
Iterative scaled trust-region learning in
Krylov subspaces via Pearlmutter’s

implicit sparse Hessian-vector multiply

Eiji Mizutani
Department of Computer Science

Tsing Hua University
Hsinchu, 300 TAIWAN R.O.C.

eiji@wayne.cs.nthu.edu.tw

James W. Demmel
Mathematics and Computer Science
University of California at Berkeley,

Berkeley, CA 94720 USA
demmel@cs.berkeley.edu

Abstract

The online incremental gradient (or backpropagation) algorithm is
widely considered to be the fastest method for solving large-scale
neural-network (NN) learning problems. In contrast, we show that
an appropriately implemented iterative batch-mode (or block-mode)
learning method can be much faster. For example, it is three times
faster in the UCI letter classification problem (26 outputs, 16,000
data items, 6,066 parameters with a two-hidden-layer multilayer
perceptron) and 353 times faster in a nonlinear regression problem
arising in color recipe prediction (10 outputs, 1,000 data items,
2,210 parameters with a neuro-fuzzy modular network). The three
principal innovative ingredients in our algorithm are the following:
First, we use scaled trust-region regularization with inner-outer it-
eration to solve the associated “overdetermined” nonlinear least
squares problem, where the inner iteration performs a truncated
(or inexact) Newton method. Second, we employ Pearlmutter’s
implicit sparse Hessian matrix-vector multiply algorithm to con-
struct the Krylov subspaces used to solve for the truncated New-
ton update. Third, we exploit sparsity (for preconditioning) in the
matrices resulting from the NNs having many outputs.

1 Introduction

Our objective function to be minimized for optimizing the n-dimensional parame-
ter vector „ of an F -output NN model is the sum over all the d data of squared
residuals: E(„) = 1

2
‖r(„)‖2

2 = 1
2

∑m

i=1
r2

i = 1
2

∑F

k=1
‖rk‖2

2. Here, m≡Fd; r(„) is the m-
dimensional residual vector composed of all m residual elements: ri (i = 1, . . . , m);
and rk the d-dimensional residual vector evaluated at terminal node k. The gradi-
ent vector and the Hessian matrix of E(„) are given by g ≡ JT r and H ≡ JT J + S,

respectively, where J, the m×n (residual) Jacobian matrix of r, is readily obtain-
able from backpropagation (BP) process, and S is the matrix of second-derivative



terms of r; i.e., S ≡ ∑m

i=1
ri∇2ri. Most nonlinear least squares algorithms take ad-

vantage of information of J or its cross product called the Gauss-Newton (GN)
Hessian JT J (or the Fisher information matrix for E(.) in Amari’s natural-gradient
learning [1]), which is the important portion of H because influence of S becomes
weaker and weaker as residuals become smaller while learning progresses. With
multiple F -output nonlinear models (except fully-connected NNs), J is known to
have the m × n block angular matrix form (see [7, 6] and references therein).
For instance, consider a single-hidden layer S-H-F MLP (with S-input H-hidden
F -output nodes); there are nA=F (H + 1) terminal parameters „A (including
threshold parameters) on direct connections to F terminal nodes, each of which has
CA(=H + 1) direct connections, and the rest of nB=H(S + 1) parameters are not
directly connected to any terminal node; hence, nB hidden parameters „B. In
other words, model’s parameters „ (n=FCA + nB in total) can separate as: „T =
[„AT |„BT

] =[„AT

1 , · · · , „AT

k , · · · , „AT

F |„BT

], where „A
k is a vector of the kth subset of

CA terminal parameters directly linked to terminal node k (k = 1, · · · ,F ). The
associated residual Jacobian matrix J can be given in the block-angular form below
left, and thus the (full) Hessian matrix H has the n × n sparse block arrow form
below right (× denotes some non-zero block) as well as the GN-Hessian JT J:

J︸︷︷︸
m×n

=




A1 B1
A2 B2

. . .
.
.
.

