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Abstract

Thearea under an ROC curve(AUC) is a criterion used in many appli-
cations to measure the quality of a classification algorithm. However,
the objective function optimized in most of these algorithms is the error
rate and not the AUC value. We give a detailed statistical analysis of the
relationship between the AUC and the error rate, including the first exact
expression of the expected value and the variance of the AUC for a fixed
error rate. Our results show that the average AUC is monotonically in-
creasing as a function of the classification accuracy, but that the standard
deviation for uneven distributions and higher error rates is noticeable.
Thus, algorithms designed to minimize the error rate may not lead to
the best possible AUC values. We show that, under certain conditions,
the global function optimized by the RankBoost algorithm is exactly the
AUC. We report the results of our experiments with RankBoost in several
datasets demonstrating the benefits of an algorithm specifically designed
to globally optimize the AUC over other existing algorithms optimizing
an approximation of the AUC or only locally optimizing the AUC.

1 Motivation

In many applications, the overall classification error rate is not the most pertinent perfor-
mance measure, criteria such asorderingor rankingseem more appropriate. Consider for
example the list of relevant documents returned by a search engine for a specific query.
That list may contain several thousand documents, but, in practice, only the top fifty or so
are examined by the user. Thus, a search engine’s ranking of the documents is more critical
than the accuracy of its classification of all documents as relevant or not. More gener-
ally, for a binary classifier assigning a real-valued score to each object, a better correlation
between output scores and the probability of correct classification is highly desirable.
A natural criterion or summary statistic often used to measure the ranking quality of a clas-
sifier is thearea under an ROC curve(AUC) [8].1 However, the objective function opti-
mized by most classification algorithms is the error rate and not the AUC. Recently, several
algorithms have been proposed for maximizing the AUC value locally [4] or maximizing
some approximations of the global AUC value [9, 15], but, in general, these algorithms do
not obtain AUC values significantly better than those obtained by an algorithm designed to
minimize the error rates. Thus, it is important to determine the relationship between the
AUC values and the error rate.

∗This author’s new address is: Google Labs, 1440 Broadway, New York, NY 10018,
corinna@google.com.

1The AUC value is equivalent to the Wilcoxon-Mann-Whitney statistic [8] and closely related to
the Gini index [1]. It has been re-invented under the name of L-measure by [11], as already pointed
out by [2], and slightly modified under the name of Linear Ranking by [13, 14].
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Figure 1:An example of ROC curve. The line connecting(0, 0) and(1, 1), corresponding to random
classification, is drawn for reference. The true positive (negative) rate is sometimes referred to as the
sensitivity(resp.specificity) in this context.

In the following sections, we give a detailed statistical analysis of the relationship between
the AUC and the error rate, including the first exact expression of the expected value and
the variance of the AUC for a fixed error rate.2 We show that, under certain conditions, the
global function optimized by the RankBoost algorithm is exactly the AUC. We report the
results of our experiments with RankBoost in several datasets and demonstrate the benefits
of an algorithm specifically designed to globally optimize the AUC over other existing
algorithms optimizing an approximation of the AUC or only locally optimizing the AUC.

2 Definition and properties of the AUC

TheReceiver Operating Characteristics(ROC) curves were originally developed in signal
detection theory [3] in connection with radio signals, and have been used since then in many
other applications, in particular for medical decision-making. Over the last few years, they
have found increased interest in the machine learning and data mining communities for
model evaluation and selection [12, 10, 4, 9, 15, 2].
The ROC curve for a binary classification problem plots the true positive rate as a function
of the false positive rate. The points of the curve are obtained by sweeping the classifica-
tion threshold from the most positive classification value to the most negative. For a fully
random classification, the ROC curve is a straight line connecting the origin to(1, 1). Any
improvement over random classification results in an ROC curve at least partially above
this straight line. Fig. (1) shows an example of ROC curve. The AUC is defined as the area
under the ROC curve and is closely related to the ranking quality of the classification as
shown more formally by Lemma 1 below.
Consider a binary classification task withm positive examples andn negative examples.
We will assume that a classifier outputs a strictly ordered list for these examples and will
denote by1X the indicator function of a setX .

