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Abstract

In the analysis of natural images, Gaussian scale mixtures (GSM) have
been used to account for the statistics of filter responses, and to inspire hi-
erarchical cortical representational learning schemes. GSMs pose a crit-
ical assignment problem, working out which filter responses were gen-
erated by a common multiplicative factor. We present a new approach
to solving this assignment problem through a probabilistic extension to
the basic GSM, and show how to perform inference in the model using
Gibbs sampling. We demonstrate the efficacy of the approach on both
synthetic and image data.

Understanding the statistical structure of natural images is an important goal for visual
neuroscience. Neural representations in early cortical areas decompose images (and likely
other sensory inputs) in a way that is sensitive to sophisticated aspects of their probabilistic
structure. This structure also plays a key role in methods for image processing and coding.
A striking aspect of natural images that has reflections in both top-down and bottom-up
modeling is coordination across nearby locations, scales, and orientations. From a top-
down perspective, this structure has been modeled using what is known as a Gaussian
Scale Mixture model (GSM).1–3 GSMs involve a multi-dimensional Gaussian (each di-
mension of which captures local structure as in a linear filter), multiplied by a spatialized
collection of common hidden scale variables or mixer variables∗ (which capture the coordi-
nation). GSMs have wide implications in theories of cortical receptive field development,
eg the comprehensive bubbles framework of Hyvärinen.4 The mixer variables provide the
top-down account of two bottom-up characteristics of natural image statistics, namely the
‘bowtie’ statistical dependency,5, 6 and the fact that the marginal distributions of receptive
field-like filters have high kurtosis.7, 8 In hindsight, these ideas also bear a close relation-
ship with Ruderman and Bialek’s multiplicative bottom-up image analysis framework9 and
statistical models for divisive gain control.6 Coordinated structure has also been addressed
in other image work,10–14 and in other domains such as speech15 and finance.16

Many approaches to the unsupervised specification of representations in early cortical areas
rely on the coordinated structure.17–21 The idea is to learn linear filters (eg modeling simple
cells as in22, 23), and then, based on the coordination, to find combinations of these (perhaps
non-linearly transformed) as a way of finding higher order filters (eg complex cells). One
critical facet whose specification from data is not obvious is the neighborhood arrangement,
ie which linear filters share which mixer variables.

∗Mixer variables are also called mutlipliers, but are unrelated to the scales of a wavelet.



Here, we suggest a method for finding the neighborhood based on Bayesian inference of
the GSM random variables. In section 1, we consider estimating these components based
on information from different-sized neighborhoods and show the modes of failure when
inference is too local or too global. Based on these observations, in section 2 we propose
an extension to the GSM generative model, in which the mixer variables can overlap prob-
abilistically. We solve the neighborhood assignment problem using Gibbs sampling, and
demonstrate the technique on synthetic data. In section 3, we apply the technique to image
data.

1 GSM inference of Gaussian and mixer variables

In a simple, n-dimensional, version of a GSM, filter responses l are synthesized † by mul-
tiplying an n-dimensional Gaussian with values g = {g1 . . . gn}, by a common mixer
variable v.

l = vg (1)
We assume g are uncorrelated (σ2 along diagonal of the covariance matrix). For the ana-
lytical calculations, we assume that v has a Rayleigh distribution:

p[v] ∝ [v exp−v2/2]a where 0 < a ≤ 1 parameterizes the strength of the prior (2)

For ease, we develop the theory for a = 1. As is well known,2 and repeated in figure 1(B),
the marginal distribution of the resulting GSM is sparse and highly kurtotic. The joint
conditional distribution of two elements l1 and l2, follows a bowtie shape, with the width
of the distribution of one dimension increasing for larger values (both positive and negative)
of the other dimension.
The inverse problem is to estimate the n+1 variables g1 . . . gn, v from the n filter responses
l1 . . . ln. It is formally ill-posed, though regularized through the prior distributions. Four
posterior distributions are particularly relevant, and can be derived analytically from the
model:
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where B(n, x) is the modified Bessel function of the second kind (see also24), l =
√

∑

i l2i
and gi is forced to have the same sign as li, since the mixer variables are always positive.
Note that p[v|l1] and p[g1|l1] (rows 1,3) are local estimates, while p[v|l] and p[g|l] (rows
2,4) are estimates according to filter outputs {l1 . . . ln}. The posterior p[v|l] has also been
estimated numerically in noise removal for other mixer priors, by Portilla et al25

The full GSM specifies a hierarchy of mixer variables. Wainwright2 considered a pre-
specified tree-based hierarhical arrangement. In practice, for natural sensory data, given a
heterogeneous collection of li, it is advantageous to learn the hierachical arrangement from
examples. In an approach related to that of the GSM, Karklin and Lewicki19 suggested

