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Abstract

We present a semi-parametric latent variable model based technique for
density modelling, dimensionality reduction and visualization. Unlike
previous methods, we estimate the latent distribution non-parametrically
which enables us to model data generated by an underlying low dimen-
sional, multimodal distribution. In addition, we allow the components
of latent variable models to be drawn from the exponential family which
makes the method suitable for special data types, for example binary or
count data. Simulations on real valued, binary and count data show fa-
vorable comparison to other related schemes both in terms of separating
different populations and generalization to unseen samples.

1 Introduction

Principal component analysis (PCA) is widely used for dimensionality reduction with ap-
plications ranging from pattern recognition and time series prediction to visualization. One
important limitation of PCA is that it is not based on a probability model. A proba-
bilistic formulation of PCA can offer several advantages like allowing statistical testing,
application of Bayesian inference methods and naturally accommodating missing values
[1]. Latent variable models are commonly used in statistics to summarize observations
[2]. A latent variable model assumes that the distribution of data is determined by a la-
tent or mixing distribution P (θ) and a conditional or component distribution P (x|θ), i.e.,
P (x) =

∫

P (θ)P (x|θ)dθ.

Probabilistic PCA (PPCA) [1] borrows from one such popular model called factor anal-
ysis to propose a probabilistic alternative PCA. A key feature of this probabilistic model
is that the latent distribution P (θ) is also assumed to be Gaussian since it leads to simple
and fast model estimation, i.e., the density of x is approximated by a Gaussian distribu-
tion whose covariance matrix is aligned along a lower dimensional subspace. This may
be a good approximation when data is drawn from a single population and the goal is to
explain the data in terms of a few variables. However, in machine learning we often deal
with data drawn from several populations and PCA is used to reduce dimensions to control
computational complexity of learning. A mixture model with Gaussian latent distribution
would not be able to capture this information. The projection obtained using a Gaussian
latent distribution tends to be skewed toward the center [1] and hence the distinction be-
tween nearby sub-populations may be lost in the visualization space. For these reasons,
it is important not to make restrictive assumptions about the latent distribution. Several
recently proposed dimension reduction methods can, like PPCA, be thought of as special



cases of latent variable modelling which differ in the speci£c assumptions they make about
the latent and conditional distributions.

We present an alternative probabilistic formulation, called semi-parametric PCA (SP-
PCA), where no assumptions are made about the distribution of the latent random vari-
able θ. Non-parametric latent distribution estimation allows us to approximate data density
better than previous schemes and hence gives better low dimensional representations. In
particular, multi-modality of the high dimensional density is better preserved in the pro-
jected space. When the observed data is composed of several clusters, this technique can
be viewed as performing simultaneous clustering and dimensionality reduction. To make
our method suitable for special data types, we allow the conditional distribution P (x|θ) to
be any member of the exponential family of distributions. Use of exponential family distri-
butions for P (x|θ) is common in statistics where it is known as latent trait analysis and they
have also been used in several recently proposed dimensionality reduction schemes [3, 4].
We use Lindsay’s non-parametric maximum likelihood estimation theorem to reduce the
estimation problem to one with a large enough discrete prior. It turns out that this choice
gives us a prior which is ‘conjugate’ to all exponential family distributions, allowing us to
give a uni£ed algorithm for all data types. This choice also makes it possible to ef£ciently
estimate the model even in the case when different components of the data vector are of
different types.

2 The constrained mixture model

We assume that the d-dimensional observation vectors x1, . . . ,xn are outcomes of iid
draws of a random variable whose distribution P (x) =

∫

P (θ)P (x|θ)dθ is determined
by the latent distribution P (θ) and the conditional distribution P (x|θ). This can also be
viewed as a mixture density with P (θ) being the mixing distribution, the mixture compo-
nents labelled by θ and P (x|θ) being the component distribution corresponding to θ. The
latent distribution is used to model the interdependencies among the components of x and
the conditional distribution to model ‘noise’. For example in the case of a collection of
documents we can think of the ‘content’ of the document as a latent variable since it cannot
be measured. For any given content, the words used in the document and their frequency
may depend on random factors - for example what the author has been reading recently,
and this can be modelled by P (x|θ).

