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Abstract

The Minimax Probability Machine Classification (MPMC) framework
[Lanckriet et al., 2002] builds classifiers by minimizing the maximum
probability of misclassification, and gives direct estimates of the proba-
bilistic accuracy boundΩ. The only assumptions that MPMC makes is
that good estimates of means and covariance matrices of the classes exist.
However, as with Support Vector Machines, MPMC is computationally
expensive and requires extensive cross validation experiments to choose
kernels and kernel parameters that give good performance. In this paper
we address the computational cost of MPMC by proposing an algorithm
that constructs nonlinearsparseMPMC (SMPMC) models by incremen-
tally adding basis functions (i.e. kernels) one at a time – greedily select-
ing the next one that maximizes the accuracy boundΩ. SMPMC auto-
matically chooses both kernel parameters and feature weightswithoutus-
ing computationally expensive cross validation. Therefore the SMPMC
algorithm simultaneously addresses the problem of kernel selection and
feature selection (i.e. feature weighting), based solely on maximizing the
accuracy boundΩ. Experimental results indicate that we can obtain reli-
able boundsΩ, as well as test set accuracies that are comparable to state
of the art classification algorithms.

1 Introduction

The goal of a binary classifier is to maximize the probability that unseen test data will be
classified correctly. Assuming that the test data is generated from the same probability
distribution as the training data, it is possible to derive specific probability bounds for the
case that the decision boundary is a hyperplane. The following result due to Marshall and
Olkin [1] and extended by Bertsimas and Popescu [2] provides the theoretical basis for



assigningprobability bounds to hyperplane classifiers:

sup
E[z]=z̄,Cov[z]=Σz

Pr{aT z ≥ b} =
1

1 + ω2
ω2 = infaT t≥b(t− z̄)T Σ−1

z (t− z̄) (1)

wherea ∈ Rd, b are the hyperplane parameters,z is a random vector, andt is an ordinary
vector. Lanckriet et al (see [3] and [4]) used the above result to build the Minimax Proba-
bility Machine for binary classification (MPMC). From (1) we note that the only required
relevant information of the underlying probability distribution for each class is its mean
and covariance matrix. No other estimates and/or assumptions are needed, which implies
that the obtained bound (which we refer to asΩ) is essentially distribution free, i.e. it holds
for anydistribution with a certain mean and covariance matrix.

As with other classification algorithms such as Support Vector Machines (SVM) (see [5]),
the main disadvantage of current MPMC implementations is that they are computationally
expensive (same complexity as SVM), and require extensive cross validation experiments
to choose kernels and kernel parameter to give good performance on each data set. The
goal of this paper is to propose a kernel based MPMC algorithm that directly addresses
these computational issues.

Towards this end, we propose a sparse greedy MPMC (SMPMC) algorithm that efficiently
builds classifiers, while at the same time maintains the distribution free probability bound
of MPM type algorithms. To achieve this goal, we propose to use an iterative algorithm
which adds basis functions (i.e. kernels) one by one, to an initially ”empty” model. We
are considering basis functions that are induced by Mercer kernels, i.e. functions of the
following form f(z) = Kγ(z, zi) (wherezi is an input vector of the training data). Bases
are added in a greedy way: we select the particularzi that maximizes the MPMC objective
Ω. Furthermore, SMPMC chooses optimal kernel parameters that maximize this metric
(hence the subscriptγ in Kγ), including automatically weighting input features byγj ≥
0 for each kernel added, such thatzi = (γ1z1, γ2z2, ..., γdzd) for d dimensional data.
The proposed SMPMC algorithm automatically selects kernels and re-weights features (i.e.
does feature selection) for each new added basis function, by minimizing the error bound
(i.e. maximizingΩ). Thus the large computational cost of cross validation (typically used
by SVM and MPMC) is avoided.

The paper is organized as follows: Section 2.1 reviews the standard MPMC; Sec-
tion 2.2 describes the proposed sparse greedy MPMC algorithm (SMPMC); and Sec-
tions 2.3-2.4 show how we can use sparse MPMC to determine optimal kernel pa-
rameters. In section 3 we compare our results to the ones described in the orig-
inal MPMC paper (see [4]), showing the probability bounds and the test set ac-
curacies for different binary classification problems. The conclusion is presented
in section 4. Matlab source code for the SMPMC algorithm is available online:
http://nago.cs.colorado.edu/ ∼strohman/papers.html

2 Classification model

In this section we develop a sparse version of the Minimax Probability Machine for bi-
nary classification. We show that besides a significant reduction in computational cost, the
SMPMC algorithm allows us to do automated kernel and feature selection.