†We describe the l as being filter responses even in the synthetic case, to facilitate comparison
with images.
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Figure 1: A Generative model: each filter response is generated by multiplying its Gaussian
variable by either mixer variable vα, or mixer variable vβ . B Marginal and joint conditional
statistics (bowties) of sample synthetic filter responses. For the joint conditional statistics,
intensity is proportional to the bin counts, except that each column is independently re-scaled
to fill the range of intensities. C-E Left: actual distributions of mixer and Gaussian variables;
other columns: estimates based on different numbers of filter responses. C Distribution of
estimate of the mixer variable vα. Note that mixer variable values are by definition positive.
D Distribution of estimate of one of the Gaussian variables, g1. E Joint conditional statistics
of the estimates of Gaussian variables g1 and g2.

generating log mixer values for all the filters and learning the linear combinations of a
smaller collection of underlying values. Here, we consider the problem in terms of multiple
mixer variables, with the linear filters being clustered into groups that share a single mixer.
This poses a critical assignment problem of working out which filter responses share which
mixer variables. We first study this issue using synthetic data in which two groups of filter
responses l1 . . . l20 and l21 . . . l40 are generated by two mixer variables vα and vβ (figure 1).
We attempt to infer the components of the GSM model from the synthetic data.
Figure 1C;D shows the empirical distributions of estimates of the conditional means of a
mixer variable E(vα|{l}) and one of the Gaussian variables E(g1|{l}) based on different
assumed assignments. For estimation based on too few filter responses, the estimates do not
well match the actual distributions. For example, for a local estimate based on a single filter
response, the Gaussian estimate peaks away from zero. For assignments including more
filter responses, the estimates become good. However, inference is also compromised if the
estimates for vα are too global, including filter responses actually generated from vβ (C and
D, last column). In (E), we consider the joint conditional statistics of two components, each
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Figure 2: A Generative model in which each filter response is generated by multiplication
of its Gaussian variable by a mixer variable. The mixer variable, vα, vβ , or vγ , is chosen
probabilistically upon each filter response sample, from a Rayleigh distribution with a = .1.
B Top: actual probability of filter associations with vα, vβ , and vγ ; Bottom: Gibbs estimates
of probability of filter associations corresponding to vα, vβ , and vγ . C Statistics of generated
filter responses, and of Gaussian and mixer estimates from Gibbs sampling.

estimating their respective g1 and g2. Again, as the number of filter responses increases,
the estimates improve, provided that they are taken from the right group of filter responses
with the same mixer variable. Specifically, the mean estimates of g1 and g2 become more
independent (E, third column). Note that for estimations based on a single filter response,
the joint conditional distribution of the Gaussian appears correlated rather than independent
(E, second column); for estimation based on too many filter responses (40 in this example),
the joint conditional distribution of the Gaussian estimates shows a dependent (rather than
independent) bowtie shape (E, last column). Mixer variable joint statistics also deviate
from the actual when the estimations are too local or global (not shown).
We have observed qualitatively similar statistics for estimation based on coefficients in
natural images. Neighborhood size has also been discussed in the context of the quality of
noise removal, assuming a GSM model.26

2 Neighborhood inference: solving the assignment problem

The plots in figure 1 suggest that it should be possible to infer the assignments, ie work
out which filter responses share common mixers, by learning from the statistics of the
resulting joint dependencies. Hard assignment problems (in which each filter response
pays allegiance to just one mixer) are notoriously computationally brittle. Soft assignment
problems (in which there is a probabilistic relationship between filter responses and mixers)
are computationally better behaved. Further, real world stimuli are likely better captured
by the possibility that filter responses are coordinated in somewhat different collections in
different images.
We consider a richer, mixture GSM as a generative model (Figure 2). To model the genera-
tion of filter responses li for a single image patch, we multiply each Gaussian variable gi by
a single mixer variable from the set v1 . . . vm. We assume that gi has association probabil-



ity pij (satisfying
∑

j pij = 1,∀i) of being assigned to mixer variable vj . The assignments
are assumed to be made independently for each patch. We use si ∈ {1, 2, . . . m} for the
assignments:

li = givsi
(3)