Conditional distribution P (x|θ): We assume that P (θ) adequately models the depen-
dencies among the components of x and hence that the components of x are independent
when conditioned upon θ, i.e., P (x|θ) = ΠjP (xj |θj), where xj and θj are the j’th com-
ponents of x and θ. As noted in the introduction, using Gaussian means and constraining
them to a lower dimensional subspace of the data space is equivalent to using Euclidean
distance as a measure of similarity. This Gaussian model may not be appropriate for other
data types, for instance the Bernoulli distribution may be better for binary data and Poisson
for integer data. These three distributions, along with several others, belong to a family
of distributions known as the exponential family [5]. Any member of this family can be
written in the form

logP (x|θ) = logP0(x) + xθ −G(θ)

where θ is called the natural parameter and G(θ) is a function that ensures that the proba-
bilities sum to one. An important property of this family is that the mean µ of a distribution
and its natural parameter θ are related through a monotone invertible, nonlinear function
µ = G′(θ) = g(θ). It can be shown that the negative log-likelihoods of exponential family
distributions can be written as Bregman distances (ignoring constants) which are a family
of generalized metrics associated with convex functions [4]. Note that by using different
distributions for the various components of x, we can model mixed data types.



Latent distribution P (θ): Like previous latent variable methods, including PCA, we
constrain the latent variable θ to an `-dimensional Euclidean subspace of Rd to model the
belief that the intrinsic dimensionality of the data is smaller than d. One way to represent
the (unknown) linear constraint on values that θ can take is to write it as an invertible linear
transformation of another random variable which takes values a ∈ R`,

θ = aV + b

where V is an ` × d rotation matrix and b is a d-dimensional displacement vector. Hence
any distribution PΘ(θ) satisfying the low dimensional constraints can be represented us-
ing a triple (P (a), V,b), where P (a) is a distribution over R`. Lindsay’s mixture non-
parametric maximum likelihood estimation (NPMLE) theorem states that for £xed (V ,b),
the maximum likelihood (ML) estimate of P (a) exists and is a discrete distribution with no
more than n distinct points of support [6]. Hence if ML is the chosen parameter estimation
technique, the SP-PCA model can be assumed (without loss of generality) to be a con-
strained £nite mixture model with at most n mixture components. The number of mixture
components in the model, n, grows with the amount of data and we propose to use pruning
to reduce the number of components during model estimation to help both in computational
speed and model generalization. Finally, we note that instead of the natural parameter, any
of its invertible transformations could have been constrained to a lower dimensional space.
Choosing to linearly constrain the natural parameter affords us computational advantages
similar to those available when we use the canonical link in generalized linear regression.

Low dimensional representation: There are several ways in which low dimensional
representations can be obtained using the constrained mixture model. We would ideally
like to represent a given observation x by the unknown θ (or the corresponding a related
to θ by θ = aV + b) that generated it, since the conditional distribution P (x|θ) is used
to model random effects. However, the actual value of a is not known to us and all of our
knowledge of a is contained in the posterior distribution P (a|x) = P (a)P (x|a)/P (x).
Since a belongs to an `-dimensional space, any of its estimators like the posterior mean
or mode (MAP estimate) can be used to represent x in ` dimensions. For presenting the
simulation results in this paper, we use the posterior mean as the representation point.
This representation has been used in other latent variable methods to get meaningful low
dimensional views [1, 3]. Another method is to represent x by that point θ on (V, b) that
is closest according to the appropriate Bregman distance (it can be shown that there is a
unique such θopt on the plane). This representation is a generalization of the standard
Euclidean projection and was used in [4].

The Gaussian case: When the exponential family distribution chosen is Gaussian, the
model is a mixture of n spherical Gaussians all of whose means lie on a hyperplane in
the data space. This can be thought of as a ‘soft’ version of PCA, i.e., Gaussian case of
SP-PCA is related to PCA in the same manner as Gaussian mixture model is related to
K-means. The use of arbitrary mixing distribution over the plane allows us to approximate
arbitrary spread of data along the hyperplane. Use of £xed variance spherical Gaussians
ensures that like PCA, the direction perpendicular to the plane (V, b) is irrelevant in any
metric involving relative values of likelihoods P (x|θk), including the posterior mean.

Consider the case when data density P (x) belongs to our model space, i.e., it is speci£ed by
{A, V, b,Π, σ} and let D be any direction parallel to the plane (V, b) along which the latent
distribution P (θ) has non-zero variance. Since Gaussian noise with variance σ is added to
this latent distribution to obtain P (x), variance of P (x) along D will be greater than σ.
The variance of P (x) along any direction perpendicular to (V, b) will be exactly σ. Hence,
PCA of P (x) yields the subspace (V, b) which is the same as that obtained using SP-PCA
(this may not be true when P (x) does not belong to our model space). We found that
SP-PCA differs signi£cantly from PPCA in the predictive power of the low-dimensional



density model (see Section 5).

