
Co-Training and Expansion: Towards Bridging
Theory and Practice

Maria-Florina Balcan
Computer Science Dept.
Carnegie Mellon Univ.
Pittsburgh, PA 15213

ninamf@cs.cmu.edu

Avrim Blum
Computer Science Dept.
Carnegie Mellon Univ.
Pittsburgh, PA 15213

avrim@cs.cmu.edu

Ke Yang
Computer Science Dept.
Carnegie Mellon Univ.
Pittsburgh, PA 15213

yangke@cs.cmu.edu

Abstract

Co-training is a method for combining labeled and unlabeled data when
examples can be thought of as containing two distinct sets of features. It
has had a number of practical successes, yet previous theoretical analyses
have needed very strong assumptions on the data that are unlikely to be
satisfied in practice.
In this paper, we propose a much weaker “expansion” assumption on the
underlying data distribution, that we prove is sufficient for iterative co-
training to succeed given appropriately strong PAC-learning algorithms
on each feature set, and that to some extent is necessary as well. This
expansion assumption in fact motivates the iterative nature of the origi-
nal co-training algorithm, unlike stronger assumptions (such as indepen-
dence given the label) that allow a simpler one-shot co-training to suc-
ceed. We also heuristically analyze the effect on performance of noise in
the data. Predicted behavior is qualitatively matched in synthetic experi-
ments on expander graphs.

1 Introduction
In machine learning, it is often the case that unlabeled data is substantially cheaper and
more plentiful than labeled data, and as a result a number of methods have been developed
for using unlabeled data to try to improve performance, e.g., [15, 2, 6, 11, 16]. Co-training
[2] is a method that has had substantial success in scenarios in which examples can be
thought of as containing two distinct yet sufficient feature sets. Specifically, a labeled ex-
ample takes the form(〈x1, x2〉, `), wherex1 ∈ X1 andx2 ∈ X2 are the two parts of the
example, and̀ is the label. One further assumes the existence of two functionsc1, c2 over
the respective feature sets such thatc1(x1) = c2(x2) = `. Intuitively, this means that each
example contains two “views,” and each view contains sufficient information to determine
the label of the example. This redundancy implies an underlying structure of the unlabeled
data (since they need to be “consistent”), and this structure makes the unlabeled data infor-
mative. In particular, the idea ofiterative co-training[2] is that one can use a small labeled
sample to train initial classifiersh1, h2 over the respective views, and then iteratively boot-
strap by taking unlabeled examples〈x1, x2〉 for which one of thehi is confident but the
other is not — and using the confidenthi to label such examples for the learning algorithm
on the other view, improving the other classifier. As an example for webpage classifica-
tion given in [2], webpages contain text (x1) and have hyperlinks pointing to them (x2).
From a small labeled sample, we might learn a classifierh2 that says that if a link with
the words “my advisor” points to a page, then that page is probably a positive example
of faculty-member-home-page; so, if we find an unlabeled example with this property we
can useh2 to label the page for the learning algorithm that uses the text on the page itself.
This approach and its variants have been used for a variety of learning problems, including



named entity classification [3], text classification [10, 5], natural language processing [13],
large scale document classification [12], and visual detectors [8].

Co-training effectively requires two distinct properties of the underlying data distribution
in order to work. The first is that there should at least in principle exist low error classifiers
c1, c2 on each view. The second is that these two views should on the other hand not betoo
highly correlated — we need to have at least some examples whereh1 is confident buth2

is not (or vice versa) for the co-training algorithm to actually do anything. Unfortunately,
previous theoretical analyses have needed to make strong assumptions of this second type in
order to prove their guarantees. These include “conditional independence given the label”
used by [2] and [4], or the assumption of “weak rule dependence” used by [1]. The primary
contribution of this paper is a theoretical analysis thatsubstantiallyrelaxes the strength
of this second assumption to just a form of “expansion” of the underlying distribution (a
natural analog of the graph-theoretic notions of expansion and conductance) that we show
in some sense is a necessary condition for co-training to succeed as well. However, we will
need a fairly strong assumption on the learning algorithms: that thehi they produce are
never “confident but wrong” (formally, the algorithms are able to learn from positive data
only), though we give a heuristic analysis of the case when this does not hold.

