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Abstract

Alternative splicing (AS) is an important and frequent step in mammalian
gene expression that allows a single gene to specify multiple products,
and is crucial for the regulation of fundamental biological processes. The
extent of AS regulation, and the mechanisms involved, are not well un-
derstood. We have developed a custom DNA microarray platform for
surveying AS levels on a large scale. We present here a generative model
for the AS Array Platform (GenASAP) and demonstrate its utility for
quantifying AS levels in different mouse tissues. Learning is performed
using a variational expectation maximization algorithm, and the parame-
ters are shown to correctly capture expected AS trends. A comparison of
the results obtained with a well-established but low through-put experi-
mental method demonstrate that AS levels obtained from GenASAP are
highly predictive of AS levels in mammalian tissues.

1 Biological diversity through alternative splicing

Current estimates place the number of genes in the human genome at approximately 30,000,
which is a surprisingly small number when one considers that the genome of yeast, a single-
celled organism, has 6,000 genes. The number of genes alone cannot account for the com-
plexity and cell specialization exhibited by higher eukaryotes (i.e. mammals, plants, etc.).
Some of that added complexity can be achieved through the use of alternative splicing,
whereby a single gene can be used to code for a multitude of products.

Genes are segments of the double stranded DNA that contain the information required by
the cell for protein synthesis. That information is coded using an alphabet of 4 (A, C, G,
and T), corresponding to the four nucleotides that make up the DNA. In what is known
as thecentral dogma of molecular biolog¥PNA is transcribed to RNA, which in turn is
translated into proteins. Messenger RNA (mRNA) is synthesized in the nucleus of the cell
and carries the genomic information to the ribosome. In eukaryotes, genes are generally
comprised of botlexons, which contain the information needed by the cell to synthesize
proteins, andntrons, sometimes referred to as spacer DNA, which are spliced out of the
pre-mRNA to create mature mRNA. An estimated 35%-75% of human genes [1] can be
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Figure 1: Four types of AS. Boxes represent exons and lines represent introns, with the possible
splicing alternatives indicated by the connectors. (a) Single cassette exon inclusion/exclusion. C
and G are constitutive exons (exons that are included in all isoforms) and flank a single alternative
exon (A). The alternative exon is included in one isoform and excluded in the other. (b) Alternative
3’ (or donor) and alternative 5’ (acceptor) splicing sites. Both exons are constitutive, but may con-
tain alternative donor and/or acceptor splicing sites. (¢) Mutually exclusive exons. One of the two
alternative exons (Aand A:) may be included in the isoform, but not both. (d) Intron inclusion. An
intron may be included in the mature mRNA strand.

spliced to yield different combinations of exons (callsdforms), a phenomenon referred

to asalternative splicing(AS). There are four major types of AS as shown in Figure 1.
Many multi-exon genes may undergo more than one alternative splicing event, resulting in
many possible isoforms from a single gene. [2]

In addition to adding to the genetic repertoire of an organism by enabling a single gene to
code for more than one protein, AS has been shown to be critical for gene regulation, con-
tributing to tissue specificity, and facilitating evolutionary processes. Despite the evident
importance of AS, its regulation and impact on specific genes remains poorly understood.
The work presented here is concerned with the inference of single cassette exon AS levels
(Figure 1a) based on data obtained from RNA expression arrays, also known as microar-
rays.

1.1 Anexon microarray data set that probes alternative splicing events

Although it is possible to directly analyze the proteins synthesized by a cell, it is easier, and
often more informative, to instead measure the abundance of mMRNA present. Traditionally,
gene expression (abundance of MRNA) has been studied using low throughput techniques
(such as RT-PCR or Northern blots), limited to studying a few sequences at a time and
making large scale analysis nearly impossible.

In the early 1990s, microarray technology emerged as a method capable of measuring the
expression of thousands of DNA sequences simultaneously. Sequences of interest are de-
posited on a substrate the size of a small microscope slide, to form probes. The mRNA
is extracted from the cell and reverse-transcribed back into DNA, which is labelled with
red and green fluorescent dye molecules (cy3 and cy5 respectively). When the sample of
tagged DNA is washed over the slide, complementary strands of DNA from the sample hy-
bridize to the probes on the array forming A-T and C-G pairings. The slide is then scanned
and the fluorescent intensity is measured at each probe. It is generally assumed that the
intensity measure at the probe is linearly related to the abundance of mRNA in the cell over
a wide dynamic range.

