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Abstract 

Capturing dependencies in images in an unsupervised manner is 
important for many image processing applications. We propose a 
new method for capturing nonlinear dependencies in images of 
natural scenes. This method is an extension of the linear Independent 
Component Analysis (ICA) method by building a hierarchical model 
based on ICA and mixture of Laplacian distribution. The model 
parameters are learned via an EM algorithm and it can accurately 
capture variance correlation and other high order structures in a 
simple manner. We visualize the learned variance structure and 
demonstrate applications to image segmentation and denoising. 

1  Introduction 

Unsupervised learning has become an important tool for understanding biological 
information processing and building intelligent signal processing methods. Real 
biological systems however are much more robust and flexible than current artificial 
intelligence mostly due to a much more efficient representations used in biological 
systems. Therefore, unsupervised learning algorithms that capture more sophisticated 
representations can provide a better understanding of neural information processing 
and also provide improved algorithm for signal processing applications. For example, 
independent component analysis (ICA) can learn representations similar to simple cell 
receptive fields in visual cortex [1] and is also applied for feature extraction, image 
segmentation and denoising [2,3]. ICA can approximate statistics of natural image 
patches by Eq.(1,2), where X is the data and u is a source signal whose distribution is 
a product of sparse distributions like a generalized Laplacian distribution. 

AuX =  (1)   )()( iuPuP ∏=  (2) 

But the representation learned by the ICA algorithm is relatively low-level. In 
biological systems there are more high-level representations such as contours, 
textures and objects, which are not well represented by the linear ICA model. ICA 
learns only linear dependency between pixels by finding strongly correlated linear 



 

axis. Therefore, the modeling capability of ICA is quite limited. Previous approaches 
showed that one can learn more sophisticated high-level representations by capturing 
nonlinear dependencies in a post-processing step after the ICA step [4,5,6,7,8]. 

The focus of these efforts has centered on variance correlation in natural images. After 
ICA, a source signal is not linearly predictable from others. However, given variance 
dependencies, a source signal is still ‘predictable’ in a nonlinear manner. It is not 
possible to de-correlate this variance dependency using a linear transformation. 
Several researchers have proposed extensions to capture the nonlinear dependencies. 

Portilla et al. used Gaussian Scale Mixture (GSM) to model variance dependency in 
wavelet domain. This model can learn variance correlation in source prior and showed 
improvement in image denoising [4]. But in this model, dependency is defined only 
between a subset of wavelet coefficients. Hyvarinen and Hoyer suggested using a 
special variance related distribution to model the variance correlated source prior.  
This model can learn grouping of dependent sources (Subspace ICA) or topographic 
arrangements of correlated sources (Topographic ICA) [5,6]. Similarly, Welling et al. 
suggested a product of expert model where each expert represents a variance 
correlated group [7]. The product form of the model enables applications to image 
denoising. But these models don’t reveal higher-order structures explicitly. 

Our model is motivated by Lewicki and Karklin who proposed a 2-stage model where 
the 1st stage is an ICA model (Eq. (3)) and the  2nd-stage is a linear generative model 
where another source v generates logarithmic variance for the 1st stage (Eq. (4)) [8]. 
This model captures variance dependency structure explicitly, but treating variance as 
an additional random variable introduces another level of complexity and requires 
several approximations. Thus, it is difficult to obtain a simple analytic PDF of source 
signal u and to apply the model for image processing problems. 

( )qucuP λλ /exp)|( −=     (3)   Bv=]log[λ     (4) 

 

We propose a hierarchical model based on ICA and a mixture of Laplacian 
distribution. Our model can be considered as a simplification of model in [8] by 
constraining v to be 0/1 random vector where only one element can be 1. Our model is 
computationally simpler but still can capture variance dependency. Experiments show 
that our model can reveal higher order structures similar to [8]. In addition, our model 
provides a simple parametric PDF of variance correlated priors, which is an important 
advantage for adaptive signal processing. Utilizing this, we demonstrate simple 
applications on image segmentation and image denoising. Our model provides an 
improved statistic model for natural images and can be used for other applications 
including feature extraction, image coding, or learning even higher order structures. 

2  Modeling nonlinear dependencies  

We propose a hierarchical or 2-stage model where the 1st stage is an ICA source signal 
model and the 2nd stage is modeled by a mixture model with different variances (figure 
1). In natural images, the correlation of variance reflects different types of regularities 
in the real world. Such specialized regularities can be summarized as “context” 
information. To model the context dependent variance correlation, we use mixture 
models where Laplacian distributions with different variance represent different 
contexts. For each image patch, a context variable Z “selects” which Laplacian 
distribution will represent ICA source signal u. Laplacian distributions have 0-mean 



 

but different variances. The advantage of Laplacian distribution for modeling context 
is that we can model a sparse distribution using only one Laplacian distribution. But 
we need more than two Gaussian distributions to do the same thing. Also conventional 
ICA is a special case of our model with one Laplacian. We define the mixture model 
and its learning algorithm in the next sections. 