One key feature of assuming only expansion on the data is that it specifically motivates the
iterative nature of the co-training algorithm. Previous assumptions that had been analyzed
imply such a strong form of expansion that even a “one-shot” version of co-training will
succeed (see Section 2.2). In fact, the theoretical guarantees given in [2] are exactly of
this type. However, distributions can easily satisfy our weaker condition without allowing
one-shot learning to work as well, and we describe several natural situations of this form.
An additional property of our results is that they are algorithmic in nature. That is, if we
have sufficiently strongefficientPAC-learning algorithms for the target function on each
feature set, we can use them to achieveefficientPAC-style guarantees for co-training as
well. However, as mentioned above, we need a stronger assumption on our base learning
algorithms than used by [2] (see section 2.1).

We begin by formally defining the expansion assumption we will use, connecting it to stan-
dard graph-theoretic notions of expansion and conductance. We then prove the statement
thatε-expansion is sufficient for iterative co-training to succeed, given strong enough base
learning algorithms over each view, proving bounds on the number of iterations needed to
converge. In Section 4.1, we heuristically analyze the effect of imperfect feature sets on
co-training accuracy. Finally, in Section 4.2, we present experiments on synthetic expander
graph data that qualitatively bear out our analyses.

2 Notations, Definitions, and Assumptions
We assume that examples are drawn from some distributionD over an instance spaceX =
X1 × X2, whereX1 andX2 correspond to two different “views” of an example. Letc
denote the target function, and letX+ andX− denote the positive and negative regions of
X respectively (for simplicity we assume we are doing binary classification). For most of
this paper we assume that each view in itself is sufficient for correct classification; that is,
c can be decomposed into functionsc1, c2 over each view such thatD has no probability
mass on examplesx such thatc1(x1) 6= c2(x2). For i ∈ {1, 2}, let X+

i = {xi ∈ Xi :
ci(xi) = 1}, so we can think ofX+ asX+

1 ×X+
2 , and letX−i = Xi −X+

i . LetD+ and
D− denote the marginal distribution ofD overX+ andX− respectively.

In order to discuss iterative co-training, we need to be able to talk about a hypothesis
being confident or not confident on a given example. For convenience, we will identify
“confident” with “confident about being positive”. This means we can think of a hypothesis
hi as a subset ofXi, wherexi ∈ hi means thathi is confident thatxi is positive, andxi 6∈ hi
means thathi has no opinion.

As in [2], we will abstract away the initialization phase of co-training (how labeled data is
used to generate an initial hypothesis) and assume we are given initial setsS0

1 ⊆ X+
1 and



S0
2 ⊆ X+

2 such thatPr〈x1,x2〉∈D(x1 ∈ S0
1 or x2 ∈ S0

2) ≥ ρinit for someρinit > 0. The
goal of co-training will be to bootstrap from these sets using unlabeled data.

Now, to prove guarantees for iterative co-training, we make two assumptions: that the
learning algorithms used in each of the two views are able to learn from positive data only,
and that the distributionD+ is expanding as defined in Section 2.2 below.

2.1 Assumption about the base learning algorithms on the two views
We assume that the learning algorithms on each view are able to PAC-learn from positive
data only. Specifically, for any distributionD+

i overX+
i , and any givenε, δ > 0, given

access to examples fromD+
i the algorithm should be able to produce a hypothesishi such

that (a)hi ⊆ X+
i (sohi only has one-sided error), and (b) with probability1−δ, the error of

hi underD+
i is at mostε. Algorithms of this type can be naturally thought of as predicting

either “positive with confidence” or “don’t know”, fitting our framework. Examples of
concept classes learnable from positive data only include conjunctions, k-CNF, and axis-
parallel rectangles; see [7]. For instance, for the case of axis-parallel rectangles, a simple
algorithm that achieves this guarantee is just to output the smallest rectangle enclosing the
positive examples seen.