AF BF


 , H︸︷︷︸

n×n

=




× ×

× ×

× ×

× ×

× × × × ×


 . (1)

Here in J, Ak and Bk are d × CA and d × nB Jacobian matrices, respectively, of
the d-dimensional residual vector rk evaluated at terminal node k. Notice that
there are F diagonal Ak blocks [because (F − 1)CA terminal parameters excluding
„A

k have no effect on rk], and F vertical Bk blocks corresponding to the nB hidden
parameters „B that contribute to minimizing all the residuals rk(k=1, · · · , F ) evalu-
ated at all F terminal nodes. Therefore, the posed problem is overdetermined when
“m > n” (namely, “d > CA + 1

F
nB”) holds. In addition, when the terminal nodes

have linear identity functions, terminal parameters „A are linear, and thus all Ak

blocks become identical A1 = A2 = · · · = AF , with H + 1 hidden-node outputs (in-
cluding one constant bias-node output) in each row. For small- and medium-scale
problems, direct batch-mode learning is recommendable with a suitable “direct” ma-
trix factorization, but attention must be paid to exploiting obvious sparsity in either
block-angular J or block-arrow H so as to render the algorithms efficient in both
memory and operation counts [7, 6]. Notice that H−1 is dense even if H has a nice
block-arrow sparsity structure. For large-scale problems, Krylov subspace meth-
ods, which circumvent the need to perform time-consuming and memory-intensive
direct matrix factorizations, can be employed to realize what we call iterative
batch-mode learning. If any rows (or columns) of those matrices Ak and Bk

are not needed explicitly, then Pearlmutter’s method [11] can automatically exploit
such sparsity to perform sparse Hessian-vector product in constructing a Krylov
subspace for parameter optimization, which we describe in what follows with our
numerical evidence.

2 Inner-Outer Iterative Scaled Trust-Region Methods

Practical Newton methods enjoy both the global convergence property of the Cauchy
(or steepest descent) method and the fast local convergence of the Newton method.



2.1 Outer iteration process in trust-region methods

One might consider a convex combination of the Cauchy step ∆„Cauchy and the
Newton step ∆„Newton such as (using a scalar parameter h):

∆„Dogleg
def= (1 − h)∆„Cauchy + h∆„Newton, (2)

which is known as the dogleg step [4, 9]. This step yields a good approximate solution
to the so-called “scaled 2-norm” or “M -norm” trust-region subproblem (e.g., see
Chap. 7 in [2]) with Lagrange multiplier µ below:

min
∆„ q(∆„) subject to ‖∆„‖M ≤ R, or min

∆„
{
q(∆„) + µ

2
(∆„T M∆„ − R2)

}
,

(3)
where the distances are measured in the M -norm: ‖x‖M =

√
xT Mx with a symmet-

ric positive definite matrix M, and R (called the trust-region radius) signifies the
trust-region size of the local quadratic model q(∆„)

def
= E(„) + gT ∆„ + 1

2∆„T H∆„.
Radius R is controlled according to how well q(.) predicts the behavior of E(.) by
checking the error reduction ratio below:

ρ =
Actual error reduction

Predicted error reduction
=

E(„now) − E(„next)
E(„now) − q(∆„)

. (4)

For more details, refer to [9, 2]. The posed constrained quadratic minimization can
be solved with Lagrange multiplier µ: If ∆„ is a solution to the posed problem, then
∆„ satisfies the formula: (H + µM)∆„ = −g, with µ(‖∆„‖M − R) = 0, µ ≥ 0, and
H + µM positive semidefinite. In nonlinear least squares context, the nonnegative
scalar parameter µ is known as the Levenberg-Marquardt parameter. When
µ = 0 (namely, R ≥ ‖∆„Newton‖M), the trust-region step ∆„ becomes the Newton
step ∆„Newton

def
= −H−1g, and, as µ increases (i.e., as R decreases), ∆„ gets closer to

the (full) Cauchy step ∆„Cauchy: ∆„Cauchy
def
= −

(
gT M−1g/gT M−1HM−1g

)
M−1g.

When R < ‖∆„Cauchy‖M , the trust-region step ∆„ reduces to the restricted Cauchy
step ∆„RC

def
= −(R/‖∆„Cauchy‖M )∆„Cauchy. If ‖∆„Cauchy‖M < R < ‖∆„Newton‖M ,

∆„ is the “dogleg step,” intermediate between ∆„Cauchy and ∆„Newton, as shown in
Eq. (2), where scalar h (0 < h < 1) is the positive root of ‖s + hp‖M = R:

h = −sT Mp+
√

(sT Mp)2+pT Mp(R2−sT Ms)

pT Mp
, (5)

with s
def
= ∆„Cauchy and p

def
= ∆„Newton −∆„Cauchy (when pT g < 0). In this way, the

trial step ∆„ is subject to trust-region regularization.