 
Figure 1: Proposed hierarchical model (1st stage is ICA generative model. 2nd stage is 
mixture of “context dependent” Laplacian distributions which model U. Z is a random 

variable that selects a Laplacian distribution that generates the given image patch) 

2 .1  Mixture  o f  Laplac ian  Dis tr ibut ion  

We define a PDF for mixture of M-dimensional Laplacian Distribution as Eq.(5), 
where N is the number of data samples, and K is the number of mixtures. 
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kπ            : probability of Laplacian distribution k, ),,,( 1 Kππ=Π  and 1=∑k kπ  

It is not easy to maximize Eq.(5) directly, and we use EM (expectation maximization) 
algorithm for parameter estimation. Here we introduce a new hidden context variable 
Z that represents which Laplacian k, is responsible for a given data point. Assuming 
we know the hidden variable Z, we can write the likelihood of data and Z as Eq.(6), 
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n
kz  : Hidden binary random variable, 1 if n-th data sample is generated from k-th 

Laplacian, 0 other wise. ( ( )n
kzZ =  and 1=∑

k

n
kz  for all n = 1…N) 

2 .2  EM a lgor i thm for  l earn ing  the  mixture  mode l  

The EM algorithm maximizes the log likelihood of data averaged over hidden variable 
Z. The log likelihood and its expectation can be computed as in Eq.(7,8). 
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The expectation in Eq.(8) can be evaluated, if we are given the data U and estimated 
parameters Λ and Π. For Λ and Π, EM algorithm uses current estimation Λ’ and Π’. 

{ } { }

∏∏

∑

−=⋅−
ΠΛ

=

ΠΛ
ΠΛ=ΠΛ=

=

ΠΛ==ΠΛ=ΠΛ≡
=

M

m mk

mn

mk

k

n

M

m
k

mk

mn

mkn

n

n
k

n
kn

n
n
k

z
n

n
k

n
k

n
k

n
k

u
c

u
uP

uP
zPzuP

uzPuzPzUzEzE
n
k

)
'

exp(
'2

'1')
'

exp(
'2

1
)','|(

1

)','|(
)','|1()',',1|(

)',',|1()',',|(',',|

,

,

,,

,

,

1

0

λλ
ππ

λλ

 (9) 

Where the normalization constant can be computed as 

( )∑ ∏∑
= =

−=ΠΛΠΛ=ΠΛ=
K

k

M

m mk

mn

mk
k

K

k

n
k

n
knnn

u
zPzuPuPc

1 1 ,

,

,

)exp(
2

1)','|()',',|()','|(
λλ

π  (10) 

The EM algorithm works by maximizing Eq.(8), given the expectation computed from 
Eq.(9,10). Eq.(9,10) can be computed using Λ’ and Π’ estimated in the previous 
iteration of EM algorithm. This is E-step of EM algorithm. Then in M-step of EM 
algorithm, we need to maximize Eq.(8) over parameter Λ and Π. 

First, we can maximize Eq.(8) with respect to Λ, by setting the derivative as 0. 
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Second, for maximization of Eq.(8) with respect to Π, we can rewrite Eq.(8) as below. 
{ } { }∑+=ΠΛ
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As we see, the derivative of Eq.(12) with respect to Π cannot be 0. Instead, we need to 
use Lagrange multiplier method for maximization. A Lagrange function can be 
defined as Eq.(14) where ρ is a Lagrange multiplier. 
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By setting the derivative of Eq.(13) to be 0 with respect to ρ and Π, we can simply get 
the maximization solution with respect to Π. We just show the solution in Eq.(14). 
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Then the EM algorithm can be summarized as figure 2. For the convergence criteria, 
we can use the expectation of log likelihood, which can be calculated from Eq. (8). 



 

1. Initialize Kk
1=π , { } euE mmk +=,λ  (e is small random noise) 

2. Calculate the Expectation by 
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3. Maximize the log likelihood given the Expectation 
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4. If (converged) stop, otherwise repeat from step 2. 
Figure 2: Outline of EM algorithm for Learning the Mixture Model 

3  Experimental  Results  

Here we provide examples of image data and show how the learning procedure is 
performed for the mixture model. We also provide visualization of learned variances 
that reveal the structure of variance correlation and an application to image denoising.  

3 .1  Learning  Nonl inear  Dependenc ies  in  Natura l  images  

As shown in figure 1, the 1st stage of the proposed model is simply the linear ICA. The 
ICA matrix A and W(=A-1) are learned by the FastICA algorithm [9]. We sampled 
105(=N) data from 16x16 patches (256 dim.) of natural images and use them for both 
first and second stage learning. ICA input dimension is 256, and source dimension is 
set to be 160(=M). The learned ICA basis is partially shown in figure 1. The 2nd stage 
mixture model is learned given the ICA source signals. In the 2nd stage the number of 
mixtures is set to 16, 64, or 256(=K). Training by the EM algorithm is fast and several 
hundred iterations are sufficient for convergence (0.5 hour on a 1.7GHz Pentium PC). 

For the visualization of learned variance, we adapted the visualization method from 
[8]. Each dimension of ICA source signal corresponds to an ICA basis (columns of A) 
and each ICA basis is localized in both image and frequency space. Then for each 
Laplacian distribution, we can display its variance vector as a set of points in image 
and frequency space. Each point can be color coded by variance value as figure 3. 