If we wanted to consider algorithms that could be confident in both directions (rather than
just confident about being positive) we could instead use the notion of “reliable, useful”
learning due to Rivest and Sloan [14]. However, fewer classes of functions are learnable
in this manner. In addition, a nice feature of our assumption is that we will only needD+

to expand and notD−. This is especially natural if the positive class has a large amount
of cohesion (e.g, it consists of all documents about some topicY ) but the negatives do not
(e.g., all documents about all other topics). Note that we are effectively assuming that our
algorithms are correct when they are confident; we relax this in our heuristic analysis in
Section 4.

2.2 The expansion assumption for the underlying distribution
For S1 ⊆ X1 andS2 ⊆ X2, let boldfaceSi (i = 1, 2) denote the event that an example
〈x1, x2〉 hasxi ∈ Si. So, if we think ofS1 andS2 as our confident sets in each view, then
Pr(S1 ∧ S2) denotes the probability mass on examples for which we are confident about
both views, andPr(S1 ⊕ S2) denotes the probability mass on examples for which we are
confident about just one. In this section, all probabilities are with respect toD+. We say:

Definition 1 D+ is ε-expanding if for anyS1 ⊆ X+
1 , S2 ⊆ X+

2 , we have

Pr(S1 ⊕ S2) ≥ εmin
[
Pr(S1 ∧ S2),Pr(S1 ∧ S2)

]
.

We say thatD+ is ε-expanding with respect to hypothesis classH1 × H2 if the above
holds for all S1 ∈ H1 ∩ X+

1 , S2 ∈ H2 ∩ X+
2 (here we denote byHi ∩ X+

i the set{
h ∩X+

i : h ∈ Hi

}
for i = 1, 2).

To get a feel for this definition, notice thatε-expansion is in some sense necessary for
iterative co-training to succeed, because ifS1 andS2 are our confident sets and do not
expand, then we might never see examples for which one hypothesis could help the other.1

In Section 3 we show that Definition 1 is in fact sufficient. To see how much weaker this
definition is than previously-considered requirements, it is helpful to consider a slightly
stronger kind of expansion that we call “left-right expansion”.

Definition 2 We sayD+ is ε-right-expanding if for anyS1 ⊆ X+
1 , S2 ⊆ X+

2 ,

if Pr(S1) ≤ 1/2 and Pr(S2|S1) ≥ 1− ε then Pr(S2) ≥ (1 + ε) Pr(S1).
1However,ε-expansion requireseverypair to expand and so it is not strictly necessary. If there

were occasional pairs(S1, S2) that did not expand, but such pairs were rare and unlikely to be en-
countered as confident sets in the co-training process, we might still be OK.



We sayD+ is ε-left-expanding if the above holds with indices 1 and 2 reversed. Finally,
D+ is ε-left-right-expanding if it has both properties.

It is not immediately obvious but left-right expansion in fact implies Definition 1 (see Ap-
pendix A), though the converse is not necessarily true. We introduce this notion, however,
for two reasons. First, it is useful for intuition: ifSi is our confident set inX+

i and this
set is small (Pr(Si) ≤ 1/2), and we train a classifier that learns from positive data on the
conditional distribution thatSi induces overX3−i until it has error≤ ε on that distribution,
then the definition implies the confident set onX3−i will have noticeably larger probability
thanSi; so it is clear why this is useful for co-training, at least in the initial stages. Sec-
ondly, this notion helps clarify how our assumptions are much less restrictive than those
considered previously. Specifically,

Independence given the label:Independence given the label implies that for anyS1 ⊆
X+

1 andS2 ⊆ X+
2 we havePr(S2|S1) = Pr(S2). So, ifPr(S2|S1) ≥ 1− ε, then

Pr(S2) ≥ 1− ε as well, even ifPr(S1) is tiny. This means that not only doesS1

expand by a(1 + ε) factor as in Def. 2, but in fact itexpands to nearly all ofX+
2 .