Lemma 1 ([8]) Letc be a fixed classifier. Letx1, . . . , xm be the output ofc on the positive
examples andy1, . . . , yn its output on the negative examples. Then, the AUC, A, associated
to c is given by:

A =

∑m

i=1

∑n

j=1 1xi>yj

mn
(1)

that is the value of theWilcoxon-Mann-Whitney statistic[8].

Proof. The proof is based on the observation that the AUC value is exactly the probability
P (X > Y ) whereX is the random variable corresponding to the distribution of the out-
puts for the positive examples andY the one corresponding to the negative examples [7].
The Wilcoxon-Mann-Whitney statistic is clearly the expression of that probability in the
discrete case, which proves the lemma [8].

Thus, the AUC can be viewed as a measure based on pairwise comparisons between classi-
fications of the two classes. With a perfect ranking, all positive examples are ranked higher
than the negative ones andA = 1. Any deviation from this ranking decreases the AUC.

2An attempt in that direction was made by [15], but, unfortunately, the authors’ analysis and the
result are both wrong.
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Figure 2:For a fixed number of errorsk, there may bex, 0 ≤ x ≤ k, false negative examples.

3 The Expected Value of the AUC

In this section, we computeexactlythe expected value of the AUC over all classifications
with a fixed number of errors and compare that to the error rate.
Different classifiers may have the same error rate but different AUC values. Indeed, for a
given classification thresholdθ, an arbitrary reordering of the examples with outputs more
thanθ clearly does not affect the error rate but leads to different AUC values. Similarly,
one may reorder the examples with output less thanθ without changing the error rate.
Assume that the number of errorsk is fixed. We wish to compute the average value of the
AUC over all classifications withk errors. Our model is based on the simple assumption
that all classifications or rankings withk errors are equiprobable. One could perhaps argue
that errors are not necessarily evenly distributed, e.g., examples with very high or very low
ranks are less likely to be errors, but we cannot justify such biases in general.
For a given classification, there may bex, 0 ≤ x ≤ k, false positive examples. Since the
number of errors is fixed, there arek − x false negative examples. Figure 3 shows the cor-
responding configuration. The two regions of examples with classification outputs above
and below the threshold are separated by a vertical line. For a givenx, the computation of
the AUC,A, as given by Eq. (1) can be divided into the following three parts:

A =
A1 + A2 + A3

mn
, with (2)

A1 = the sum over all pairs(xi, yj) with xi andyj in distinct regions;
A2 = the sum over all pairs(xi, yj) with xi andyj in the region above the threshold;
A3 = the sum over all pairs(xi, yj) with xi andyj in the region below the threshold.

The first term,A1, is easy to compute. Since there are(m − (k − x)) positive examples
above the threshold andn − x negative examples below the threshold,A1 is given by:

A1 = (m − (k − x))(n − x) (3)

To computeA2, we can assign to each negative example above the threshold a position
based on its classification rank. Let position one be the first position above the threshold
and letα1 < . . . < αx denote the positions in increasing order of thex negative examples
in the region above the threshold. The total number of examples classified as positive is
N = m − (k − x) + x. Thus, by definition ofA2,

A2 =
x
∑

i=1

(N − αi) − (x − i) (4)

where the first termN − αi represents the number of examples ranked higher than theith
example and the second termx − i discounts the number of negative examples incorrectly
ranked higher than theith example. Similarly, letα′

1 < . . . < α′
k−x denote the positions of

thek − x positive examples below the threshold, counting positions in reverse by starting
from the threshold. Then,A3 is given by:

A3 =

x′

∑

j=1

(N ′ − α′
j) − (x′ − j) (5)

with N ′ = n − x + (k − x) andx′ = k − x. Combining the expressions ofA1, A2, and
A3 leads to:

A =
A1 + A2 + A3

mn
= 1 +

(k − 2x)2 + k

2mn
−

(
∑x

i=1 αi +
∑x′

j=1 α′
j)

mn
(6)



Lemma 2 For a fixedx, the average value of the AUCA is given by:

< A >x= 1 −
x
n

+ k−x
m

2
(7)

Proof. The proof is based on the computation of the average values of
∑x

i=1 αi and
∑x′

j=1 α′
j for a givenx. We start by computing the average value< αi >x for a given

i, 1 ≤ i ≤ x. Consider all the possible positions forα1 . . . αi−1 andαi+1 . . . αx, when the
value ofαi is fixed at sayαi = l. We havei ≤ l ≤ N − (x − i) since there need to be at
leasti−1 positions beforeαi andN − (x− i) above. There arel−1 possible positions for
α1 . . . αi−1 andN − l possible positions forαi+1 . . . αx. Since the total number of ways
of choosing thex positions forα1 . . . αx out ofN is

(

N
x

)

, the average value< αi >x is:

< αi >x=

∑N−(x−i)
l=i l

(

l−1
i−1

)(

N−l

x−i

)

(

N
x

) (8)

Thus,

<

x
∑

i=1

αi >x=

∑x

i=1

∑N−(x−i)
l=i l

(

l−1
i−1

)(

N−l
x−i

)

(

N

x

) =

∑N

l=1 l
∑x

i=1

(

l−1
i−1

)(

N−l
x−i

)

(

N

x

) (9)

Using the classical identity:
∑

p1+p2=p

(

u
p1

)(

v
p2

)

=
(

u+v
p

)

, we can write:

<

x
∑

i=1

αi >x=

∑N

l=1 l
(

N−1
x−1

)

(

N

x

) =
N(N + 1)

2

(

N−1
x−1

)

(

N

x

) =
x(N + 1)

2
(10)

Similarly, we have:

<

x′

∑

j=1

α′
j >x=

x′(N ′ + 1)

2
(11)

Replacing<
∑x

i=1 αi >x and<
∑x′

j=1 α′
j >x in Eq. (6) by the expressions given by

Eq. (10) and Eq. (11) leads to:

< A >x= 1 +
(k − 2x)2 + k − x(N + 1) − x′(N ′ + 1)

2mn
= 1 −

x
n

+ k−x
m

2
(12)

which ends the proof of the lemma.

Note that Eq. (7) shows that the average AUC value for a givenx is simply one minus the
average of the accuracy rates for the positive and negative classes.

Proposition 1 Assume that a binary classification task withm positive examples andn
negative examples is given. Then, the expected value of the AUCA over all classifications
with k errors is given by:

< A >= 1 −
k

m + n
−

(n − m)2(m + n + 1)

4mn

(

k

m + n
−

∑k−1
x=0

(

m+n
x

)

∑k

x=0

(

m+n+1
x

)

)

(13)

Proof. Lemma 2 gives the average value of the AUC for a fixed value ofx. To compute
the average over all possible values ofx, we need to weight the expression of Eq. (7) with
the total number of possible classifications for a givenx. There are

(

N

x

)

possible ways of

choosing the positions of thex misclassified negative examples, and similarly
(

N ′

x′

)

possible
ways of choosing the positions of thex′ = k − x misclassified positive examples. Thus, in
view of Lemma 2, the average AUC is given by:

< A >=

∑k

x=0

(

N

x

)(

N ′

x′

)

(1 −
x
n

+ k−x
m

2 )
∑k

x=0

(

N
x

)(

N ′

x′

)
(14)
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Figure 3:Mean (left) and relative standard deviation (right) of the AUC as a function of the error rate.
Each curve corresponds to a fixed ratio ofr = n/(n + m). The average AUC value monotonically
increases with the accuracy. Forn = m, as for the top curve in the left plot, the average AUC
coincides with the accuracy. The standard deviation decreases with the accuracy, and the lowest
curve corresponds ton = m.