  
 (a1)        (a2)   (b1)      (b2) 

Figure 3: Visualization of learned variances (a1 and a2 visualize variance of 
Laplacian #4 and b1 and 2 show that of Laplacian #5. High variance value is mapped 
to red color and low variance is mapped to blue. In Laplacian #4, variances for 
diagonally oriented edges are high. But in Laplacian #5, variances for edges at 
spatially right position are high. Variance structures are related to “contexts” in the 
image. For example, Laplacian #4 explains image patches that have oriented textures 
or edges. Laplacian #5 captures patches where left side of the patch is clean but right 
side is filled with randomly oriented edges.) 



 

A key idea of our model is that we can mix up independent distributions to get non- 
linearly dependent distribution. This modeling power can be shown by figure 4. 

 
Figure 4: Joint distribution of nonlinearly dependent sources. ((a) is a joint histogram 
of 2 ICA sources, (b) is computed from learned mixture model, and (c) is from learned 
Laplacian model. In (a), variance of u2 is smaller than u1 at center area (arrow A), but 
almost equal to u1 at outside (arrow B). So the variance of u2 is dependent on u1. This 
nonlinear dependency is closely approximated by mixture model in (b), but not in (c).) 

3 .2  Unsuperv i sed  Image  Segmentat ion  

The idea behind our model is that the image can be modeled as mixture of different 
variance correlated “contexts”. We show how the learned model can be used to 
classify different context by an unsupervised image segmentation task. Given learned 
model and data, we can compute the expectation of a hidden variable Z from Eq. (9). 
Then for an image patch, we can select a Laplacian distribution with highest 
probability, which is the most explaining Laplacian or “context”. For segmentation, 
we use the model with 16 Laplacians. This enables abstract partitioning of images and 
we can visualize organization of images more clearly (figure 5). 

Figure 5: Unsupervised image segmentation (left is original image, middle is color 
labeled image, right image shows color coded Laplacians with variance structure. 
Each color corresponds to a Laplacian distribution, which represents surface or 
textural organization of underlying contexts. Laplacian #14 captures smooth surface 
and Laplacian #9 captures contrast between clear sky and textured ground scenes.) 

3 .3  Appl ica t ion  to  Image  Res torat ion   

The proposed mixture model provides a better parametric model of the ICA source 
distribution and hence an improved model of the image structure. An advantage is in 
the MAP (maximum a posterior) estimation of a noisy image. If we assume Gaussian 
noise n, the image generation model can be written as Eq.(15). Then, we can compute 
MAP estimation of ICA source signal u by Eq.(16) and reconstruct the original image. 
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Since we assumed Gaussian noise, P(X|u,A) in Eq. (16) is Gaussian. P(u) in Eq. (16) 
can be modeled as a Laplacian or a mixture of Laplacian distribution. The mixture 
distribution can be approximated by a maximum explaining Laplacian. We evaluated 
3 different methods for image restoration including ICA MAP estimation with simple 
Laplacian prior, same with Laplacian mixture prior, and the Wiener filter. Figure 6 
shows an example and figure 7 summarizes the results obtained with different noise 
levels. As shown MAP estimation with the mixture prior performs better than the 
others in terms of SNR and SSIM (Structural Similarity Measure) [10]. 

 
Figure 6: Image restoration results (signal variance 1.0, noise variance 0.81) 

 
Figure 7: SNR and SSIM for 3 different algorithms (signal variance = 1.0) 

4  Discussion 

We proposed a mixture model to learn nonlinear dependencies of ICA source signals 
for natural images. The proposed mixture of Laplacian distribution model is a 
generalization of the conventional independent source priors and can model variance 
dependency given natural image signals. Experiments show that the proposed model 
can learn the variance correlated signals grouped as different mixtures and learn high- 
level structures, which are highly correlated with the underlying physical properties 
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captured in the image. Our model provides an analytic prior of nearly independent and 
variance-correlated signals, which was not viable in previous models [4,5,6,7,8]. 

The learned variances of the mixture model show structured localization in image and 
frequency space, which are similar to the result in [8]. Since the model is given no 
information about the spatial location or frequency of the source signals, we can 
assume that the dependency captured by the mixture model reveals regularity in the 
natural images. As shown in image labeling experiments, such regularities correspond 
to specific surface types (textures) or boundaries between surfaces. 

The learned mixture model can be used to discover hidden contexts that generated 
such regularity or correlated signal groups. Experiments also show that the labeling of 
image patches is highly correlated with the object surface types shown in the image. 
The segmentation results show regularity across image space and strong correlation 
with high-level concepts. 

Finally, we showed applications of the model for image restoration. We compare the 
performance with the conventional ICA MAP estimation and Wiener filter. Our 
results suggest that the proposed model outperforms other traditional methods. It is 
due to the estimation of the correlated variance structure, which provides an improved 
prior that has not been considered in other methods. 

In our future work, we plan to exploit the regularity of the image segmentation result 
to lean more high-level structures by building additional hierarchies on the current 
model. Furthermore, the application to image coding seems promising. 
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