Weak dependence:Weak dependence [1] is a relaxation of conditional independence that
requires only that for allS1 ⊆ X+

1 , S2 ⊆ X+
2 we havePr(S2|S1) ≥ αPr(S2)

for someα > 0. This seems much less restrictive. However, notice that if
Pr(S2|S1) ≥ 1 − ε, thenPr(S2|S1) ≤ ε, which implies by definition of weak
dependence thatPr(S2) ≤ ε/α and thereforePr(S2) ≥ 1 − ε/α. So, again (for
sufficiently smallε), even ifS1 is very small, it expands to nearly all ofX+

2 . This
means that, as with conditional independence, if one has an algorithm overX2 that
PAC-learns from positive data only, and one trains it over the conditional distri-
bution given byS1, then by driving down its error on this conditional distribution
one can perform co-training in just one iteration.

2.2.1 Connections to standard graph-theoretic notions of expansion
Our definition of ε-expansion (Definition 1) is a natural analog of the standard graph-
theoretic notion ofedge-expansionor conductance. A Markov-chain is said to have high
conductance if under the stationary distribution, for any set of statesS of probability at
most1/2, the probability mass on transitions exitingS is at leastε times the probability
of S. E.g., see [9]. A graph has high edge-expansion if the random walk on the graph has
high conductance. Since the stationary distribution of this walk can be viewed as having
equal probability on every edge, this is equivalent to saying that for any partition of the
graph into two pieces(S, V − S), the number of edges crossing the partition should be at
least anε fraction of the number of edges in the smaller half. To connect this to Definition
1, think ofS asS1 ∧ S2.

It is well-known that, for example, a random degree-3 bipartite graph with high probability
is expanding, and this in fact motivates our synthetic data experiments of Section 4.2.

2.2.2 Examples
We now give two simple examples that satisfyε-expansion but not weak dependence.

Example 1: SupposeX = Rd×Rd and the target function on each view is an axis-parallel
rectangle. Suppose a random positive example fromD+ looks like a pair〈x1, x2〉 such that
x1 andx2 are each uniformly distributed in their rectangles but in ahighly-dependentway:
specifically,x2 is identicaltox1 except that a random coordinate has been “re-randomized”
within the rectangle. This distribution does not satisfy weak dependence (for any setsS
andT that are disjoint along all axes we havePr(T|S) = 0) but it is not hard to verify that
D+ is ε-expanding forε = Ω(1/d).

Example 2: Imagine that we have a learning problem such that the data inX1 falls inton
different clusters: the positive class is the union of some of these clusters and the negative
class is the union of the others. Imagine that this likewise is true if we look atX2 and for
simplicity suppose that every cluster has the same probability mass. Independence given



the label would say that given thatx1 is in some positive clusterCi in X1, x2 is equally
likely to be in any of the positive clustersCj inX2. But, suppose we have something much
weaker: eachCi in X1 is associated with only 3Cj ’s in X2 (i.e., given thatx1 is in Ci,
x2 will only be in one of theseCj ’s). This distribution clearly will not even have the weak
dependence property. However, say we have a learning algorithm that assumes everything
in the same cluster has the same label (so the hypothesis spaceH consists of all rules that
do not split clusters). Then if the graph of which clusters are associated with which is an
expander graph, then the distributions will be expanding with respect toH. In particular,
given a labeled examplex, the learning algorithm will generalize tox’s entire clusterCi,
then this will be propagated over to nodes in the associated clustersCj in X2, and so on.

3 The Main Result
We now present our main result. We assume thatD+ is ε-expanding(ε > 0) with respect
to hypothesis classH1 ×H2, that we are given initial confident setsS0

1 ⊆ X+
1 , S0

2 ⊆ X+
2

such thatPr(S0
1 ∨ S0

2) ≥ ρinit, that the target function can be written as〈c1, c2〉 with
c1 ∈ H1, c2 ∈ H2, and that on each of the two views we have algorithmsA1 andA2 for
learning from positive data only.

The iterative co-training that we consider proceeds inrounds. Let Si1 ⊆ X1 andSi2 ⊆ X2

be the confident sets in each view at the start of roundi. We constructSi+1
2 by feeding

into A2 examples according toD2 conditioned onSi1 ∨ Si2. That is, we take unlabeled
examples fromD such that at least one of the current predictors is confident, and feed them
intoA2 as if they were positive. We runA2 with error and confidence parameters given in
the theorem below. We simultaneously do the same withA1, creatingSi+1

1 .

