
Sample Propagation

Mark A. Paskin
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720
mark@paskin.org

Abstract

Rao–Blackwellization is an approximation technique for probabilistic in-
ference that flexibly combines exact inference with sampling. It is useful
in models where conditioning on some of the variables leaves a sim-
pler inference problem that can be solved tractably. This paper presents
Sample Propagation, an efficient implementation of Rao–Blackwellized
approximate inference for a large class of models. Sample Propagation
tightly integrates sampling with message passing in a junction tree, and
is named for its simple, appealing structure: it walks the clusters of a
junction tree, sampling some of the current cluster’s variables and then
passing a message to one of its neighbors. We discuss the application of
Sample Propagation to conditional Gaussian inference problems such as
switching linear dynamical systems.

1 Introduction

Message passing on junction trees is an efficient means of solving many probabilistic in-
ference problems [1, 2]. However, as these are exact methods, their computational costs
must scale with the complexity of the inference problem, making them inapplicable to very
demanding inference tasks. This happens when the messages become too expensive to
compute, as in discrete models of large treewidth or conditional Gaussian models [3].

In these settings it is natural to investigate whether junction tree techniques can be com-
bined with sampling to yield fast, accurate approximate inference algorithms. One way to
do this is to use sampling to approximate the messages, as inHUGS [4, 5]. This strategy
has two disadvantages: first, the samples must be stored, which limits the sample size by
space constraints (rather than time constraints); and second, variables are sampled using
only local information, leading to samples that may not be likely under the entire model.

Another way to integrate sampling and message passing is via Rao–Blackwellization,
where we repeatedly sample a subset of the model’s variables and then compute all of the
messages exactly, conditioned on these sample values. This technique, suggested in [6] and
studied in [7], yields a powerful and flexible approximate inference algorithm; however, it
can be expensive because the junction tree algorithm must be run for every sample.

In this paper, we present a simple implementation of Rao–Blackwellized approximate in-
ference that avoids running the entire junction tree algorithm for every sample. We develop
a new message passing algorithm for junction trees that supports fast retraction of evidence,

and we tightly integrate it with a blocking Gibbs sampler so that only one message must
be recomputed per sample. The resulting algorithm,Sample Propagation, has an appealing
structure: it walks the clusters of a junction tree, resampling some of the current cluster’s
variables and then passing a message to the next cluster in the walk.

2 Rao–Blackwellized approximation using junction tree inference

We start by presenting our notation and assumptions on the probability model. Then we
summarize the three basic ingredients of our approach: message passing in a junction tree,
Rao–Blackwellized approximation, and sampling via Markov chain Monte Carlo.

2.1 The probability model

Let X = (Xi : i ∈ I) be a vector of random variables indexed by the finite, ordered set
I, and for each indexi letXi be the range ofXi. We will use the symbolsA,B,C,D and
E to denote subsets of the index setI. For each subsetA, letXA ≡ (Xi : i ∈ A) be the
corresponding subvector of random variables and letXA be its range.

It greatly simplifies the exposition to develop a simple notation for assignments of values to
subsets of variables. Anassignmentto a subsetA is a set of pairs{(i, xi) : i ∈ A}, one per
indexi ∈ A, wherexi ∈ Xi. We use the symbolsu, v, andw to represent assignments, and
we useXA to denote the set of assignments to the subsetA (with the shorthandX ≡ XI).

We use two operations to generate new assignments from old assignments. Given assign-
mentsu andv to disjoint subsetsA andB, respectively, their unionu∪v is an assignment
to A ∪ B. If u is an assignment toA then therestriction of u to another subsetB is
uB ≡ {(i, xi) ∈ u : i ∈ B}, an assignment toA ∩ B. We also let functions act on
assignments in the natural way: ifu = {(i, xi) : i ∈ D} is an assignment toD andf is a
function whose domain isXD, then we usef(u) to denotef(xi : i ∈ D).

We consider probability densities of the form

p(u) ∝
∏

C∈C

ψC(uC), u ∈ X (1)

whereC is a set of subsets ofI and eachψC is a potential function overC (i.e., a non-
negative function ofXC). This class includes directed graphical models (i.e., Bayesian
networks) and undirected graphical models such as Markov random fields. Observed vari-
ables are reflected in the model by evidence potentials. We usepA(·) to denote the marginal
density ofXA andpA|B(· | ·) to denote the conditional density ofXA givenXB . Finally,
we use the notation of finite measure spaces for simplicity, but our approach extends to the
continuous case.