Despite significant improvements in microarray technologies in recent years, microarray
data still presents some difficulties in analysis. Low measurements tend to have extremely
low signal to noise ratio (SNR) [7] and probes often bind to sequences that are very similar,
but not identical, to the one for which they were designed (a process referred to as cross-
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Figure2: Each alternative splicing event is studied using six probes. Probes were chosen to measure
the expression levels of each of the three exons involved in the event. Additionally, 3 probes are used
that target the junctions that are formed by each of the two isoforms. The inclusion isoform would
express the junctions formed by @nd A, and A and &, while the exclusion isoform would express

the junction formed by Cand G

hybridization). Additionally, probes exhibit somewhat varying hybridization efficiency,
and sequences exhibit varying labelling efficiency.

To design our data sets, we mined public sequence databases and identified exons that were
strong candidates for exhibiting AS (the details of that analysis are provided elsewhere
[4, 3]). Of the candidates, 3,126 potential AS events in 2,647 unique mouse genes were
selected for the design of Agilent Custom Oligonucleotide microarray. The arrays were
hybridized with unamplified mRNA samples extracted from 10 wild-type mouse tissues
(brain, heart, intestine, kidney, liver, lung, salivary gland, skeletal muscle, spleen, and
testis). Each AS event has six target probes on the arrays, chosen from regions of the
C, exon, G exon, A exon, G:A splice junction, A:G splice junction, and €C, splice
junction, as shown in Figure 2.

2 Unsupervised discovery of alternative splicing

With the exception of the probe measuring the alternative exon, A (Figure 2), all probes
measure sequences that occur in both isoforms. For example, while the sequence of the
probe measuring the junction A;@ designed to measure the inclusion isoform, half of it
corresponds to a sequence that is found in the exclusion isoform. We can therefore safely
assume that the measured intensity at each probe is a result of a certain amount of both
isoforms binding to the probe. Due to the generally assumed linear relationship between
the abundance of mMRNA hybridized at a probe and the fluorescent intensity measured,
we model the measured intensity as a weighted sum of the overall abundance of the two
isoforms.

A stronger assumption is that of a single, consistent hybridization profile for both isoforms
across all probes and all slides. Ideally, one would prefer to estimate an individual hy-
bridization profile for each AS event studied across all slides. However, in our current
setup, the number of tissues is small (10), resulting in two difficulties. First, the number of
parameters is very large when compared to the number of data point using this model, and
second, a portion of the events do not exhibit tissue specific alternative splicing within our
small set of tissues. While the first hurdle could be accounted for using Baysian parameter
estimation, the second cannot.

2.1 GenASAP - a generative model for alternative splicing array platform

Using the setup described above, the expression vactoontaining the six microarray
measurements as real numbers, can be decomposed as a linear combination of the abun-
dance of the two splice isoforms, represented by the real vectath some added noise:
x = As + noise, whereA is a6 x 2 weight matrix containing the hybridization profiles for



Figure 3: Graphical model for alternative splicing. Each measurement in the observed expression
profile,x, is generated by either using a scale faatpgn a linear combination of the isoforms,or
drawing randomly from an outlier model. For a detailed description of the model, see text.

the two isoforms across the six probes. Note that we may not have a negative amount of
a given isoform, nor can the presence of an isoform deduct from the measured expression,
and so botls andA are constrained to be positive.

Expression levels measured by microarrays have previously been modelled as having
expression-dependent noise [7]. To address this, we rewrite the above formulation as

=r(As+e), 1)

wherer is a scale factor and is a zero-mean normally distributed random variable with

a diagonal covariance matri, denoted ap(s) = N (e;0, ¥). The prior distribution for

the abundance of the splice isoforms is given by a truncated normal distribution, denoted
asp(s) o« N(s,0,I)[s > 0], where[] is an indicator function such thg > 0] = 1 if

Vi, s; > 0, and[s > 0] = 0 otherwise.

Lastly, there is a need to account for aberrant observations (e.g. due to faulty probes, flakes
of dust, etc.) with an outlier model. The complete GenASAP model (shown in Figure 3)
accounts for the observations as the outcome of either applying equation (1) or an outlier
model. To avoid degenerate cases and ensure meaningful and interpretable results, the
number of faulty probes considered for each AS event may not exceed two, as indicated by
the filled-in square constraint node in Figure 3.