After a pre-determined number of roundsN (specified in Theorem 1), the algorithm termi-
nates and outputs the predictor that labels examples〈x1, x2〉 as positive ifx1 ∈ SN+1

1 or
x2 ∈ SN+1

2 and negative otherwise.

We begin by stating two lemmas that will be useful in our analysis. For both of these
lemmas, letS1, T1 ⊆ X+

1 , S2, T2 ⊆ X+
2 , whereSj , Tj ∈ Hj . All probabilities are with

respect toD+.

Lemma 1 SupposePr (S1 ∧ S2) ≤ Pr (S1 ∧ S2), Pr (T1 | S1 ∨ S2) ≥ 1 − ε/8 and
Pr (T2 | S1 ∨ S2) ≥ 1− ε/8. ThenPr (T1 ∧T2) ≥ (1 + ε/2) Pr (S1 ∧ S2).

Proof: FromPr (T1 | S1 ∨ S2) ≥ 1− ε/8 andPr (T2 | S1 ∨ S2) ≥ 1− ε/8 we get that
Pr (T1 ∧T2) ≥ (1 − ε/4) Pr (S1 ∨ S2). SincePr (S1 ∧ S2) ≤ Pr (S1 ∧ S2) it follows
from the expansion property that

Pr (S1 ∨ S2) = Pr (S1 ⊕ S2) + Pr (S1 ∧ S2) ≥ (1 + ε) Pr (S1 ∧ S2).

Therefore, Pr (T1 ∧T2) ≥ (1 − ε/4)(1 + ε) Pr (S1 ∧ S2) which implies that
Pr (T1 ∧T2) ≥ (1 + ε/2) Pr (S1 ∧ S2).

Lemma 2 SupposePr (S1 ∧ S2) > Pr (S1 ∧ S2) and let γ = 1 − Pr (S1 ∧ S2). If
Pr (T1 | S1 ∨ S2) ≥ 1 − γε

8 and Pr (T2 | S1 ∨ S2) ≥ 1 − γε
8 , thenPr (T1 ∧T2) ≥

(1 + γε
8 ) Pr (S1 ∧ S2).

Proof: FromPr (T1 | S1 ∨ S2) ≥ 1 − γε
8 andPr (T2 | S1 ∨ S2) ≥ 1 − γε

8 we get that
Pr (T1 ∧T2) ≥ (1 − γε

4 ) Pr (S1 ∨ S2). SincePr (S1 ∧ S2) > Pr (S1 ∧ S2) it follows
from the expansion property thatPr (S1 ⊕ S2) ≥ εPr (S1 ∧ S2). Therefore

γ = Pr (S1 ⊕ S2) + Pr (S1 ∧ S2) ≥ (1 + ε) Pr (S1 ∧ S2) ≥ (1 + ε)(1− Pr (S1 ∨ S2))

and soPr (S1 ∨ S2) ≥ 1 − γ
1+ε . This impliesPr (T1 ∧T2) ≥ (1 − γε

4 )(1 − γ
1+ε ) ≥

(1− γ)(1 + γε
8 ). So, we havePr (T1 ∧T2) ≥ (1 + γε

8 ) Pr (S1 ∧ S2).



Theorem 1 Let εfin andδfin be the (final) desired accuracy and confidence parameters.
Then we can achieve error rateεfin with probability1 − δfin by running co-training for
N = O( 1

ε log 1
εfin

+ 1
ε ·

1
ρinit

) rounds, each time runningA1 andA2 with accuracy and

confidence parameters set toε·εfin8 and δfin
2N respectively.

Proof Sketch: Assume that, fori ≥ 1, Si1 ⊆ X+
1 andSi2 ⊆ X+

2 are the confident sets in
each view after stepi − 1 of co-training. Definepi = Pr (Si1 ∧ Si2), qi = Pr (Si1 ∧ Si2),
andγi = 1 − pi, with all probabilities with respect toD+. We are interested in bounding
Pr (Si1 ∨ Si2), but since technically it is easier to boundPr (Si1 ∧ Si2), we will instead show
thatpN ≥ 1− εfin with probability1− δfin, which obviously implies thatPr(SN1 ∨ SN2 )
is at least as good.