3 Model estimation

Algorithm for ML estimation: We present an EM algorithm for estimating parameters
of a £nite mixture model with the components constrained to an `-dimensional Euclidean
subspace. We propose an iterative re-weighted least squares (IRLS) method for the maxi-
mization step along the lines of generalized linear model estimation. Use of weighted least
squares does not guarantee monotone increase in data likelihood. To guarantee convergence
of the algorithm, we can check the likelihood of data at the IRLS update and decrease step
size if necessary. Let x1, . . . ,xn be iid samples drawn from a d-dimensional density P (x),
c be the number of mixture components and let the mixing density be Π = (π1, . . . , πc).
Associated with each mixture component (indexed by k) are parameter vectors θk and ak

which are related by θk = akV + b. In this section we will work with the assumption
that all components of x correspond to the same exponential family for ease of notation.
For each observed xi there is an unobserved ‘missing’ variable zi which is a c-dimensional
binary vector whose k’th component is one if the k’th mixture component was the outcome
in the i’th random draw and zero otherwise. If yl is a vector, we use ylm to denote its m’th
component. (Derivation of the algorithm is omitted for lack of space, for details please see
[7]).

The E-step is identical to unconstrained £nite mixture case,

ẑik = E(zik) =
πkP (xi/θk)

∑c

m=1 πmP (xi/θm)
; x̃kj =

∑n

i=1 ẑikxij
∑n

i=1 ẑik

In the M-step we update Π, V , b, and ak in the following manner

πk =

∑n

i=1 ẑik
∑n

i=1

∑c

m=1 zim

=

∑n

i=1 ẑik

n

ai is updated by adding δai calculated using

(V ΩiV
′)δai = GRi ; [Ωi]qq =

∂g(θiq)

∂θiq

; [GRi]l1 =
d

∑

j=1

(x̃ij − g(θij))Vlj

Here the function g(θ) is as de£ned in Section 2 and depends on the member of the expo-
nential family that is being used. Each column of the matrix V , vs, is updated by adding
δvs calculated using

(A′ΩsA)δvs = GRs ; [Ωs]kk =
∂g(θks)

∂θks

; [GRs]l1 =
c

∑

k′=1

(x̃k′s − g(θk′s))Ak′l

Each component of vector b, bs, is updated by adding δbs calculated using

Hsδbs = GRs ; Hs =

c
∑

k′=1

∂g(θk′s)

∂θk′s

; GRs =

c
∑

k′=1

(x̃k′s − g(θk′s))

Pruning the mixture components: Redundant mixture components can be pruned be-
tween the EM iterations in order to improve speed of the algorithm and generalization
properties while retaining the full capability to approximate P (x). We propose the follow-
ing criteria for pruning



• Starved components : If πk < C1, then drop the k’th component

• Nearby components : If maxi |P (xi|θk1)−P (x|θk2)| < C2, then drop either k1’th
or k2’th component

The value of C1 should be Θ(1/n) since we want to measure how starved a component
is based on what percentage of the data it is ‘responsible’ for. To measure the nearness of
components we use the ∞-norm of the difference between probabilities the components
assign to observations since we do not want to lose mixture components that are distin-
guished with respect to a small number of observation vectors. In the case of clustering
this means that we do not ignore under-represented clusters. C2 should be chosen to be a
small constant, depending on how much pruning is desired.

Convergence of the EM iterations and computational complexity: It is easy to verify
that the SP-PCA model satis£es the continuity assumptions of Theorem 2, [8], and hence
we can conclude that any limit point of the EM iterations is a stationary point of the log
likelihood function. The computational complexity of the E-step is O(cdn) and of the M-
step is O(cd`2). For the Gaussian case, the E-step only takes O(c`n) since we only need
to take into account the variation of data along the subspace given by current value of V
(see Section 2). The most expensive step is computation of P (xi|θj). The k-d tree data
structure is often used to identify relevant mixture components to speed up this step.

Model selection: While any of the standard model selection methods based on penalizing
complexity could be used to choose `, an alternative method is to pick ` which minimizes
a validation or bootstrap based estimate of the prediction error (negative log likelihood per
sample). For the Gaussian case, a fast method to pick ` would be to plot the variance of data
along the principal directions (found using PCA) and look for the dimension at which there
is a ‘knee’ or a sudden drop in variance or where the total residual variance falls below a
chosen threshold.