This expression can be simplified into Eq. (13)3 using the following novel identities:

k
X

x=0

 

N

x

! 

N ′

x′

!

=
k
X

x=0

 

n + m + 1

x

!

(15)

k
X

x=0

x

 

N

x

! 

N ′

x′

!

=
k
X

x=0

(k − x)(m − n) + k

2

 

n + m + 1

x

!

(16)

that we obtained by using Zeilberger’s algorithm4 and numerous combinatorial ’tricks’.

From the expression of Eq. (13), it is clear that the average AUC value is identical to the
accuracy of the classifier only for even distributions (n = m). For n 6= m, the expected
value of the AUC is a monotonic function of the accuracy, see Fig. (3)(left). For a fixed
ratio of n/(n + m), the curves are obtained by increasing the accuracy fromn/(n + m)
to 1. The average AUC varies monotonically in the range of accuracy between0.5 and
1.0. In other words, on average, there seems nothing to be gained in designing specific
learning algorithms for maximizing the AUC: a classification algorithm minimizing the
error rate also optimizes the AUC. However, this only holds for the average AUC. Indeed,
we will show in the next section that the variance of the AUC value is not null for any ratio
n/(n + m) whenk 6= 0.

4 The Variance of the AUC

Let D = mn + (k−2x)2+k

2 , a =
∑x

i=1 αi, a′ =
∑x′

j=1 α′
j , andα = a + a′. Then, by

Eq. (6),mnA = D − α. Thus, the variance of the AUC,σ2(A), is given by:

(mn)2σ2(A) = < (D − α)2 − (< D > − < α >)2 > (17)

= < D2 > − < D >2 + < α2 > − < α >2
−2(< αD > − < α >< D >)

As before, to compute the average of a termX over all classifications, we can first deter-
mine its average< X >x for a fixedx, and then use the functionF defined by:

F (Y ) =

∑k

x=0

(

N

x

)(

N ′

x′

)

Y
∑k

x=0

(

N
x

)(

N ′

x′

)
(18)

and< X >= F (< X >x). A crucial step in computing the exact value of the variance of
the AUC is to determine the value of the terms of the type< a2 >x=< (

∑x

i=1 αi)
2 >x.

3An essential difference between Eq. (14) and the expression given by [15] is the weighting by
the number of configurations. The authors’ analysis leads them to the conclusion that the average
AUC is identical to the accuracy for all ratiosn/(n + m), which is false.

4We thank Neil Sloane for having pointed us to Zeilberger’s algorithm and Maple package.



Lemma 3 For a fixedx, the average of(
∑x

i=1 αi)
2 is given by:

< a2 >x=
x(N + 1)

12
(3Nx + 2x + N) (19)

Proof. By definition ofa, < a2 >x= b + 2c with:

b =<

x
∑

i=1

α2
i >x c =<

x
∑

1≤i<j≤x

αiαj >x (20)

Reasoning as in the proof of Lemma 2, we can obtain:

b =

∑x

i=1

∑N−(x−i)
l=i l2

(

l−1
i−1

)(

N−l
x−i

)

(

N

x

) =

N
∑

l=1

l2
(

N−1
x−1

)

(

N

x

) =
(N + 1)(2N + 1)x

6
(21)

To computec, we start by computing the average value of< αiαj >x, for a given pair(i, j)
with i < j. As in the proof of Lemma 2, consider all the possible positions ofα1 . . . αi−1,
αi+1 . . . αj−1, andαj+1 . . . αx whenαi is fixed atαi = l, andαj is fixed atαj = l′.
There arel − 1 possible positions for theα1 . . . αi−1, l′ − l − 1 possible positions for
αi+1 . . . αj−1, andN − l′ possible positions forαj+1 . . . αx. Thus, we have:

< αiαj >x=

∑

i≤l<l′≤N−(x−j) ll′
(

l−1
i−1

)(

l′−l−1
j−i−1

)(

N−l′

x−j

)

(

N

x

) (22)

and

c =

∑

l<l′ ll′
∑

m1+m2+m3=x−2

(

l−1
m1

)(

l′−l−1
m2

)(

N−l′

m3

)

(

N
x

) (23)

Using the identity
∑

m1+m2+m3=x−2

(

l−1
m1

)(

l′−l−1
m2

)(

N−l′

m3

)

=
(

N−2
x−2

)

, we obtain:

c =
(N + 1)(3N + 2)x(x − 1)

24
(24)

Combining Eq. (21) and Eq. (24) leads to Eq. (19).

