predicted by our trained
EMG model. The states 0,1,2 correspond to “no action”, left, and right actions respectively.
Our model correctly identifies the obscured spikes in the noisy right EMG channel

4 Discussion and Conclusion

We have shown that dynamic Bayesian networks (DBNs) can be used to model the tran-
sitions between brain- and muscle-states as a subject performs a motor task. In particular,
a two-level hierarchical network was proposed for simultaneously estimating higher-level
brain state and lower-level EEG and EMG states in a left/right hand movement task. The
results demonstrate that for a self-paced movement task, hidden brain states useful for BCI
such as intention to move the left or right hand can be decoded from a DBN learned directly
from EEG and EMG data.

Previous work on BCIs can be grouped into two broad classes: self-regulatory BCIs and
BCIs based on detecting brain state. Self-regulatory BCIs rely on training the user to regu-
late certain features of the EEG, such as cortical positivity [10], or oscillatory activity (the
µ rhythm, see [5]), in order to control, for example, a cursor on a display. The approach
presented in this paper falls in the second class of BCIs, those based on detecting brain
states [1, 2, 3, 4]. However, rather than employing classification methods, we use proba-
bilistic graphical models for inferring brain state and learning the transition probabilities
between brain states.

Successfully learning a dynamic graphical model as suggested in this paper offers several
advantages over traditional classification-based schemes for BCI. It allows one to explic-
itly model the hidden causal structure and dependencies between different brain states. It
provides a probabilistic framework for integrating information from multiple modalities
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Figure 5: Bayesian Inference of Brain State using EEG: The figure shows 1 minute of
EEG data (at 128Hz) for the channels C3, Cz, C4, along with the “true” brain state and
the brain state inferred using our DBN model with only EEG evidence. State 0 is the rest
state, states 1 through 3 represent left hand movement, and 4 through 6 represent right hand
movement (see Figure 1(b)).

such as EEG and EMG signals, allowing, for example, EEG-derived estimates to be boot-
strapped from EMG-derived estimates. A dynamic graphical model for time-varying data
such as EEG also allows prediction, filling in of missing data, and smoothing of state esti-
mates using information from future data points, properties not easily achieved in methods
that work exclusively in the frequency domain or use data slices for training classifiers. Our
current efforts are focused on investigating methods for learning dynamic graphical models
for motor tasks of varying complexity and using these models to build robust, probabilistic
BCI systems.
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