In large-scale problems, the linear-equation solution sequence {∆„k} is generated
iteratively while seeking a trial step ∆„ in the inner iteration process, and the pa-
rameter sequence {„i}, whose two consecutive elements are denoted by „now and
„next, is produced by the outer iteration (i.e., epoch in batch mode). The outer
iterative process updates parameters by „next = „now + ∆„ without taking any
uphill movement: That is, if the step is not satisfactory, then R is decreased so as
to realize an important Levenberg-Marquardt concept: the failed step is shortened
and deflected towards the Cauchy-step direction simultaneously. For this purpose,
the trust-region methods compute the gradient vector in batch mode or with (suf-
ficiently large) data block (i.e., block mode; see our demonstration in Section 3).

2.2 Inner iteration process with truncated preconditioned linear CG

We employ a preconditioned conjugate gradient (PCG) (among many Krylov sub-
space methods; see Section 6.6 in [3] and Chapter 5 in [2]) with our symmetric



positive definite preconditioner M for solving the M -norm trust-region subprob-
lem (3). This is the truncated PCG (also known as Steihaug-Toint CG) applicable
even to nonconvex problems for solving inexactly the Newton formula by the inner
iterative process below (see pp. 628-629 in [10]; pp. 202–218 in [2]) based on the
standard PCG algorithm (e.g., see page 317 in [3]):
Algorithm 1: The inner iteration process via preconditioned CG .
1. Initialization (k=0):

Set ∆„0 = 0 and ‹0 = −g (=−g − H∆„0);
Solve Mz = ‹0 for pseudoresiduals: z = M−1‹0;
Compute τ0 = δT

0 z;
Set k = 1 and d1 = z, and then proceed to Step 2.

2. Matrix-vector product: z = Hdk = JT (Jdk) + Sdk (see also Algorithm 2).
3. Curvature check: γk = dT

k z = dT
k Hdk.

If γk > 0, then continue with Step 4. Otherwise, compute h (> 0) such that
‖∆„k−1 + hdk‖M = R, and terminate with ∆„ = ∆„k−1 + hdk.

4. Step size: ηk = τk−1
γk

.
5. Approximate solution: ∆„k = ∆„k−1 + ηkdk.

If ‖∆„k‖M < R, go onto Step 6; else terminate with ∆„ = R
‖∆„k‖M

∆„k. (6)

6. Linear-system residuals: δk = δk−1 − ηkz [= −g − H∆„k = −q ′(∆„k)].
If ‖δk‖2 is small enough; i.e., ‖δk‖2 ≤ ξ‖g‖2, then terminate with ∆„ = ∆„k.

7. Pseudoresiduals: z = M−1‹k, and then compute τk = δT
k z.

8. Conjugation factor: βk+1 = τk

τk−1
.

9. Search direction: dk+1 = δk + βk+1dk.
10. If k < klimit, set k = k + 1 and return to Step 2.

Otherwise, terminate with ∆„ = ∆„k. �

At Step 3, h is obtainable with Eq. (5) with s = ∆„k−1 and p = dk plugged in.
Likewise, in place of Eq. (6) at Step 5, we may use Eq. (5) for ∆„ = ∆„k−1 +

hdk such that ‖∆„k−1 + hdk‖M = R, but both computations become identical if
R ≤ ‖∆„Cauchy‖M ; otherwise, Eq. (6) is less expensive and tends to give more bias
towards the Newton direction. The inner-iterative process terminates (i.e., stops at
inner iteration k) when one of the next four conditions holds:
(A) dT

k Hdk ≤ 0, (B) ‖∆„k‖M ≥ R, (C) ‖H∆„k + g‖2 ≤ ξ‖g‖2, (D) k=klimit. (7)
Condition (D) at Step 10 is least likely to be met since there would be no prior
knowledge about preset limits klimit to inner iterations (usually, klimit=n). As long
as dT