Proposition 2 Assume that a binary classification task withm positive examples andn
negative examples is given. Then, the variance of the AUCA over all classifications with
k errors is given by:

σ2(A) = F ((1 −
x
n

+ k−x
m

2
)2) − F ((1 −

x
n

+ k−x
m

2
))2 + (25)

F (
mx2 + n(k − x)2 + (m(m + 1)x + n(n + 1)(k − x)) − 2x(k − x)(m + n + 1)

12m2n2
)

Proof. Eq. (18) can be developed and expressed in terms ofF , D, a, anda′:

(mn)2σ2(A) = F ([D− < a + a′ >x]2) − F (D− < a + a′ >x)2+

F (< a2 >x − < a >2
x) + F (< a′2 >x − < a′ >2

x) (26)

The expressions for< a >x and < a′ >x were given in the proof of Lemma 2, and
that of < a2 >x by Lemma 3. The following formula can be obtained in a similar
way:< a′2 >x= x′(N ′+1)

12 (3N ′x′ + 2x′ + N ′). Replacing these expressions in Eq. (26)
and further simplifications give exactly Eq. (25) and prove the proposition.

The expression of the variance is illustrated by Fig. (3)(right) which shows the value of
one standard deviation of the AUC divided by the corresponding mean value of the AUC.
This figure is parallel to the one showing the mean of the AUC (Fig. (3)(left)). Each line
is obtained by fixing the ration/(n + m) and varying the number of errors from 1 to the
size of the smallest class. The more uneven class distributions have the highest variance,
the variance increases with the number of errors. These observations contradict the inexact
claim of [15] that the variance is zero for all error rates with even distributionsn = m. In
Fig. (3)(right), the even distributionn = m corresponds to the lowest dashed line.



Dataset Size # of n
n+m

AUCsplit[4] RankBoost
Attr. (%) Accuracy (%) AUC (%) Accuracy (%) AUC (%)

Breast-Wpbc 194 33 23.7 69.5 ± 10.6 59.3 ± 16.2 65.5 ± 13.8 80.4 ± 8.0
Credit 653 15 45.3 81.0 ± 7.4 94.5 ± 2.9
Ionosphere 351 34 35.9 89.6 ± 5.0 89.7 ± 6.7 83.6 ± 10.9 98.0 ± 3.3
Pima 768 8 34.9 72.5 ± 5.1 76.7 ± 6.0 69.7 ± 7.6 84.8 ± 6.5
SPECTF 269 43 20.4 67.3 93.4
Page-blocks 5473 10 10.2 96.8 ± 0.2 95.1 ± 6.9 92.0 ± 2.5 98.5 ± 1.5
Yeast (CYT) 1484 8 31.2 71.1 ± 3.6 73.3 ± 4.0 45.3 ± 3.8 78.5 ± 3.0

Table 1:Accuracy and AUC values for several datasets from the UC Irvine repository. The values
for RankBoost are obtained by 10-fold cross-validation. The values for AUCsplit are from [4].