By the guarantees onA1 andA2, after each round we get that with probability1 − δfin
N ,

we havePr (Si+1
1 | Si1 ∨ Si2) ≥ 1 − εfin·ε

8 and Pr (Si+1
2 | Si1 ∨ Si2) ≥ 1 − εfin·ε

8 . In

particular, this implies that with probability1 − δfin
N , we havep1 = Pr (S1

1 ∧ S1
2) ≥

(1− ε/4) · Pr (S0
1 ∨ S0

2) ≥ (1− ε/4)ρinit.

Consider nowi ≥ 1. If pi ≤ qi, since with probability1 − δfin
N we have

Pr (Si+1
1 | Si1 ∨ Si2) ≥ 1− ε

8 andPr (Si+1
2 | Si1 ∨ Si2) ≥ 1− ε

8 , using lemma 1 we obtain

that with probability1− δfin
N , we have Pr (Si+1

1 ∧ Si+1
2 ) ≥ (1 + ε/2) Pr (Si1 ∧ Si2). Sim-

ilarly, by applying lemma 2, we obtain that ifpi > qi andγi ≥ εfin then with probability
1 − δfin

N we havePr (Si+1
1 ∧ Si+1

2 ) ≥ (1 + γiε
8 ) Pr (Si1 ∧ Si2). Assume now that it is the

case that the learning algorithmsA1 andA2 were successful on all theN rounds; note that
this happens with probability at least1− δfin.

The above observations imply that so long aspi ≤ 1/2 (so γi ≥ 1/2) we havepi+1 ≥
(1+ε/16)i(1−ε/4)ρinit. This means that afterN1 = O( 1

ρinit
· 1ε ) iterations of co-training

we get to a situation wherepN1 > 1/2. At this point, notice that every8/ε rounds,γ
drops by at least a factor of 2; that is, ifγi ≤ 1

2k
thenγ 8

ε+i ≤ 1
2k+1 . So, after a total

of O( 1
ε log 1

εfin
+ 1

ε ·
1

ρinit
) rounds, we have a predictor of the desired accuracy with the

desired confidence.

4 Heuristic Analysis of Error propagation and Experiments
So far, we have assumed the existence of perfect classifiers on each view: there are no
examples〈x1, x2〉 with x1 ∈ X+

1 andx2 ∈ X−2 or vice-versa. In addition, we have
assumed that given correctly-labeled positive examples as input, our learning algorithms
are able to generalize in a way that makes only 1-sided error (i.e., they are never “confident
but wrong”). In this section we give a heuristic analysis of the case when these assumptions
are relaxed, along with several synthetic experiments on expander graphs.

4.1 Heuristic Analysis of Error propagation
Given confident setsSi1 ⊆ X1 andSi2 ⊆ X2 at theith iteration, let us define theirpu-
rity (precision) aspuri = PrD(c(x) = 1|Si1 ∨ Si2) and theircoverage(recall) to be
covi = PrD(Si1 ∨ Si2|c(x) = 1). Let us also define their “opposite coverage” to be
oppi = PrD(Si1∨Si2|c(x) = 0). Previously, we assumedoppi = 0 and thereforepuri = 1.
However, if we imagine that there is anη fraction of examples on which the two views dis-
agree, and that positive and negative regions expand uniformly at the same rate, then even
if initially opp0 = 0, it is natural to assume the following form of increase incov andopp:

covi+1 = min (covi(1 + ε(1− covi)) + η · (oppi+1 − oppi) , 1), (1)
oppi+1 = min (oppi(1 + ε(1− oppi)) + η · (covi+1 − covi) , 1). (2)
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Figure 1:Co-training with noise rates 0.1, 0.01, and 0.001 respectively (n = 5000). Solid
line indicates overall accuracy; green (dashed, increasing) curve is accuracy on positives
(covi); red (dashed, decreasing) curve is accuracy on negatives (1− oppi).