2.1 Minimax Probability Machine for binary classification

We will briefly describe the underlying concepts of the MPMC framework as developed
by Lanckriet et al. (see [4]). The goal of MPMC is to find a decision boundaryH(a, b) =
{z|aT z = b} such that the minimum probabilityΩH of classifying future data correctly is
maximized. If we assume that the two classes are generated from random vectorsx andy,



we can express this probability bound just in terms of the means and covariances of these
random vectors:

ΩH = inf
x∼(x̄,Σx),y∼(ȳ,Σy)

Pr{aT x ≥ b ∧ aT y ≤ b} (2)

Note that we do not make any distributional assumptions other than thatx̄,Σx, ȳ, andΣx

are bounded. Exploiting a theorem from Marshall and Olkin [1], it is possible to rewrite
(2) as a closed form expression:

ΩH =
1

1 + m2
(3)

where

m = min
a

√
aT Σxa +

√
aT Σya s.t. aT (x̄− ȳ) = 1 (4)

The optimal hyperplane parametera∗ is the vector that minimizes (4). The hyperplane
parameterb∗ can then be computed as:

b∗ = aT
∗ x̄−

√
aT∗Σxa∗

m
(5)

A new data pointznew is classified according tosign(aT
∗ znew − b∗); if this yields +1,

znew is classified as belonging to classx, otherwise it is classified as belonging to classy.

2.2 Sparse MPM classification

One of the appealing properties of Support Vector Machines is that their models typically
rely only on a small fraction of the training examples, the so called support vectors. The
models obtained from the kernelized MPMC, however, useall of the training examples (see
[4]), i.e. the decision hyperplane will look like:

Nx∑

i=1

a
(x)
i K(xi, z) +

Ny∑

i=1

a
(y)
i K(yi, z) = b (6)

where in general alla(x)
i , a

(y)
i 6= 0.

This brings up the question whether one can construct sparse models for the MPMC where
most of the coefficientsa(x)

i or a
(y)
i are zero. In this paper we propose to do this by starting

with an initially ”empty” model and then adding basis functions one by one. As we will
see shortly, this approach is speeding up both learning and evaluation time while it is still
maintaining the distribution free probability bound of the MPMC.

Before we outline the algorithm we introduce some notation:
N = Nx + Ny the total number of training examples
` = (`1, ..., `N )T ∈ {−1, 1}N the labels of the training data
̂̀(k) = (̂̀(k)

1 , ..., ̂̀(k)
N )T ∈ RN output of the model after adding thekth basis function

a(k) = the MPMC hyperplane coefficients when adding thekth basis function
b(k) = the MPMC hyperplane offset when adding thekth basis function
~Kb = (Kv(v,x1), ..., Kv(v,xNx),Kv(v,y1), ...,Kv(v,yNy))T

basis function evaluated on all training examples (empirical map)
~Kxv = (Kv(v,x1), ..., Kv(v,xNx))T evaluated only on positive examples
~Kyv = (Kv(v,y1), ..., Kv(v,yNy))T evaluated only on negative examples

Note that̂̀ (k) is a vector of real numbers (the distances of the training data to the hyperplane
before applying thesign function). v ∈ Rd is the training vector generating the basis
function ~Kv

1. We will simply write ~K(k), ~K
(k)
x , ~K

(k)
y for thekth basis function.

1Note that we use the same symbol~K for both the empirical map and the induced function. It
will always be clear from the context what~K refers to.



For the first basis we are solving the one dimensional MPMC:

m = min
a

√
aσ2

~K
(1)
x

a +
√

aσ2
~K

(1)
y

a s.t. a( ~K
(1)
x − ~K

(1)
y ) = 1 (7)

where~K
(1)
x andσ2

~K
(1)
x

arethe mean and variance of the vector~K
(1)
x (which is the first basis

function evaluated on all positive training examples).
Because of the constraint the feasible region contains just one value fora(1):

a(1) = 1/( ~K
(1)
x − ~K

(1)
y )

b(1) = a(1) ~K
(1)
x −

√
aσ2

~K
(1)
x

a

√
aσ2

~K
(1)
x

a+
√

aσ2
~K

(1)
y

a
= a(1) ~K

(1)
x −

σ
~K

(1)
x

σ
~K

(1)
x

+σ
~K

(1)
y

(8)