5 Experimental Results

Proposition 2 above demonstrates that, for uneven distributions, classifiers with the same
fixed (low) accuracy exhibit noticeably different AUC values. This motivates the use of
algorithms directly optimizing the AUC rather than doing so indirectly via minimizing the
error rate. Under certain conditions, RankBoost [5] can be viewed exactly as an algorithm
optimizing the AUC. In this section, we make the connection between RankBoost and
AUC optimization, and compare the performance of RankBoost to two recent algorithms
proposed for optimizing an approximation [15] or locally optimizing the AUC [4].
The objective of RankBoost is to produce a ranking that minimizes the number of incor-
rectly ordered pairs of examples, possibly with different costs assigned to the mis-rankings.
When the examples to be ranked are simply two disjoint sets, the objective function mini-
mized by RankBoost is

rloss=
m
∑

i=1

n
∑

j=1

1

m

1

n
1xi≤yj

(27)

which is exactly one minus the Wilcoxon-Mann-Whitney statistic. Thus, by Lemma 1, the
objective function maximized by RankBoost coincides with the AUC.
RankBoost’s optimization is based on combining a number of weak rankings. For our
experiments, we chose as weak rankings threshold rankers with the range{0, 1}, similar
to the boosted stumps often used by AdaBoost [6]. We used the so-calledThird Methodof
RankBoost for selecting the best weak ranker. According to this method, at each step, the
weak threshold ranker is selected so as to maximize the AUC of the weighted distribution.
Thus, with this method, the global objective of obtaining the best AUC is obtained by
selecting the weak ranking with the best AUC at each step.
Furthermore, the RankBoost algorithm maintains a perfect50-50% distribution of the
weights on the positive and negative examples. By Proposition 1, for even distributions,
the mean of the AUC is identical to the classification accuracy. For threshold rankers like
step functions, or stumps, there is no variance of the AUC, so the mean of the AUC is equal
to the observed AUC. That is, instead of viewing RankBoost as selecting the weak ranker
with the best weighted AUC value, one can view it as selecting the weak ranker with the
lowest weighted error rate. This is similar to the choice of the best weak learner for boosted
stumps in AdaBoost. So, for stumps, AdaBoost and RankBoost differ only in the updat-
ing scheme of the weights: RankBoost updates the positive examples differently from the
negative ones, while AdaBoost uses one common scheme for the two groups.
Our experimental results corroborate the observation that RankBoost is an algorithm op-
timizing the AUC. RankBoost based on boosted stumps obtains AUC values that are sub-
stantially better than those reported in the literature for algorithms designed to locally or
approximately optimize the AUC. Table 1 compares the results of RankBoost on a number
of datasets from the UC Irvine repository to the results reported by [4]. The results for
RankBoost are obtained by 10-fold cross-validation. For RankBoost, the accuracy and the
best AUC values reported on each line of the table correspond to the same boosting step.
RankBoost consistently outperforms AUCsplit in a comparison based on AUC values, even
for the datasets such as Breast-Wpbc and Pima where the two algorithms obtain similar ac-
curacies. The table also lists results for the UC Irvine Credit Approval and SPECTF heart
dataset, for which the authors of [15] report results corresponding to their AUC optimiza-
tion algorithms. The AUC values reported by [15] are no better than92.5% for the Credit



Approval dataset and only87.5% for the SPECTF dataset, which is substantially lower.
From the table, it is also clear that RankBoost is not an error rate minimization algorithm.
The accuracy for the Yeast (CYT) dataset is as low as45%.

6 Conclusion

A statistical analysis of the relationship between the AUC value and the error rate was
given, including the first exact expression of the expected value and standard deviation of
the AUC for a fixed error rate. The results offer a better understanding of the effect on the
AUC value of algorithms designed for error rate minimization. For uneven distributions
and relatively high error rates, the standard deviation of the AUC suggests that algorithms
designed to optimize the AUC value may lead to substantially better AUC values. Our
experimental results using RankBoost corroborate this claim.
In separate experiments we have observed that AdaBoost achieves significantly better er-
ror rates than RankBoost (as expected) but that it also leads to AUC values close to those
achieved by RankBoost. It is a topic for further study to explain and understand this prop-
erty of AdaBoost. A partial explanation could be that, just like RankBoost, AdaBoost
maintains at each boosting round an equal distribution of the weights for positive and neg-
ative examples.
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