The distribution ofx conditional on the latent variables,r, ando, is:
p(x|s,r,0) = [ [N (@i rAis, r? ;) =ON (; &, V)l =Y, @)

whereo; € {0,1} is a bernoulli random variable indicating if the measurement at prgbe
is the result of the AS model or the outlier model parameterizeg(by= 1) = ;. The
parameters of the outlier model,andV, are not optimized and are set to the mean and
variance of the data.



2.2 Variational learning in the GenASAP model

To infer the posterior distribution over the splice isoform abundances while at the same time
learning the model parameters we use a variational expectation-maximization algorithm
(EM). EM maximizes the log likelihood of the data by iteratively estimating the posterior
distribution of the model given the data in the expectation (E) step, and maximizing the
log likelihood with respect to the parameters, while keeping the posterior fixed, in the
maximization (M) step. Variational EM is used when, as in the case of GenASAP, the exact
posterior is intractable. Variational EM minimizes the free energy of the model, defined as
the KL-divergence between the joint distribution of the latent and observed variables and
the approximation to the posterior under the model parameters [5, 6].

We approximate the true posterior using tpelistribution given by

T
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whereZ is a normalization constant, the superscdjdicates thak is constrained to be
diagonal, and there afE iid AS events. For computational efficienayjs selected from
a finite set;r € {rq,r2,...,rc} with uniform probability. The variational free energy is
given by

t t t Q({s"}, {0}, {r™})
F(Q,P) = Z:EO:/SQ({S( )}a {0( )}v {7‘( )}) log P({s®}, {o®}, {r®O} {x®})

4)
Variational EM minimizes the free energy by iteratively updating@hdistribution’s vari-

ational parameters(*), w®), M&Qd, andEiQd) in the E-step, and the model paramete¥s (

U, {r1,r2,...,rc}, andy) in the M-step. The resulting updates are too long to be shown
in the context of this paper and are discussed in detail elsewhere [3]. A few particular points
regarding the E-step are worth covering in detail here.

If the prior ons was a full normal distribution, there would be no need for a variational
approach, and exact EM is possible. For a truncated normal distribution, however, the mix-
ing proportionsQ(r)Q(o|r) cannot be calculated analytically except for the case where
is scalar, necessitating the diagonality constraint. Note thatvifas allowed to be a full
covariance matrix, equation (3) would be the true posterior, and we could find the sufficient
statistics ofQ (s |o™®, r(®)):

pl) = (I +AT(I = ONTE1(1 — 0OW)A)TAT(T — ONT T~ 1xB,p O (5)

2O = (I+AT(I - 0D)Tw= 1T — 0W)A) (6)

whereO is a diagonal matrix with elements; ; = o;. Furthermore, it can be easily
shown that the optimal settings farf and X approximating a normal distribution with
full covarianceX and mearnu is

/U'gptimal =K (7)
s = diag(S™h) (®)

optimal
In the truncated case, equation (8) is still true. Equation (7) does not hold, though, and
{14 imai CANNOL be found analytically. In our experiments, we found that using equation
(7) still decreases the free energy every E-step, and it is significantly more efficient than
using, for example, a gradient decent method to compute the opiimal
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Figured4: (a) An intuitive set of weights. Based on the biological background, one would expect to
see the inclusion isoform hybridize to the probes measuring3e, A, Ci:A, and A:G;, while the
exclusion isoform hybridizes toC Cz, and G:C.. (b) The learned set of weights closely agrees
with the intuition, and captures cross hybridization between the probes
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Figureb: Three examples of data cases and their predictions. (a) The data does not follow our notion
of single cassette exon AS, but the AS level is predicted accurately by the model.(b) The prabe C

is marked as outlier, allowing the model to predict the other probes accurately. (c) Two probes are
marked as outliers, and the model is still successful in predicting the AS levels.

3 Making biological predictions about alternative splicing

The results presented in this paper were obtained using two stages of learning. In the first
step, the weight matrixj, is learned on a subset of the data that is selected for quality.
Two selection criteria were used: (a) sequencing data was used to select those cases for
which, with high confidence, no other AS event is present (Figure 1) and (b) probe sets
were selected for high expression, as determined by a set of negative controls. The second
selection criterion is motivated by the common assumption that low intensity measurements
are of lesser quality (see Section 1.1). In the second Atéepkept fixed, and we introduce

the additional constraint that the noise is isotroplic£ 1) and learn on the entire data

set. The constraint on the noise is introduced to prevent the model from using only a subset
of the six probes for making the final set of predictions.