k Hdk > 0 holds, PCG works properly until the CG-trajectory hits the trust-
region boundary [Condition (B) at Step 5], or till the 2-norm linear-system residuals
become small [Condition (C) at Step 6], where ξ can be fixed (e.g., ξ=0.01). Condi-
tion (A) dT

k Hdk ≤ 0 (at Step 3) may hold when the local model is not strictly convex
(or H is not positive definite). That is, dk is a direction of zero or negative curvature;
a typical exploitation of non-positive curvature is to set ∆„ equal to the “step to the
trust-region boundary along that curvature segment (in Step 3)” as a model mini-
mizer in the trust region. In this way, the terminated kth CG step yields an approxi-
mate solution to the trust-region subproblem (3), and it belongs to the Krylov sub-
space span{−M− 1

2 g,−(M− 1
2 HM− 1

2 )M− 1
2 g, ...,−(M− 1

2 HM− 1
2 )k−1M− 1

2 g}, resulting
from our application of CG (without multiplying by M− 1

2 ) to the symmetric
Newton formula (M− 1

2 HM− 1
2 )(M

1
2 ∆„) = −M− 1

2 g, because M−1H (in the sys-
tem M−1H∆„ = −M−1g) is unlikely symmetric (see page 317 in [3]) even if M

is a diagonal matrix (unless M = I).



The overall memory requirement of Algorithm 1 is O(n) because at most five n-
vectors are enough to implement. Since the matrix-vector product Hdk at Step 2
is dominant in operation cost of the entire inner-outer process, we can employ
Pearlmutter’s method with no H explicitly required. To better understand the
method, we first describe a straightforward implicit sparse matrix-vector multiply
when H = JT J; it evaluates JT Jdi (without forming JT J) in two-step implicit
matrix-vector product as z=JT (Jdi), exploiting block-angular J in Eq. (1); i.e.,
working on each block, Ak and Bk, in a row-wise manner below:
Algorithm 2: Implicit (i.e., matrix-free) sparse matrix-vector multiplication step
with an F -output NN model at inner iteration i starting with z = 0:
for p = 1 to d (i.e., one sweep of d training data):

(a) do forward pass to compute F final outputs yp(„) on datum p;
for k = 1 to F (at each terminal node k):

• (b) do backward pass to obtain the pth row of Ak as the CA-vector
aT

p,k, and the pth row of Bk as the nB-vector bT
p,k;

• (c) compute αkap and αkbp,k, where scalar αk = aT
p,kd

a
i,k + bT

p,kd
b
i ,

and then add them to their corresponding elements of z;
end for k.

end for p. �

Here, Step (a) costs at least 2dn (see details in [8]); Step (b) costs at least 2mlu,

where m=Fd and lu=CA+nB < n=FCA+nB; and Step (c) costs 4mlu; overall, Algo-
rithm 2 costs O(mlu), linear in F . Note that if sparsity is ignored, the cost becomes
O(mn), quadratic in F since mn = Fd(FCA+nB). Algorithm 2 can extract explicitly
F pairs of row vectors (aT and bT ) of J (with Flu storage) on each datum, making
it easier to apply other numerical linear algebra approaches such as preconditioning
to reduce the number of inner iterations. Yet, if the row vectors are not needed ex-
plicitly, then Pearlmutter’s method is more efficient, calculating αk [see Step (c)] in
its forward pass (i.e., R{yk}=αk; see Eq. (4.3) on page 151 in [11]). When H = JT J,
it is easy to simplify its backward pass (see Eq. (4.4) on page 152 in [11]), just
by eliminating the terms involving residuals r and second-derivatives of node func-
tions f ′′(.), so as to multiply vectors ak and bk through by scalar αk implicitly . This
simplified method of Pearlmutter runs in time O(dn), whereas Algorithm 2 does in
O(mlu). Since mlu − dn = dF (CA + nB) − d(FCA + nB) = d(F − 1)nB , Pearlmutter’s
method can be up to F times faster than Algorithm 2. Furthermore, Pearlmutter’s
original method efficiently multiplies an n-vector by the “full” Hessian matrix still
in O(dn) for z = Hdi = JT (Jdi) + Sdi =

∑m

j=1
(uT

j di)uj +
∑m

j=1
[∇2rj ]rjdi, where uT

i

is the ith row vector of J; notably, the method automatically exploits block-arrow
sparsity of H [see Eq. (1), right] in the essentially same way as the standard BP
deals with block-angular sparsity of J [see Eq. (1), left] to perform the matrix-vector
product g = JT r in O(dn).