Thefirst model then looks like: ̂̀(1) = a(1) ~K(1) − b(1) (9)
All of the subsequent models use the previous estimation̂̀(k) as one input and the next
basis~K(k+1) as the other input. We set up the two dimensional classification problem:

x(k+1) = [̂̀(k)
x , ~K

(k+1)
x ] ∈ RNx×2

y(k+1) = [̂̀(k)
y , ~K

(k+1)
y ] ∈ RNy×2

(10)

And solve the following optimization problem:

m = min
a

√
aT Σx(k+1)a +

√
aT Σy(k+1)a s.t. aT (x(k+1) − y(k+1)) = 1 (11)

wherex(k+1) is the 2-dimensional mean vector(̂̀(k)
x , ~K

(k+1)
x )T andwhereΣx(k+1) is the

2× 2 sample covariance matrix of the vectorŝ̀(k)
x and ~K

(k+1)
x .

Let a(k+1) = (a(k+1)
1 , a

(k+1)
2 )T be the optimal solution of (11). We set:

b(k+1) = a(k+1)T

x(k+1) −

√
a(k+1)T Σx(k+1)a(k+1)

√
a(k+1)T Σx(k+1)a(k+1) +

√
a(k+1)T Σy(k+1)a(k+1)

(12)

andobtain the next model as:̂̀(k+1) = a
(k+1)
1

̂̀(k) + a
(k+1)
2

~K(k+1) − b(k+1) (13)
As stated above, one computational advantage of SMPMC is that we typically use only
a small number of training examples to obtain our final model (i.e.k << N ). Another
benefit is that we have to solve only one and two dimensional MPMC problems. As seen in
(8) the one dimensional solution is trivial to compute. An analysis of the two dimensional
problem shows that it can be reduced to the problem of finding the roots of a fourth order
polynomial. Polynomials of degree 4 still have closed form solutions (see e.g. [6]) which
can be computed efficiently. In the standard MPMC algorithm (see [4]), however, the
solutiona for equation (4) hasN dimensions and can therefore only be found by expensive
numerical methods.

It may seem that the values ofΩ = 1/(1 + m2) which we obtain from (11) are not true
for the whole model since we are considering only two dimensional problems and not all
of the k + 1 dimensions we have added so far through our basis functions. But it turns
out that the ”local” bound (from the 2D MPMC) is indeed equal to the ”global” bound
(when considering allk + 1 dimensions). We state this fact more formally in the following
theorem:

Theorem 1: Let ̂̀(k) = c0 + c1
~K(1) + ... + ck

~K(k) be the sparse MPMC model at the
kth iteration (k≥ 1) and leta(k+1)

1 , a
(k+1)
2 , b(k+1) be the solution of the two dimensional

MPMC: ̂̀(k+1) = a
(k+1)
1

̂̀(k) + a
(k+1)
2

~K(k+1) − b(k+1).
Then the values ofΩ for the two dimensional MPMC and for thek+1 dimensional MPMC
are the same.

Proof: see Appendix



2.3 Selection of bases and Gaussian Kernel widths

In our experiments we are using the Gaussian kernel which looks like:

Kσ(u,v) = exp(−||u− v||22
2σ2

) (14)

whereσ is the so called kernel width. As mentioned before, one typically has to choose
σ manually or determine it by cross validation (see [4]). The SMPMC algorithm greedily
selects a basis function – out of a randomly chosencandidate set– to maximizeΩ which is
equivalent to minimizing the value ofm in (7) and (11). Before we state the optimization
problem for the one and two dimensional MPMC we rewrite (14) so that we can get rid of
the denominator:

Kγ(u,v) = exp(−γ||u− v||22) γ ≥ 0 (15)

The optimization problem we solve for the first iteration is then:

min
γ

m(γ) = min
a

√
aσ2

~K
(1)
x

a +
√

aσ2
~K

(1)
y

a s.t. a( ~K
(1)
x − ~K

(1)
y ) = 1 (16)

note that – even though we did not state it explicitly – the statisticsσ2
~K

(1)
x

, σ2
~K

(1)
y

, ~K
(1)
x , and

~K
(1)
y (andconsequently the coefficienta) all depend on the kernel parameterγ.