We show a typical learned set of weights in Figure 4. The weights fit well with our intuition
of what they should be to capture the presence of the two isoforms. Moreover, the learned
weights account for the specific trends in the data. Examples of model prediction based on
the microarray data are shown in Figure 5.

Due to the nature of the microarray data, we do not expect all the inferred abundances to be
equally good, and we devised a scoring criterion that ranks each AS event based on its fit to
the model. Intuitively, given two input vectors that are equivalent up to a scale factor, with
inferred MAP estimations that are equal up to the same scale factor, we would like their
scores to be identical. The scoring criterion used, therefob€ iéw), — rAys)?/(zx +



Rank | Pearsors correlation| False positive

coeficient rate

500 0.94 0.11
1000 0.95 0.08
2000 0.95 0.05
5000 0.79 0.2
10000 0.79 0.25
15000 0.78 0.29
20000 0.75 0.32
30000 0.65 0.42

Table 1:Model performance evaluated at various ranks. Using 180 RT-PCR measurements, we are
able to predict the model's performance at various ranks. Two evaluation criteria are used: Pearson’s
correlation coefficient between the model’s predictions and the RT-PCR measurements and false
positive rate, where a prediction is considered to be false positive if it is more than 15% away from
the RT-PCR measurement.

rAxs)?, where the MAP estimations for ands are used. This scoring criterion can be
viewed as proportional to the sum of noise to signal ratios, as estimated using the two
values given by the observation and the model’s best prediction of that observation.

Since it is the relative amount of the isoforms that is of most interest, we need to use the
inferred distribution of the isoform abundances to obtain an estimate for the relative levels
of AS. It is not immediately clear how this should be done. We do, however, have RT-
PCR measurements for 180 AS events to guide us (see figure 6 for details). Using the
top 50 ranked RT-PCR measurement, we fit three parameiersgs, a3}, such that the
proportion of excluded isoform presept,is given byp = a; Slj;m + a3, Wheres; is the

MAP estimation of the abundance of the inclusion isofosgns the MAP estimation of the
abundance of the exclusion isoform, and the RT-PCR measurement are used fgs.target
The parameters are fitted using gradient descent on a least squared error (LSE) evaluation
criterion.

We used two criteria to evaluate the quality of the AS model predictions. Pearson’s cor-
relation coefficient (PCC) is used to evaluate the overall ability of the model to correctly
estimate trends in the data. PCC is invariant to affine transformation and so is independent
of the transformation parametets andas discussed above, while the parametgmwas

found to effect PCC very little. The PCC stays above 0.75 for the top two thirds ranked pre-
dictions. The second evaluation criterion used is the false positive rate, where a prediction
is considered to be false positive if it is more than 15% away from the RT-PCR measure-
ment. This allows us to say, for example, that if a prediction is within the top 10000, we
are 75% confident that it is within 15% of the actual levels of AS.

4 Summary

We designed a novel AS model for the inference of the relative abundance of two alter-
natively spliced isoforms from six measurements. Unsupervised learning in the model is
performed using a structured variational EM algorithm, which correctly captures the un-
derlying structure of the data, as suggested by its biological nature. The AS model, though
presented here for a cassette exon AS events, can be used to learn any type of AS, and with
a simple adjustment, multiple types.

The predictions obtained from the AS model are currently being used to verify various
claims about the role of AS in evolution and functional genomics, and to help identify
sequences that affect the regulation of AS.
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Figure6: (a) Sample RT-PCR. RNA extracted from the cell is reverse-transcribed to DNA, amplified
and labelled with radioactive or fluorescent molecules. The sample is pulled through a viscous gel in
an electric field (DNA, being an acid, is positively charged). Shorter strands travel further through
the gel than longer ones, resulting in two distinct bands, corresponding to the two isoforms, when
exposed to a photosensitive or x-ray film. (b) A scatter plot showing the RT-PCR measurements as
compared to the AS model predictions. The plot shows all available RT-PCR measurements with a
rank of 8000 or better.

The AS model presented assumes a single weight matrix for all data cases. This is an
oversimplified view of the data, and current work is being carried out in identifying probe
specific expression profiles. However, due to the low dimensionality of the problem (10 tis-
sues, six probes per event), care must be taken to avoid overfitting and to ensure meaningful
interpretations.
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