2.2 Junction tree inference

Given a density of the form (1), we view the problem of probabilistic inference as that of
computing the expectation of a functionf : E [f(X)] =

∑
u∈X p(u)f(u). This sum can be

expensive to compute whenX is a large space. When the desired expectation is “local” in
thatf depends only upon some subset of the variablesXD, we can compute the expectation
more cheaply using a marginal density as

E [f(XD)] =
∑

u∈XC

pC(u)f(uD) (2)

wherepC is the marginal density ofXC andC ⊇ D “covers” the input of the function. If
this sum is tractable, then we have reduced the problem to that of computingpC .

We can compute this marginal via message passing on a junction tree [1, 2]. Ajunction
tree for C is a singly-connected, undirected graph(C,E) with the junction tree property:
for each pair of nodes (orclusters)A,B ∈ C that contain somei ∈ I, every cluster on

the unique path betweenA andB also containsi. In what follows we assume we have a
junction tree forC with a cluster that coversD, the input off . (Such a junction tree can
always be found, but we may have to enlarge the subsets inC.)

Whereas theHUGIN message passing algorithm [2] may be more familiar, Sample Prop-
agation is most easily described by extending the Shafer–Shenoy algorithm [1]. In this
algorithm, we define for each edgeB → C of the junction tree a potential overB ∩ C:

µBC(u) ≡
∑

v∈XB\C

ψB(u ∪ v)
∏

(A,B)∈E
A6=C

µAB(uA ∪ vA), u ∈ XB∩C (3)

µBC is called themessage fromB to C. Note that this definition is recursive—messages
can depend on each other—with the base case being messages from leaf clusters of the
junction tree. For each clusterC we define a potentialβC overC by

βC(u) ≡ ψC(u)
∏

(B,C)∈E

µBC(uB), u ∈ XC (4)

βC is called thecluster belief ofC, and it follows thatβC ∝ pC , i.e., that the cluster beliefs
are the marginals over their respective variables (up to renormalization). Thus we can use
the (normalized) cluster beliefsβC for someC ⊇ D to compute the expectation (2).

In what follows we will also be interested in computing conditional cluster densities given
an evidence assignmentw to a subset of the variablesXE . BecausepI\E|E(u |w) ∝
p(u∪w), we can “enter in” this evidence by instantiatingw in every cluster potentialψC .
The cluster beliefs (4) will then be proportional to the conditional densitypC\E|E(· |w).

Junction tree inference is often the most efficient means of computing exact solutions to
inference problems of the sort described above. However, the sums required by the mes-
sages (3) or the function expectations (2) are often prohibitively expensive to compute. If
the variables are all finite-valued, this happens when the clusters of the junction tree are
too large; if the model is conditional-Gaussian, this happens when the messages, which are
mixtures of Gaussians, have too many mixture components [3].

2.3 Rao–Blackwellized approximate inference

In cases where the expectation is intractable to compute exactly, it can be approximated by
aMonte Carlo estimate:

E [f(XD)] ≈ 1
N

N∑
n=1

f(vn
D) (5)

where{vn : 1 ≤ n ≤ N} are a set of samples ofX. However, obtaining a good estimate
will require many samples iff(XD) has high variance.

Many models have the property that while computing exact expectations is intractable,
there exists a subset of random variablesXE such that the conditional expectation
E [f(XD) |XE = xE] can be computed efficiently. This leads to theRao–Blackwellized
estimate, where we use a set of samples{wn : 1 ≤ n ≤ N} of XE to approximate

E [f(XD)] = E [E [f(XD) |XE]] ≈ 1
N

N∑
n=1

E [f(XD) |wn] (6)

The first advantage of this scheme over standard Monte Carlo integration is that the Rao–
Blackwell theorem guarantees that the expected squared error of the estimate (6) is upper
bounded by that of (5), and strictly so whenf(XD) depends onXD\E . A second advantage
is that (6) requires samples from a smaller (and perhaps better-behaved) probability space.

Algorithm 1 Rao–Blackwell estimation on a junction tree
Input: A set of samples{wn : 1 ≤ n ≤ N} of XE , a functionf of XD, and a clusterC ⊇ D

Output: An estimatef̂ ≈ E [f(XD)]

1: Initialize the estimator̂f = 0.
2: for n = 1 to N do
3: Enter the assignmentwn as evidence into the junction tree.
4: Use message passing to compute the beliefsβC ∝ pC\E|E(· |wn) via (3) and (4).
5: Compute the expectationE [f(XD) |wn] via (7).
6: Setf̂ = f̂ + E [f(XD) |wn].
7: Setf̂ = f̂/N .