3 Experiments and Discussion

In simulation, we compared the following five algorithms:
Algorithm A: Online-BP (i.e., H = I) with a fixed momentum (0.8);
Algorithm B: Algorithm 2 alone for Algorithm 1 with H = JT J (see [6]);
Algorithm C: Pearlmutter’s method alone for Algorithm 1 with H = JT J;
Algorithm D: Algorithm 2 to obtain preconditioner M = diag(JT J) only, and

Pearlmutter’s method for Algorithm 1 with H = JT J;
Algorithm E: Same as Algorithm D except with “full” Hessian H = JT J + S. �



Algorithm A is tested for our speed comparison purpose, because if it works, it’s
probably fastest. In Algorithms D and E, Algorithm 2 was only employed for
obtaining a diagonal preconditioner M = diag(JT J) (or Jacobi preconditioner) for
Algorithm 1, whereas in Algorithms B and C, no preconditioning (M = I) was ap-
plied. The performance comparisons were made with a nonlinear regression task and
a classification benchmark, the letter recognition problem, from the UCI machine
learning repository. All the experiments were conducted on a 1.6-GHz Pentium-IV
PC with FreeBSD 4.5 and gcc-2.95.3 compiler (with -O2 optimization flag).

The first regression task was a real-world application color recipe prediction, a
problem of determining mixing proportions of available colorants to reproduce a
given target color, requiring mappings from 16 inputs (16 spectral reflectance sig-
nals of the target color) to ten outputs (F=10) (ten colorant proportions) using
1,000 training data (d=1,000; m=10,000) with 302 test data. The table below
shows the results averaged over 20 trials with a single 16-82-10 MLP [n=2,224
(CA=83;nB=1,394;lu=1,477); hence, mlu

dn =6.6], which was optimized until “train-
ing RMSE ≤ 0.002 (application requirement)” satisfied, when we say that “con-
vergence” (relatively early stop) occurs. Clearly, the posed regression task is non-
trivial because Algorithm A, online-BP, took roughly six days (averaged over only
ten trials), nearly 280 (=8748.4/31.2) times slower than (fastest) Algorithm D. In
generalization performance, all the posed algorithms were more or less equivalent.

Model Single 16-82-10 MLP Five-MLP mixed
Algorithm A B C D E B C D

Total time (min) 8748.4 336.4 107.2 31.2 64.5 162.3 57.6 20.9
Stopped epoch 2,916,495.2 272.5 261.5 132.7 300.3 147.3 160.0 179.1
Time/epoch (sec) 0.2 73.8 24.6 14.1 12.9 65.2 21.6 7.0
Inner itr./epoch N/A 218.3 216.0 142.7 110.9 193.8 174.1 66.0
Flops ratio/itr. N/A 3.9 1.0 1.3 4.1 1.2
Test RMSE 0.020 0.015 0.015 0.015 0.015 0.016 0.016 0.017

We also observed that use of full Hessian matrix (Algorithm E) helped reduce in-
ner iterations per epoch, although the total convergence time turned out to be
greater than that obtained with the GN-Hessian (Algorithm D), presumably be-
cause our Jacobi-preconditioner must be more suitable for the GN-Hessian than for
the full Hessian, and perhaps because the inner iterative process of Algorithm E
can terminate due to detection of non-positive curvature in Eq. (7)(A); this extra
chance of termination may increase the total epochs, but help reduce the time per
epoch. Remarkably, the time per inner iteration of Algorithm E did not differ much
from Algorithms C and D owing to Pearlmutter’s method; in fact, given precon-
ditioner M, Algorithm E merely needed about 1.3 times more flops ∗ per inner
iteration than Algorithms C and D did, although Algorithm B needed nearly 3.9
times more. The measured megaflop rates for all these codes lie roughly in the
range from 200-270 Mflop/sec; typically, below 10 % of peak machine speed.