Inference and learning in this model proceeds in two stages, according to the expectation
maximization algorithm. First, given a filter response li, we use Gibbs sampling for the
E phase to find possible appropriate (posterior) assignments. Williams et al.27 suggested
using Gibbs sampling to solve a similar assignment problem in the context of dynamic tree
models. Second, for the M phase, given the collection of assignments across multiple filter
responses, we update the association probabilities pij . Given sample mixer assignments,
we can estimate the Gaussian and mixer components of the GSM using the table of sec-
tion 1, but restricting the filter response samples just to those associated with each mixer
variable.
We tested the ability of this inference method to find the associations in the probabilistic
mixer variable synthetic example shown in figure 2, (A,B). The true generative model spec-
ifies probabilistic overlap of 3 mixer variables. We generated 5000 samples for each filter
according to the generative model. We ran the Gibbs sampling procedure, setting the num-
ber of possible neighborhoods to 5 (e.g., > 3); after 500 iterations the weights converged
near to the proper probabilities. In (B, top), we plot the actual probability distributions
for the filter associations with each of the mixer variables. In (B, bottom), we show the
estimated associations: the three non-zero estimates closely match the actual distributions;
the other two estimates are zero (not shown). The procedure consistently finds correct as-
sociations even in larger examples of data generated with up to 10 mixer variables. In (C)
we show an example of the actual and estimated distributions of the mixer and Gaussian
components of the GSM. Note that the joint conditional statistics of both mixer and Gaus-
sian are independent, since the variables were generated as such in the synthetic example.
The Gibbs procedure can be adjusted for data generated with different parameters a of
equation 2, and for related mixers,2 allowing for a range of image coefficient behaviors.

3 Image data

Having validated the inference model using synthetic data, we turned to natural images.
We derived linear filters from a multi-scale oriented steerable pyramid,28 with 100 filters,
at 2 preferred orientations, 25 non-overlapping spatial positions (with spatial subsampling
of 8 pixels), and two phases (quadrature pairs), and a single spatial frequency peaked at 1/6
cycles/pixel. The image ensemble is 4 images from a standard image compression database
(boats, goldhill, plant leaves, and mountain) and 4000 samples.
We ran our method with the same parameters as for synthetic data, with 7 possible neigh-
borhoods and Rayleigh parameter a = .1 (as in figure 2). Figure 3 depicts the association
weights pij of the coefficients for each of the obtained mixer variables. In (A), we show
a schematic (template) of the association representation that will follow in (B, C) for the
actual data. Each mixer variable neighborhood is shown for coefficients of two phases
and two orientations along a spatial grid (one grid for each phase). The neighborhood is
illustrated via the probability of each coefficient to be generated from a given mixer vari-
able. For the first two neighborhoods (B), we also show the image patches that yielded
the maximum log likelihood of P (v|patch). The first neighborhood (in B) prefers ver-
tical patterns across most of its “receptive field”, while the second has a more localized
region of horizontal preference. This can also be seen by averaging the 200 image patches
with the maximum log likelihood. Strikingly, all the mixer variables group together two
phases of quadrature pair (B, C). Quadrature pairs have also been extracted from cortical
data, and are the components of ideal complex cell models. Another tendency is to group
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Figure 3: A Schematic of the mixer variable neighborhood representation. The probability
that each coefficient is associated with the mixer variable ranges from 0 (black) to 1 (white).
Left: Vertical and horizontal filters, at two orientations, and two phases. Each phase is
plotted separately, on a 38 by 38 pixel spatial grid. Right: summary of representation, with
filter shapes replaced by oriented lines. Filters are approximately 6 pixels in diameter, with
the spacing between filters 8 pixels. B First two image ensemble neighborhoods obtained
from Gibbs sampling. Also shown, are four 38×38 pixel patches that had the maximum
log likelihood of P (v|patch), and the average of the first 200 maximal patches. C Other
image ensemble neighborhoods. D Statistics of representative coefficients of two spatially
displaced vertical filters, and of inferred Gaussian and mixer variables.

orientations across space. The phase and iso-orientation grouping bear some interesting
similarity to other recent suggestions;17, 18 as do the maximal patches.19 Wavelet filters
have the advantage that they can span a wider spatial extent than is possible with current
ICA techniques, and the analysis of parameters such as phase grouping is more controlled.
We are comparing the analysis with an ICA first-stage representation, which has other ob-
vious advantages. We are also extending the analysis to correlated wavelet filters;25 and to
simulations with a larger number of neighborhoods.
From the obtained associations, we estimated the mixer and Gaussian variables according
to our model. In (D) we show representative statistics of the coefficients and of the inferred
variables. The learned distributions of Gaussian and mixer variables are quite close to our
assumptions. The Gaussian estimates exhibit joint conditional statistics that are roughly
independent, and the mixer variables are weakly dependent.
We have thus far demonstrated neighborhood inference for an image ensemble, but it is also
interesting and perhaps more intuitive to consider inference for particular images or image
classes. In figure 4 (A-B) we demonstrate example mixer variable neighborhoods derived
from learning patches of a zebra image (Corel CD-ROM). As before, the neighborhoods
are composed of quadrature pairs; however, the spatial configurations are richer and have
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Figure 4: Example of Gibbs on Zebra image. Image is 151×151 pixels, and each spa-
tial neighborhood spans 38×38 pixels. A, B Example mixer variable neighborhoods. Left:
example mixer variable neighborhood, and average of 200 patches that yielded the maxi-
mum likelihood of P (v|patch). Right: Image and marked on top of it example patches that
yielded the maximum likelihood of P (v|patch).