However, the Rao–Blackwellized estimate (6) is more expensive to compute than (5) be-
cause we must compute conditional expectations. In many cases, message passing in a
junction tree can be used to implement these computations (see Algorithm 1). We can en-
ter each sample assignmentwn as evidence into the junction tree and use message passing
to compute the conditional densitypC\E|E(· |wn) for some clusterC that coversD. We
then compute the conditional expectation as

E [f(XD) |wn] =
∑

u∈XC\E

pC\E|E(u |wn)f(uD ∪wn
D) (7)

2.4 Markov chain Monte Carlo

We now turn to the problem of obtaining the samples{wn} of XE . Markov chain Monte
Carlo (MCMC) is a powerful technique for generating samples from a complex distribution
p; we design a Markov chain whose stationary distribution isp, and simulate the chain
to obtain samples [8]. One simpleMCMC algorithm is the Gibbs sampler, where each
successive state of the Markov chain is chosen by resampling one variable conditioned on
the current values of the remaining variables. A more advanced technique is “blocking”
Gibbs sampling, where we resample a subset of variables in each step; this technique can
yield Markov chains that mix more quickly [9].

To obtain the benefits of sampling in a smaller space, we would like to sample directly from
the marginalpE ; however, this requires us to sum out the nuisance variablesXI\E from the
joint densityp. Blocking Gibbs sampling is particularly attractive in this setting because
message passing can be used to implement the required marginalizations.1 Assume that the
current state of the Markov chain overXE is wn. To generate the next state of the chain
wn+1 we choose a clusterC (randomly, or according to a schedule) and resampleXC∩E

givenwn
E\C ; i.e., we resample theE variables withinC given theE variables outsideC.

The transition density can be computed by entering the evidencewn
E\C into the junction

tree, computing the cluster belief atC, and marginalizing down to a conditional density
overXC∩E . The complete Gibbs sampler is given as Algorithm 2.2

3 Sample Propagation

Algorithms 1 and 2 represent two of the three key ideas behind our proposal: both Gibbs
sampling and Rao–Blackwellized estimation can be implemented efficiently using message
passing on a junction tree. The third idea is that these two uses of message passing can be
interleaved so that each sample requires only one message to be computed.

1Interestingly, the blocking Gibbs proposal [9] makes a different use of junction tree inference
than we do here: they use message passingwithin a block of variables to efficiently generate a sample.

2In cases where the transition densitypC∩E|E\C(· |wn
E\C) is too large to represent or too difficult

to sample from, we can use the Metropolis-Hastings algorithm, where we instead sample from a
simpler proposal distributionqC∩E and then accept or reject the proposal [8].

Algorithm 2 Blocking Gibbs sampler on a junction tree
Input: A subset of variablesXE to sample and a sample sizeN
Output: A set of samples{wn : 1 ≤ n ≤ N} of XE

1: Choose an initial assignmentw0 ∈ XE .
2: for n = 1 to N do
3: Choose a clusterC ∈ C.
4: Enter the evidencewn−1

E\C into the junction tree.

5: Use message passing to compute the beliefsβC ∝ pC|E\C(· |wn−1
E\C) via (3) and (4).

6: Marginalize overXC\E to obtain the transition densitypC∩E|E\C(· |wn−1
E\C).

7: Samplewn
C∩E ∼ pC∩E|E\C(· |wn−1

E\C) and setwn
E\C = wn−1

E\C .

3.1 Lazy updating of the Rao–Blackwellized estimates

Algorithms 1 and 2 both process the samples sequentially, so the first advantage of merging
them is that the sample set need not be stored. The second advantage is that, by being
selective about when the Rao–Blackwellized estimator is updated, we can compute the
messages once, not twice, per sample.

When the Gibbs sampler chooses to resample a clusterC that coversD (the input off),
we can update the Rao–Blackwellized estimator for free. In particular, the Gibbs sampler
computes the cluster beliefβC ∝ pC|E\C(· |wn−1

E\C) in order to compute the transition

densitypC∩E|E\C(· |wn−1
E\C). Once it sampleswn

C∩E from this density, we can instantiate
the sample in the beliefβC to obtain the conditional densitypC\E|E(· |wn) needed by the
Rao–Blackwellized estimator. (This follows from the fact thatwn

E\C = wn−1
E\C .) In fact,

when it is tractable to do so, we can simply use the cluster beliefβC to update the estimator
in (7); because it treats more variables exactly, it can yield a lower-variance estimate.