For improving single-MLP performance, one might employ two layers of hidden
nodes (rather than one large hidden layer; see the letter problem below), which
increases nB while reducing nA, rendering Algorithm 2 less efficient (i.e., slower).
Alternatively, one might introduce direct connections between the input and ter-
minal output layers, which increases CA, the column size of Ak, retaining nice
parameter separability. Yet another approach (if applicable) is to use a “comple-

∗The floating-point operation counts were measured by using PAPI (Performance Ap-
plication Programming Interface); see http://icl.cs.utk.edu/projects/papi/.



mentary mixtures of Z MLP-experts” model (or a neuro-fuzzy modular network)
that combines Z smaller-size MLPs complementarily ; the associated residual vector
to be minimized becomes: r(„) = y(„) − t =

[∑Z

i=1
wioi

]
− t, where scalar wi,

the ith output of the integrating unit, is the ith (normalized) mixing proportion
assigned to the outputs (F -vector oi) of expert-MLP i. Note that each expert learns
“residuals” rather than “desired outputs” (unlike in the committee method below)
in the sense that only the final combined outputs y must come close to the desired
ones t. That is, there are strong coupling effects (see page 80 in [5]) among all ex-
perts; hence, it is crucial to consider the global Hessian across all experts to optimize
them simultaneously [7]. The corresponding J has the same block-angular form as
that in Eq. (1)(left) with Ak ≡ [A1

kA
2
k · · ·AZ

k ], and Bk ≡ [B1
kB

2
k · · ·BZ

k ] (k = 1, · · · , F ).
Here, the residual Jacobian portion for the parameters of the integrating unit was
omitted because they were merely fine-tuned with a steepest-descent type method
owing to our knowledge-based design for input-partition to avoid (too many) local
experts. Specifically, the spectral reflectance signals (16 inputs) were converted to
the hue angle as input to the integrating unit that consists of five bell-shaped basis
functions, partitioning that hue-subspace alone in a fuzzy fashion into only five color
regions (red, yellow, green, blue, and violet) for five 16-16-10 MLP-experts, each of
which receives all the 16 spectral signals as input [hence, Z=5; n=2,210 (CA=85;
nB=1,360); mlu

dn =6.5]. Due to localized parameter-tunings, our five-MLP mixtures
model was better in learning; see faster learning in table above. In particular, our
model with Algorithm D worked 353 (≈ 123.1 × 60.0/20.9) times faster than with
Algorithm A that took 123.1 hours (see [6]) and 419 (≈ 8748.4/20.9) times faster
than the single MLP with Algorithm A. For our complementary mixtures model,
R{.}-operator of Pearlmutter’s method is readily applicable; for instance, at termi-
nal node k (k=1, · · · ,F ): R{rk} = R{yk} =

∑Z

i
R{oi,k}wi +

∑Z

i
R{wi}oi,k, where

each R{oi,k} yields αk [see Algorithm 2(c)] for each expert-MLP i (i = 1, · · · ,Z).

The second letter classification benchmark problem involves 16 inputs (features) and
26 outputs (alphabets) with 16,000 training data (F=26; d=16,000; m=416,000)
plus 4,000 test data. We used the 16-70-50-26 MLP (see [12]) (n=6,066) with 10 sets
of different initial parameters randomly generated uniformly in the range [−0.2, 0.2].
We implemented block-mode learning (as well as batch mode) just by splitting
the training data set into two or four equally-sized data blocks, and each data block
alone is employed for Algorithms 1 and 2 except for computing ρ in Eq. (4), where
evaluation of E(.) involves all the d training data. Notice that two-block mode
learning scheme updates model’s parameters „ twice per epoch, whereas online-
BP updates them on each datum (i.e., d times per epoch). We observed that
possible redundancy in the data set appeared to help reduce the number of inner
iterations, speeding up our iterative batch-mode learning ; therefore, we did not use
preconditioning. The next table shows the average performance (over ten trials)
when the best test-set performance was obtained by epoch 1,000 with online-BP
(i.e., Algorithm A) and by epoch 50 with Algorithm C in three learning modes:

Average results Online-BP Four-block mode Two-block mode Batch mode
Total time (min) 63.2 22.4 41.0 61.1
Stopped epoch 597.8 36.6 22.1 27.1
Time/epoch (sec) 6.3 36.8 111.7 135.2
Avg. inner itr. N/A 4.5/block 26.3/block 31.0/batch
Error (train/test) 2.3% / 6.4% 2.7% / 5.1% 1.2% / 4.6% 1.2% / 4.9%