That is, this corresponds to both the positive and negative parts of the confident region
expanding in the way given in the proof of Theorem 1, with anη fraction of the new
edges going to examples of the other label. By examining (1) and (2), we can make a
few simple observations. First, initially when coverage is low, everyO(1/ε) steps we get
roughlycov ← 2 · cov andopp ← 2 · opp + η · cov. So, we expect coverage to increase
exponentially and purity to drop linearly. However, once coverage gets large and begins to
saturate, if purity is still high at this time it will begin dropping rapidly as the exponential
increase inoppi causesoppi to catch up withcovi. In particular, a calculation (omitted)
shows that ifD is 50/50 positive and negative, then overall accuracy increases up to the
point whencovi + oppi = 1, and then drops from then on. This qualitative behavior is
borne out in our experiments below.

4.2 Experiments
We performed experiments on synthetic data along the lines of Example 2, with noise added
as in Section 4.1. Specifically, we create a2n-by-2n bipartite graph. Nodes 1 ton on each
side represent positive clusters, and nodesn + 1 to 2n on each side represent negative
clusters. We connect each node on the left to three nodes on the right: each neighbor is
chosen with probability1−η to be a random node of the same class, and with probabilityη
to be a random node of the opposite class. We begin with an initial confident setS1 ⊆ X+

1
and then propagate confidence through rounds of co-training, monitoring the percentage
of the positive class covered, the percent of the negative class mistakenly covered, and
the overall accuracy. Plots of three experiments are shown in Figure 1, for different noise
rates (0.1, 0.01, and 0.001). As can be seen, these qualitatively match what we expect:
coverage increases exponentially, but accuracy on negatives(1−oppi) drops exponentially
too, though somewhat delayed. At some point there is a crossover wherecovi = 1− oppi,
which as predicted roughly corresponds to the point at which overall accuracy starts to
drop.

5 Conclusions
Co-training is a method for using unlabeled data when examples can be partitioned into
two views such that (a) each view in itself is at least roughly sufficient to achieve good
classification, and yet (b) the views are not too highly correlated. Previous theoretical work
has required instantiating condition (b) in a very strong sense: as independence given the
label, or a form of weak dependence. In this work, we argue that the “right” condition
is something much weaker: an expansion property on the underlying distribution (over
positive examples) that we show is sufficient and to some extent necessary as well.

The expansion property is especially interesting because it directly motivates the iterative
nature of many of the practical co-training based algorithms, and our work is the first
rigorous analysis of iterative co-training in a setting that demonstrates its advantages over
one-shot versions.
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A Relating the definitions

We show here how Definition 2 implies Definition 1.

Theorem 2 If D+ satisfiesε-left-right expansion (Definition 2), then it also satisfiesε′-expansion
(Definition 1) forε′ = ε/(1 + ε).

Proof: We will prove the contrapositive. Suppose there existS1 ⊆ X+
1 , S2 ⊆ X+

2 such that
Pr(S1 ⊕ S2) < ε′min

[
Pr(S1 ∧ S2),Pr(S1 ∧ S2)

]
. Assume without loss of generality that

Pr(S1 ∧ S2) ≤ Pr(S1 ∧ S2). SincePr(S1 ∧ S2) + Pr(S1 ∧ S2) + Pr(S1 ⊕ S2) = 1 it fol-
lows thatPr(S1∧S2) ≤ 1

2
− Pr(S1⊕S2)

2
. AssumePr(S1) ≤ Pr(S2). This implies thatPr(S1) ≤ 1

2

sincePr(S1)+Pr(S2) = 2 Pr(S1∧S2)+Pr(S1⊕S2) and soPr(S1) ≤ Pr(S1∧S2)+ Pr(S1⊕S2)
2

.
Now notice that

Pr(S2|S1) =
Pr(S1 ∧ S2)

Pr(S1)
≥ Pr(S1 ∧ S2)

Pr(S1 ∧ S2) + Pr(S1 ⊕ S2)
>

1

1 + ε′
≥ 1− ε.

But

Pr(S2) ≤ Pr(S1 ∧ S2) + Pr(S1 ⊕ S2) < (1 + ε′) Pr(S1 ∧ S2) ≤ (1 + ε) Pr(S1)

and soPr(S2) < (1 + ε) Pr(S1). Similarly if Pr(S2) ≤ Pr(S1) we get a failure of expansion in the
other direction. This completes the proof.