Therefore, if we are willing to update the Rao–Blackwellized estimator only when the
Gibbs sampler chooses a cluster that covers the function’s inputs, we can focus on reducing
the computational requirements of the Gibbs sampler. In this scheme the estimate will be
based on fewer samples, but the samples that are used will be less correlated because they
are more distant from each other in the Markov chain. In parallel estimation problems
where every cluster is computing expectations, every sample will be used to update an
estimate, but not every estimate will be updated by every sample.

3.2 Optimizing the Gibbs sampler

We now turn to the Gibbs sampler. The Gibbs sampler computes the messages so that it can
compute the cluster beliefβC when it resamples within a clusterC. An important property
of the computation (4) is that it requires only those messages directed towardsC; thus, we
have again reduced by half the number of messages required per sample.

The difficulty in further minimizing the number of messages computed by the Gibbs sam-
pler is that the evidence on the junction tree is constantly changing. It will therefore be
useful to modify the message passing so that, rather than instantiating all the evidence and
then passing messages, the evidence is instantiated on the fly, on a per-cluster basis. For
each edgeB → C we define a potentialµBC|E by

µBC|E(u,w) ≡
∑

v∈XB\(C∪E)

ψB(u ∪ v ∪wB\C)
∏

A6=C
(A,B)∈E

µAB|E((u ∪ v ∪wB\C)A,w) (8)

whereu ∈ XB∩C andw ∈ XE . This is theconditional message fromB to C given
evidencew onXE . Figure 1 illustrates how the ranges of the assignment variablesu, v,
andw cover the variables ofB; the intuition is that when we send a message fromB toC,
we instantiate all evidence variables that are inB but not those that are inC; this gives us

Algorithm 3 Sample Propagation
Input: A functionf of XD, a clusterC ⊇ D, a subsetE to sample, and a sample sizeN

Output: An estimatef̂ ≈ E [f(XD)]
1: Choose an initial assignmentw0 ∈ XE and compute the messagesµAB|E(·,w0) via (8).
2: Choose a clusterC1 ∈ C, initialize the estimator̂f = 0, and set the sample countM = 0.
3: for n = 1 to N do
4: Compute the conditional cluster beliefβCn|E(·,wn−1) ∝ pCn|E\Cn(· |wn−1

E\Cn
) via (9).

Advance the Markov chain:
5: Marginalize overXCn\E to obtain the transition densitypCn∩E|E\Cn(· |wn−1

E\Cn
).

6: Samplewn
Cn∩E ∼ pCn∩E|E\Cn(· |wn−1

E\Cn
) and setwn

E\Cn
= wn−1

E\Cn
.

Update any estimates to be computed atCn:
7: if D ⊆ Cn ∪ E then
8: Instantiatewn

Cn
in βCn|E and normalize to obtainpCn\E|E(· |wn).

9: Compute the expectationE [f(XD) |wn] via (7).
10: Setf̂ = f̂ + E [f(XD) |wn] and increment the sample countM .

Take the next step of the walk:
11: Choose a clusterCn+1 that is a neighbor ofCn.
12: Recompute the messageµCnCn+1|E(·,wn) via (8).

13: Setf̂ ← f̂/M .

the freedom to later instantiateXC∩E as we wish, or not at all. It is easy to verify that the
conditional beliefβC|E given by

βC|E(u,w) ≡ ψC(u)
∏

(B,C)∈E

µBC|E(uB ,w), u ∈ XC ,w ∈ XE (9)

is proportional to the conditional densitypC|E\C(u |wE\C).3

Using these modified definitions, we can dramatically reduce the

Figure 1: A Venn dia-
gram showing how the
ranges of the assign-
ment variables in (8)
cover the clusterB.

number of messages computed per sample. In particular, the con-
ditional messages have the following important property:

Proposition. Let w andw′ be two assignments toE such that
wE\D = w′

E\D for some clusterD. Then for all edgesB → C

with C closer toD thanB, µBC|E(u,w) = µBC|E(u,w′).

Proof. Assume by induction that the messages intoB (except
the one fromC) are equal givenw or w′. There are two cases
to consider. If(E ∩ D) has no overlap with(E ∩ B), then
wB\C = w′

B\C and the equality follows from (8). Otherwise,
by the junction property we know that ifi ∈ B andi ∈ D, then
i ∈ C, so again we getwB\C = w′

B\C .