Committee error 0.2% / 3.0% 1.2% / 2.8% 0.3% / 2.2% 0.1% / 2.3%

On average, Algorithm C in four-block mode worked about three (≈ 63.2/22.4)



times faster than online-BP, and thus can work faster than batch-mode nonlinear-
CG algorithms, since, reported in [12], online-BP worked faster than nonlinear-CG.
Here, we also tested the committee methods (see Chap. 8 in [13]) that merely
combined all (equally-weighted) outputs of the ten MLPs, which were optimized
independently in this experiment. The committee error was better than the average
error, as expected. Intriguingly, our block-mode learning schemes introduced small
(harmless) bias, improving the test-data performance; specifically, the two-block
mode yielded the best test error rate 2.2% even with this simple committee method.

4 Conclusion and Future Directions

Pearlmutter’s method can construct Krylov subspaces efficiently for implementing
iterative batch- or block-mode learning. In our simulation examples, the simpler ver-
sion of Pearlmutter’s method (see Algorithms C and D) worked excellently. But it
would be of interest to investigate other real-life large-scale problems to find out the
strengths of the full-Hessian based methods (see Algorithm E) perhaps with a more
elaborate preconditioner, which would be much more time-consuming per epoch
but may reduce the total time dramatically; hence, need to deal with a delicate
balancing act. Beside the simple committee method, it would be worth examining
our algorithms for implementing other statistical learning methods (e.g., boosting)
in conjunction with appropriate numerical linear algebra techniques. These are part
of our overlay ambitious goal for attacking practical large-scale problems.

References

[1] Shun-ichi Amari. Natural gradient works efficiently in learning. In Neural Computa-
tion, 10, pp. 251–276, 1998.

[2] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-Region Methods. SIAM, 2000.

[3] James W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[4] J. E. Dennis, D. M. Gay, and R. E. Welsch. “An Adaptive Nonlinear Least-Squares
Algorithm.” In ACM Trans. on Mathematical Software, 7(3), pp. 348–368, 1981.

[5] R. A. Jacobs, M. I. Jordan, S. J. Nowlan and G. E. Hinton. “Adaptive Mixtures of
Local Experts.” In Neural Computation, pp. 79–87, Vol. 3, No. 1, 1991.

[6] Eiji Mizutani and James W. Demmel. “On structure-exploiting trust-region regular-
ized nonlinear least squares algorithms for neural-network learning.” In International
Journal of Neural Networks. Elsevier Science, Vol. 16, pp. 745-753, 2003.

[7] Eiji Mizutani and James W. Demmel. “On separable nonlinear least squares algo-
rithms for neuro-fuzzy modular network learning.” In Proceedings of the IEEE Int’l
Joint Conf. on Neural Networks, Vol.3, pp. 2399–2404, Honolulu USA, May, 2002.
(Available at http://www.cs.berkeley.edu/˜eiji/ijcnn02.pdf.)

[8] Eiji Mizutani and Stuart E. Dreyfus. “On complexity analysis of supervised MLP-
learning for algorithmic comparisons.” In Proceedings of the INNS-IEEE Int’l Joint
Conf. on Neural Networks, Vol. 1, pp. 347–352, Washington D.C., July, 2001.

[9] Jorge J. Moré and Danny C. Sorensen. “Computing A Trust Region Step.” In SIAM
J. Sci. Stat. Comp. 4(3), pp. 553–572, 1983.

[10] Trond Steihaug “The Conjugate Gradient Method and Trust Regions in Large Scale
Optimization.” In SIAM J. Numer. Anal. pp. 626–637, vol. 20, no. 3. 1983.

[11] Barak A. Pearlmutter. “Fast exact multiplication by the Hessian.” In Neural Com-
putation, pp. 147–160, Vol. 6, No. 1, 1994.

[12] Holger Schwenk and Yoshua Bengio. “Boosting neural networks.” In Neural Compu-
tation, pp. 1869–1887, Vol. 12, No. 8, 2000.

[13] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer-Verlag, 2001 (Corrected printing 2002).