not been previously reported with unsupervised hierarchical methods: for example, in (A),
the mixture neighborhood captures a horizontal-bottom/vertical-top spatial configuration.
This appears particularly relevant in segmenting regions of the front zebra, as shown by
marking in the image the patches i that yielded the maximum log likelihood of P (v|patch).
In (B), the mixture neighborhood captures a horizontal configuration, more focused on
the horizontal stripes of the front zebra. This example demonstrates the logic behind a
probabilistic mixture: coefficients corresponding to the bottom horizontal stripes might be
linked with top vertical stripes (A) or to more horizontal stripes (B).

4 Discussion

Work on the study of natural image statistics has recently evolved from issues about scale-
space hierarchies, wavelets, and their ready induction through unsupervised learning mod-
els (loosely based on cortical development) towards the coordinated statistical structure of
the wavelet components. This includes bottom-up (eg bowties, hierarchical representations
such as complex cells) and top-down (eg GSM) viewpoints. The resulting new insights
inform a wealth of models and ideas and form the essential backdrop for the work in this
paper. They also link to impressive engineering results in image coding and processing.
A most critical aspect of an hierarchical representational model is the way that the structure
of the hierarchy is induced. We addressed the hierarchy question using a novel extension
to the GSM generative model in which mixer variables (at one level of the hierarchy) en-
joy probabilistic assignments to filter responses (at a lower level). We showed how these
assignments can be learned (using Gibbs sampling), and illustrated some of their attractive
properties using both synthetic and a variety of image data. We grounded our method firmly
in Bayesian inference of the posterior distributions over the two classes of random variables
in a GSM (mixer and Gaussian), placing particular emphasis on the interplay between the
generative model and the statistical properties of its components.
An obvious question raised by our work is the neural correlate of the two different posterior
variables. The Gaussian variable has characteristics resembling those of the output of divi-
sively normalized simple cells;6 the mixer variable is more obviously related to the output
of quadrature pair neurons (such as orientation energy or motion energy cells, which may
also be divisively normalized). How these different information sources may subsequently
be used is of great interest.
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[21] C Kayser, W Einhäuser, O Dümmer, P König, and K P Körding. Extracting slow subspaces from natural videos leads to
complex cells. In G Dorffner, H Bischof, and K Hornik, editors, Proc. Int’l Conf. on Artificial Neural Networks (ICANN-01),
pages 1075–1080, Vienna, Aug 2001. Springer-Verlag, Heidelberg.

[22] B A Olshausen and D J Field. Emergence of simple-cell receptive field properties by learning a sparse factorial code. Nature,
381:607–609, 1996.

[23] A J Bell and T J Sejnowski. The ’independent components’ of natural scenes are edge filters. Vision Research, 37(23):3327–
3338, 1997.

[24] U Grenander and A Srivastava. Probabibility models for clutter in natural images. IEEE Trans. on Patt. Anal. and Mach.
Intel., 23:423–429, 2002.

[25] J Portilla, V Strela, M Wainwright, and E Simoncelli. Adaptive Wiener denoising using a Gaussian scale mixture model in
the wavelet domain. In Proc 8th IEEE Int’l Conf on Image Proc, pages 37–40, Thessaloniki, Greece, Oct 7-10 2001. IEEE
Computer Society.

[26] J Portilla, V Strela, M Wainwright, and E P Simoncelli. Image denoising using a scale mixture of Gaussians in the wavelet
domain. IEEE Trans Image Processing, 12(11):1338–1351, November 2003.

[27] C K I Williams and N J Adams. Dynamic trees. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Adv. Neural
Information Processing Systems, volume 11, pages 634–640, Cambridge, MA, 1999. MIT Press.

[28] E P Simoncelli, W T Freeman, E H Adelson, and D J Heeger. Shiftable multi-scale transforms. IEEE Trans Information
Theory, 38(2):587–607, March 1992. Special Issue on Wavelets.