Thus, when we resample a clusterCn, we havewn
E\Cn

= wn−1
E\Cn

and so only those messages directed away fromCn change. In addition, as argued above,
when we resampleCn+1 in iterationn+ 1, we only require the messages directed towards
Cn+1. Combining these two arguments, we find thatonly the messages on the directed
path fromCn to Cn+1 must be recomputed in iterationn. If we chooseCn+1 to be a
neighbor ofCn, we only have to recompute a single message in each iteration.4 Putting all
of these optimizations together, we obtain Algorithm 3, which is easily generalized to the
case where many function expectations are computed in parallel.

3The modified message passing scheme we describe can be viewed as an implementation offast
retractionfor Shafer-Shenoy messages, analogous to the scheme described forHUGIN in [2, §6.4.6].

4A similar idea has recently been used to improve the efficiency of the Unified Propagation and
Scaling algorithm for maximum likelihood estimation [10].

3.3 Complexity of Sample Propagation

For simplicity of analysis we assume finite-value variables and tabular potentials. In the
Shafer–Shenoy algorithm, the space complexity of representing the exact message (3) is
O(|XB∩C |), and the time complexity of computing it isO(|XB |) (since for each assign-
ment toB ∩ C we must sum over assignments toB\C). In contrast, when computing the
conditional message (8), we only sum over assignments toB\(C∪E), sinceE∩ (B\C) is
instantiated by the current sample. This makes the conditional message cheaper to compute
than the exact message: in the finite case the time complexity isO(|XB\(E∩(B\C))|). The
space complexity of representing the conditional message isO(|XB∩C |)—the same as the
exact message, since it a potential over the same variables.

As we sample more variables, the conditional messages become cheaper to compute. How-
ever, note that the space complexity of representing the conditional message is independent
of the choice of sampled variablesE; even if we sample a given variable, it remains a free
parameter of the conditional message. (If we instead fixed its value, the proposition above
would not hold.) Thus, the time complexity of computing conditional messages can be
reduced by sampling more variables, but only up to a point: the time complexity of com-
puting the conditional message must beo(|XB∩C |). This contrasts with the approach of
Bidyuk & Dechter [7], where the asymptotic time complexity of each iteration can be re-
duced arbitrarily by sampling more variables. However, to achieve this their algorithm runs
the entire junction tree algorithm in each iteration, and does not reuse messages between
iterations. In contrast, Sample Propagation reuses all but one of the messages between
iterations, leading to a greatly reduced “constant factor”.

4 Application to conditional Gaussian models

A conditional Gaussian (CG) modelis a probability distribution over a set of discrete vari-
ables{Xi : i ∈ ∆} and continous variables{Xi : i ∈ Γ} such that the conditional
distribution ofXΓ givenX∆ is multivariate Gaussian. Inference inCG models is harder
than in models that are totally discrete or totally Gaussian. For example, consider polytree
models: when all of the variables are discrete or all are Gaussian, exact inference is linear
in size of the model; but if the model isCG thenapproximateinference is NP-hard [11].

In traditional junction tree inference, our goal is to compute the marginal for each cluster.
However, whenp is a CG model, each cluster marginal is a mixture of|X∆| Gaussians,
and is intractable to represent. Instead, we can compute theweak marginals, i.e., for each
cluster we compute the best conditional Gaussian approximation ofpC . Lauritzen’s al-
gorithm [12] is an extension of theHUGIN algorithm that computes these weak marginals
exactly. Unfortunately, it is often intractable because it requiresstrongly rootedjunction
trees, which can have clusters that contain most or all of the discrete variables [3].

The structure ofCG models makes it possible to use Sample Propagation to approximate
the weak cluster marginals: we chooseE = ∆, since conditioning on the discrete variables
leaves a tractable Gaussian inference problem.5 The expectations we must compute are
of the sufficient statistics of the weak cluster marginals: for each clusterC, we need the
distribution ofXC∩∆ and the conditional means and covariances ofXC∩Γ givenXC∩∆.

As an example, consider the model given in Figure 2(a) for tracking an object whose state
(position and velocity) at timet isXt. At each time step, we obtain a vector measurement
Yt which is either a noisy measurement of the object’s position (ifZt = 0) or an outlier (if
Zt = 1). The Markov chain overZt makes it likely that inliers and outliers come in bursts.
The task is to estimate the position of the object at all time steps (forT = 100).