Consistency of the Maximum Likelihood estimator: We propose to use the ML esti-
mator to £nd the latent space (V, b) and the latent distribution P (a). Usually a parametric
form is assumed for P (a) and the consistency of the ML estimate is well known for this
task where the parameter space is a subset of a £nite dimensional Euclidean space. In
the SP-PCA model, one of the parameters (P (a)) ranges over the space of all distribution
functions on R` and hence we need to do more to verify the validity of our estimator. Ex-
ponential family mixtures are not identi£able in general. This, however, is not a problem
for us since we are only interested in approximating P (x) well and not in the actual pa-
rameters corresponding to the distribution. Hence we use the de£nition of consistency of
an estimator given by Redner. Let γ0 be the ‘true’ parameter from which observed samples
are drawn. Let C0 be the set of all parameters γ corresponding to the ‘true’ distribution
F (x/γ0) (i.e., C0 = {γ : F (x/γ) = F (x/γ0) ∀ x}). Let γ̂n be an estimator of γ based
on n observed samples of X and let Γ̂ be the quotient topological space obtained from Γ
obtained by identifying the set C0 to a point γ̂0.

De£nition The sequence of estimators {γ̂n, n = 1, . . . ,∞} is said to be strongly
consistent in the sense of Redner if limm→∞ γ̂n = γ̂0 almost surely.

Theorem If P (a) is assumed to be zero outside a bounded subset of R`, the ML esti-
mator of parameter (V, b, P (a)) is strongly consistent for Gaussian, Binary and Poisson
conditional distributions.

The theorem follows by verifying that the assumptions of Kiefer et. al. [9] are satis£ed
by the SP-PCA model. The assumption that P (a) is zero outside a bounded region is not
restrictive in practice since we expect the observations xi belong to a bounded region of
Rd. (Proof omitted for lack of space, please see [7]).



Table 1: Bootstrap estimates of prediction error for PPCA and SP-PCA.

DENSITY ISOTROPIC PPCA SP-PCA FULL
GAUSSIAN `=1 `=2 `=3 `=1 `=2 `=3 GAUSSIAN

ERROR 50.39 38.03 34.71 34.76 36.85 30.99 28.54 343.83

4 Relationship to past work

SP-PCA is a factor model that makes fewer assumptions about latent distribution than
PPCA [1]. Mixtures of probabilistic principal component analyzers (also known as mix-
tures of factor analyzers) is a generalization of PPCA which overcomes the limitation of
global linearity of PCA via local dimensionality reduction. Mixtures of SP-PCA’s can be
similarly de£ned and used for local dimensionality reduction. Collins et. al. [4] proposed a
generalization of PCA using exponential family distributions. Note that this generalization
is not associated with a probability density model for the data. SP-PCA can be thought of
as a ‘soft’ version of this generalization of PCA, in the same manner as Gaussian mixtures
are a soft version of K-means. Generative topographic mapping (GTM) is a probabilistic
alternative to Self organizing map which aims at £nding a nonlinear lower dimensional
manifold passing close to data points. An extension of GTM using exponential family dis-
tributions to deal with binary and count data is described in [3]. Apart from the fact that
GTM is a non-linear dimensionality reduction technique while SP-PCA is globally linear
like PCA, one main feature that distinguishes the two is the choice of latent distribution.
GTM assumes that the latent distribution is uniform over a £nite and discrete grid of points.
Both the location of the grid and the nonlinear mapping are to be given as an input to the
algorithm. Tibshirani [10] used a semi-parametric latent variable model for estimation of
principle curves. Discussion of these and other dimensionality reduction schemes based on
latent trait and latent class models can be found in [7].

5 Experiments

In this section we present simulations on synthetic and real data to demonstrate the prop-
erties of SP-PCA. In factor analysis literature, it is commonly believed that choice of prior
distribution is unimportant for the low dimensional data summarization (see [2], Sections
2.3, 2.10 and 2.16). Through the examples below we argue that estimating the prior instead
of assuming it arbitrarily can make a difference when latent variable models are used for
density approximation, data analysis and visualization.