The two dimensional problem that has to be solved for all subsequent iterationsk ≥ 2 turns
into the following optimization problem forγ:

min
γ

m(γ) = min
a

√
aT Σx(k+1)a+

√
aT Σy(k+1)a s.t. aT (x(k+1)−y(k+1)) = 1 (17)

Again,x(k+1), y(k+1), Σx(k+1) , andΣy(k+1) all depend on the kernel parameterγ and from
these four statistics we can compute the minimizera ∈ R2 analytically.

2.4 Feature selection

For doing feature selection with Gaussian kernels one has to replace the uniform kernel
width γ with ad dimensional vector~γ of kernel weightings:

K~γ(u,v) = exp(−∑d
l=1 γl(ul − vl)2) (γl ≥ 0 l = 1, ..., d) (18)

Note that the optimization problems (16) and (17) for the one respectively two dimensional
MPMC are nowd dimensional instead of just one dimensional.

3 Experiments

In this section we describe the results we obtained for SMPMC on various classification
benchmarks. We used the same data sets as Lanckriet et al. in [4] for the standard MPMC.
The data sets were randomly divided into 90% training data and 10% test data and the
results were averaged over 50 runs for each of the five problems (see table 1). In all the
experiments listed in table 1 we used the feature selection algorithm (with the exception
of Sonar where width selection was used) and had a candidate set of size 5, i.e. at each
iteration the best basis out of 5 randomly chosen candidates was selected. The results we
obtained are comparable to the ones reported by Lanckriet et al [4]. Note that for all of the
data sets SMPMC uses significantly less basis functions than MPMC does which directly
translates into an accordingly smaller evaluation cost. The differences in training cost are
shown in table 2. The total training time for standard MPMC takes into account the 50-fold
cross validation and 10 candidates for the kernel parameter. We observe that for all of the
five data sets the training cost of sparse MPMC is only a fraction of the one for standard
MPMC.

The two plots in figure 1 show what typical learning curves for sparse MPMC look like.
As the number of basis function increases, both the boundΩ and the test set accuracy start



Table 1:BoundΩ, Test set accuracy (TSA), number of bases (B) for sparse and standard MPMC
Dataset SMPMC StandardMPMC (Lanckriet et al.)

Ω TSA B Ω TSA B
Twonorm 86.4± 0.1% 98.3± 0.4% 25 91.3± 0.1% 95.7± 0.5% 270
Breast Cancer 90.9± 0.1% 96.8± 0.3% 50 89.1± 0.1% 96.9± 0.3% 614
Ionosphere 77.7± 0.2% 91.6± 0.5% 25 89.3± 0.2% 91.5± 0.7% 315
Pima Diabetes 38.2± 0.1% 75.4± 0.7% 50 32.5± 0.2% 76.2± 0.6% 691
Sonar 78.5± 0.2% 86.4± 1.0% 80 99.9± 0.1% 87.5± 0.9% 187

Table 2:training time (in seconds) for Matlab implementations of SMPMC and MPMC
Dataset # training SMPMC StandardMPMC (Lanckriet et al.)

examples trainingtime oneoptimization total training time
Twonorm 270 125.0 23.9 1199.2
BreastCancer 614 188.5 122.4 6123.2
Ionosphere 315 416.3 28.1 1404.3
PimaDiabetes 691 165.6 186.5 9324.2
Sonar 187 35.3 8.7 435.1

to go up and after a while stabilize. The stabilization point usually occurs earlier when one
does full feature selection (aγ weight for each input dimension) instead of kernel width
selection (one uniformγ for all dimensions). We also experimented with different sizes
for the candidate set. The plots in figure 2 show what happens for 1, 5, and 10 candidates.
The overall behavior is that the test set accuracy as well as theΩ value converge earlier for
larger candidate sets (but note that a larger candidate set also increases the computational
cost per iteration).

As seen in figure 1, feature selection gives usually better results in terms of the boundΩ
and the test set accuracy. Furthermore, a feature selection algorithm should indicate which
features are relevant and which are not. We set up an experiment for the Twonorm data
(which has 20 input features) where we added 20 additional noisy features that were not
related to the output. The results are shown in figure 3 and demonstrate that the feature
selection algorithm obtained from SMPMC is able to distinguish between relevant and
irrelevant features.