5We cannot chooseE = Γ because computing the conditional messages (8) may require summing
discrete variables out ofCG potentials, which leads to representational difficulties [3]. In this case
one can instead use Bidyuk & Dechter’s algorithm, which does not require these operations.

Lauritzen’s algorithm is intractable in this case be-
X1 X2 ...

Y2Y1

Z1 Z2 ...

XT

YT

ZT

(a)

X1, X2,
Z1, Z2

X2, X3,
Z2, Z3

XT - 1, XT,
ZT - 1, ZT

...

(b)

10
5

10
6

10
7

10
8

10
9

3

4

5

6

7

8

9

floating point operations

av
er

ag
e

po
si

tio
n

er
ro

r

Assumed Density Filtering
Sample Propagation
Gibbs Sampling

(c)
Figure 2: TheTRACKING example.

cause any strongly rooted junction tree for this net-
work must have a cluster containing all of the dis-
crete variables [3, Thm. 3.18]. Therefore, in-
stead of comparing our approximate position es-
timates to the correct answer, we sampled a tra-
jectory from the network and computed the aver-
age position error to the (unobserved) ground truth.
Both Gibbs sampling and Sample Propagation were
run with a forwards–backwards sampling sched-
ule; Sample Propagation used the junction tree of
Figure 2(b).6 Both algorithms were started in the
same state and both were allowed to “burn in” for
five forwards–backwards passes. We repeated this
10 times and averaged the results over trials. Fig-
ure 2(c) shows that Sample Propagation converged
much more quickly than Gibbs sampling. Also,
Sample Propagation found better answers than As-
sumed Density Filtering (a standard algorithm for
this problem), but at increased computational cost.

Acknowledgements. I thank K. Murphy and S.
Russell for comments on a draft of this paper.
This research was supported by ONR N00014-00-
1-0637 and an Intel Internship.

References

[1] G. Shafer and P. Shenoy. Probability propagation.Annals of Mathematics and Artificial Intel-
ligence, 2:327–352, 1990.

[2] R. Cowell, P. Dawid, S. Lauritzen, and D. Spiegelhalter.Probabilistic Networks and Expert
Systems. Springer, 1999.

[3] U. Lerner. Hybrid Bayesian Networks for Reasoning About Complex Systems. PhD thesis,
Stanford University, October 2002.

[4] A. Dawid, U. Kjærulff, and S. Lauritzen. Hybrid propagation in junction trees. InAdvances in
Intelligent Computing, volume 945 ofLecture Notes in Computer Science. Springer, 1995.

[5] U. Kjærulff. HUGS: Combining exact inference and Gibbs sampling in junction trees. InProc.
of the 11th Conf. on Uncertainty in Artificial Intelligence (UAI-95). Morgan Kaufmann, 1995.

[6] A. Doucet, N. de Freitas, K. Murphy, and S. Russell. Rao-Blackwellised particle filtering for
dynamic Bayesian networks. InProc. of the 16th Conf. on Uncertainty in AI (UAI-00), 2000.

[7] B. Bidyuk and R. Dechter. An empirical study of w-cutset sampling for Bayesian networks. In
Proc. of the 19th Conf. on Uncertainty in AI (UAI-03). Morgan Kaufmann, 2003.

[8] R. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report
CRG-TR-93-1, University of Toronto, 1993.

[9] C. S. Jensen, A. Kong, and U. Kjærulff. Blocking Gibbs sampling in very large probabilistic
expert systems.International Journal of Human-Computer Studies, 42:647–666, 1995.

[10] Y. W. Teh and M. Welling. On improving the efficiency of the iterative proportional fitting
procedure. InProc. of the 9th Int’l. Workshop on AI and Statistics (AISTATS-03), 2003.

[11] U. Lerner and R. Parr. Inference in hybrid networks: Theoretical limits and practical algorithms.
In Proc. of the 17th Conf. on Uncertainty in AI (UAI-01). Morgan Kaufmann, 2001.

[12] S. Lauritzen. Propagation of probabilities, means, and variances in mixed graphical association
models.Journal of the American Statistical Association, 87(420):1098–1108, 1992.

[13] C. Carter and R. Kohn. Markov chain Monte Carlo in conditionally Gaussian state space mod-
els. Biometrika, 83:589–601, 1996.

6Carter & Kohn [13] describe a specialized algorithm for this model that is similar to a version of
Sample Propagation that does not resample the discrete variables on the backwards pass.