Use of SP-PCA as a low dimensional density model: The Tobamovirus data which
consists of 38 18-dimensional examples was used in [1] to illustrate properties of PPCA.
PPCA and SP-PCA can be thought of as providing a range of low-dimensional density
models for the data. The complexity of these densities increases with and is controlled by
the value of ` (the projected space dimension) starting with the zero dimensional model of
an isotropic Gaussian. For a £xed lower dimension `, SP-PCA has greater approximation
capability than PPCA. In Table 1, we present bootstrap estimates of the predictive power of
PPCA and SP-PCA for various values of L. SP-PCA has lower prediction error than PPCA
for ` = 1, 2 and 3. This indicates that SP-PCA combines ¤exible density estimation and
excellent generalization even when trained on a small amount of data.

Simulation results on discrete datasets: We present experiments on 20 Newsgroups
dataset comparing SP-PCA to PCA, exponential family GTM [3] and Exponential family
PCA [4]. Data for the £rst set of simulations was drawn from comp.sys.ibm.pc.hardware,
comp.sys.mac.hardware and sci.med newsgroups. A dictionary size of 150 words was
chosen and the words in the dictionary were picked to be those which have maximum
mutual information with class labels. 200 documents were drawn from each of the three



newsgroups to form the training data. Two-dimensional representations obtained using
various methods are shown in Fig. 1. In the projection obtained using PCA, Exponential
family PCA and Bernoulli GTM, the classes comp.sys.ibm.pc.hardware and comp.sys.-
mac.hardware were not well separated in the 2D space. This result (Fig. 1(c)) was presented
in [3] and the the overlap between the two groups was attributed to the fact that they are
very similar and hence share many words in common. However, SP-PCA was able to
separate the three sets reasonably well (Fig. 1(d)). One way to quantify the separation of
dissimilar groups in the two-dimensional projections is to use the training set classi£cation
error of projected data using SVM. The accuracy of the best SVM classi£er (we tried a
range of SVM parameter values and picked the best for each projected data set) was 75% for
bernoulli GTM projection and 82.3% for SP-PCA projection (the difference corresponds to
44 data points while the total number of data points is 600). We conjecture that the reason
comp.sys.ibm.pc.hardware and comp.sys.mac.hardware have overlap in projection using
Bernoulli GTM is that the prior is assumed to be over a pre-speci£ed grid in latent space
and the spacing between grid points happened to be large in the parameter space close to the
two news groups. In contrast to this, in SP-PCA there is no grid and the latent distribution
is allowed to adapt to the given data set. Note that a standard clustering algorithm could be
used on the data projected using SP-PCA to conclude that data consisted of three kinds of
documents.
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Figure 1: Projection by various methods of binary data from 200 documents each from
comp.sys.ibm.pc.hardware (×), comp.sys.mac.hardware (◦) and sci.med (.)

Data for the second set of simulations was drawn from sci.crypt, sci.med, sci.space and
soc.culture.religion.christianity newsgroups. A dictionary size of 100 words was chosen
and again the words in the dictionary were picked to be those which have maximum mu-
tual information with class labels. 100 documents were drawn from each of the newsgroups
to form the training data and 100 more to form the test data. Fig. 2 shows two-dimensional
representations of binary data obtained using various methods. Note that while the four
newsgroups are bunched together in the projection obtained using Exponential family PCA
[4] (Fig. 2(b)), we can still detect the presence four groups from this projection and in
this sense this projection is better than the PCA projection. This result is pleasing since it
con£rms our intuition that using negative log-likelihood of Bernoulli distribution as a mea-
sure of similarity is more appropriate than squared Euclidean distance for binary data. We
conjecture that the reason the four groups are not well separated in this projection is that
a conjugate prior has to be used in its estimation for computational purposes [4] and the
form and parameters of this prior are considered £xed and given inputs to the algorithm.
Both SP-PCA (Fig. 2(c)) and Bernoulli GTM (Fig. 2(e)) were able to clearly separate the
clusters in the training data. Figures 2(d) and 2(f) show representation of test data using the
models estimated by SP-PCA and Bernoulli GTM respectively. To measure generalization
of these methods, we use a K-nearest neighbors based non-parametric estimate of the den-
sity of the projected training data. The percentage difference between the log-likelihoods
of training and test data with respect to this density was 9.1% for SP-PCA and 17.6% for
GTM for K=40 (SP-PCA had smaller percentage change in log-likelihood for most values
of K that we tried between 10 and 40). This indicates that SP-PCA generalizes better than



GTM. This can be seen visually by comparing Figures 2(e) and 2(f) where the projections
of training and test data of sci.space (∇) differ signi£cantly.
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Figure 2: Projection by various methods of binary data from 100 documents each from
sci.crypt (×), sci.med (◦), sci.space (∇) and soc.culture.religion.christianity (+)
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