4 Conclusion & future work

This paper introduces a new algorithm (Sparse Minimax Probability Machine Classifica-
tion - SMPMC) for building sparse classification models that provide a lower bound on
the probability of classifying future data correctly. We have shown that the method of iter-
atively adding basis functions has significant computational advantages over the standard
MPMC, while it still maintains the distribution free probability boundΩ. Experimental
results indicate that automated selection of kernel parameters, as well as automated feature
selection (weighting), both key characteristics of the SMPMC algorithm, result in error
rates that are competitive with those obtained by models where these parameters must be
tuned by computationally expensive cross validation.

Future research on sparse greedy MPMC will focus on establishing a theoretical framework
for a stopping criterion, when adding more basis functions (kernels) will not significantly
reduce error rates, and may lead to overfitting. Also, experiments have so far focused on us-
ing Gaussian kernels as basis functions. From the experience with other kernel algorithms,
it is known that other type of kernels (polynomial, tanh) can yield better results for certain
applications. Furthermore, our framework is not limited to Mercer kernels, and other types
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Figure1: BoundΩ and Test Set accuracy (TSA) for width selection (WS) and feature selection (FS).
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of basis functions are also worth investigating. Recent work by Crammer et al. [7] uses
boosting to construct a suitable kernel matrix iteratively. An interesting open question is
how this approach relates to sparse greedy MPMC.
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Appendix: Proof of Theorem 1

We have to show that the values ofm are equal for the two dimensional MPMC and thek + 1
dimensional MPMC. We will just show the equivalence for the first term

√
aT Σxa, an analogue

argumentation will hold for the second term.
For the two dimensional MPMC we have the following for the term under the square root:

(
a
(k+1)
1 a

(k+1)
2

)
(

σ2

̂̀(k)
x

σ̂̀(k)
x

~K
(k+1)
x

σ ~K
(k+1)
x ̂̀(k)

x
σ2

~K
(k+1)
x

)(
a
(k+1)
1

a
(k+1)
2

)

= [a
(k+1)
1 ]2σ2

̂̀(k)
x

+ 2a
(k+1)
1 a

(k+1)
2 σ̂̀(k)

x
~K

(k+1)
x

+ [a
(k+1)
2 ]2σ2

~K
(k+1)
x

(19)

Note that we can rewrite
σ2

̂̀(k)
x

= Cov(c0 + c1
~K

(1)
x + ... + ck

~K
(k)
x , c0 + c1

~K
(1)
x + ... + ck

~K
(k)
x )

=
∑k

i=1

∑k

j=1
cicjCov( ~K

(i)
x , ~K

(j)
x )

σ̂̀(k)
x

~K
(k+1)
x

= Cov(c0 + c1
~K

(1)
x + ... + ck

~K
(k)
x , ~K

(k+1)
x )

=
∑k

i=1
ciCov( ~K

(i)
x , ~K

(k+1)
x )

(20)

by using properties of the sample covariance (linearity,Cov(const, X) = 0).

For thek + 1 dimensional MPMC let us first determine thek + 1 coefficients:
̂̀(k+1) = a

(k+1)
1 (c0 + c1

~K
(1)
x + ... + ck

~K
(k)
x ) + a

(k+1)
2

~K
(k+1)
x − b(k+1)

= a
(k+1)
1 c1

~K
(1)
x + ... + a

(k+1)
1 ck

~K
(k)
x + a

(k+1)
2

~K
(k+1)
x + a

(k+1)
1 c0 − b(k+1)

The term under the square root then looks like:



a
(k+1)
1 c1

...

a
(k+1)
1 ck

a
(k+1)
2




T 


σ2
~K

(1)
x

... σ ~K
(1)
x

~K
(k)
x

σ ~K
(1)
x

~K
(k+1)
x

... ... ... ...
σ ~K

(k)
x

~K
(1)
x

... σ2
~K

(k)
x

σ ~K
(k)
x

~K
(k+1)
x

σ ~K
(k+1)
x

~K
(1)
x

... σ ~K
(k+1)
x

~K
(k)
x

σ2
~K

(k+1)
x







a
(k+1)
1 c1

...

a
(k+1)
1 ck

a
(k+1)
2


 (21)

Multiplying out (21) and substituting according to the equations in (20) yields exactly expression
(19) (which is theaT Σxa term of the two dimensional MPM). Since this equivalence will hold
likewise for the

√
aT Σya termin m, we have shown thatm (and thereforeΩ) is equal for the two

dimensional and thek + 1 dimensional MPMC.


