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Abstract

Spectral methods for nonlinear dimensionality reduction (NLDR) impose
a neighborhood graph on point data and compute eigenfunctions of a
quadratic form generated from the graph. We introduce a more general
and more robust formulation ofNLDR based on the singular value de-
composition (SVD). In this framework, most spectralNLDR principles
can be recovered by taking a subset of the constraints in a quadratic form
built from local nullspaces on the manifold. The minimax formulation
also opens up an interesting class of methods in which the graph is “dec-
orated” with information at the vertices, offering discrete or continuous
maps, reduced computational complexity, and immunity to some solu-
tion instabilities of eigenfunction approaches. Apropos, we show almost
all NLDR methods based on eigenvalue decompositions (EVD) have a so-
lution instability that increases faster than problem size. This pathology
can be observed (and corrected via the minimax formulation) in problems
as small asN < 100 points.

1 Nonlinear dimensionality reduction (NLDR )

SpectralNLDR methods are graph embedding problems where a set ofN points X .=
[x1, · · · ,xN] ∈ RD×N sampled from a low-dimensional manifold in a ambient spaceRD is
reparameterized by imposing a neighborhood graphG onX and embedding the graph with
minimal distortion in a “parameterization” spaceRd, d < D. Typically the graph is sparse
and local, with edges connecting points to their immediate neighbors. The embedding must
keep these edges short or preserve their length (for isometry) or angles (for conformality).
The graph-embedding problem was first introduced as a least-squares problem by Tutte [1],
andas an eigenvalue problem by Fiedler [2]. The use of sparse graphs to generate metrics
for least-squares problems has been studied intensely in the following three decades (see
[3]). ModernNLDR methods use graph constraints to generate a metric in a space of embed-
dingsRN. Eigenvalue decomposition (EVD) gives the directions of least or greatest variance
under this metric. Typically a subset ofd extremal eigenvectors gives the embedding ofN
points inRd parameterization space. This includes the IsoMap family [4], the locally linear
embedding(LLE) family [5,6], and Laplacian methods [7,8]. Using similar methods, the
AutomaticAlignment [6] and Charting [9] algorithms embed local subspaces instead of
points,and by combining subspace projections thus obtain continuous maps betweenRD

andRd.

This paper introduces a general algebraic framework for computing optimal embeddings
directly from graph constraints. The aforementioned methods can can be recovered as spe-
cial cases. The framework also suggests some new methods with very attractive properties,
including continuous maps, reduced computational complexity, and control over the degree



of conformality/isometry in the desired map. It also eliminates a solution instability that is
intrinsic to EVD-based approaches. A perturbational analysis quantifies the instability.

2 Minimax theorem for graph embeddings

We begin with neighborhood graph specified by a nondiagonal weighted adjacency matrix
M ∈ RN×N that has thedata-reproducing propertyXM = X (this can be relaxed toXM ≈
X in practice). The graph-embedding andNLDR literatures offer various constructions of
M, each appropriate to different sets of assumptions about the original embedding and
its samplingX (e.g., isometry, local linearity, noiseless samples, regular sampling, etc.).
Typically Mi j 6= 0 if points i, j are nearby on the intrinsic manifold and|Mi j | is small or
zero otherwise. Each point is taken to be a linear or convex combination of its neighbors,
and thusM specifies manifold connectivity in the sense that any nondegenerate embedding
Y that satisfiesYM ≈ Y with small residual‖YM −Y‖F will preserve this connectivity
and the structure of local neighborhoods. For example, in barycentric embeddings, each
point is the average of its neighbors and thusMi j = 1/k if vertex i is connected to vertexj
(of degreek). We will also consider three optional constraints on the embedding :

1. A null-space restriction, where the solution must be outside to the column-space
of C ∈ RN×M, M < N. For example, it is common to stipulate that the solutionY
be centered, i.e.,YC = 0 for C = 1, the constant vector.

2. A basis restriction, where the solution must be a linear combination of the rows
of basisZ ∈ RK×N, K ≤ N. This can be thought of as information placed at the
vertices of the graph that serves as example inputs for a targetNLDR function. We
will use this to construct dimension-reducing radial basis function networks.

3. A metricΣ ∈ RN×N thatdetermines how error is distributed over the points. For
example, it might be important that boundary points have less error. We assume
thatΣ is symmetric positive definite and has factorizationΣ = AA> (e.g.,A could
be a Cholesky factor ofΣ).

In most settings, the optional matrices will default to the identity matrix. In this context,
we define the per-dimension embedding error of row-vectoryi ∈ rows(Y) to be

EM (yi)
.= max

yi∈range(Z),,K∈RM×N

‖(yi(M +CD)−yi)A‖
‖yiA‖

(1)

whereD is a matrix constructed by an adversary to maximize the error. The optimizingyi
is a vector inside the subspace spanned by the rows ofZ and outside the subspace spanned
by the columns ofC, for which the reconstruction residualyiM−yi has smallest norm
w.r.t. the metricΣ. The following theorem identifies the optimal embeddingY for any
choice ofM, Z, C,Σ:

Minimax solution: Let Q ∈ SK×P be a column-orthonormal basis of the null-space of the
rows of ZC, with P = K− rank(C). Let B ∈ RP×P be a square factor satisfyingB>B =
Q>ZΣZ>Q, e.g., a Cholesky factor (or the “R” factor in QR-decomposition of(Q>ZA)>).
Compute the left singular vectorsU ∈ SN×N of Udiag(s)V> = B−>Q>Z(I −M)A, with
singular valuess> .= [s1, · · · ,sP] ordereds1 ≤ s2 ≤ ·· · ≤ sp. Using the leading columns
U1:d of U, setY = U>1:dB−>Q>Z.

Theorem 1. Y is the optimal (minimax) embedding inRd with error ‖[s1, · · · ,sd]‖2:

Y .= U>1:dB−>Q>Z = arg min
Y∈Rd×N

∑
yi∈rows(Y)

EM (yi)2 with EM (yi) = si . (2)



AppendixA develops the proof and other error measures that are minimized.

Local NLDR techniques are easily expressed in this framework. WhenZ = A = I, C = [],
and M reproducesX through linear combinations withM>1 = 1, we recoverLLE [5].
WhenZ = I, C = [], I −M is the normalized graph Laplacian, andA is a diagonal matrix
of vertex degrees, we recover Laplacian eigenmaps [7]. When furtherZ = X we recover
locally preserving projections [8].

3 Analysis and generalization of charting

The minimax construction of charting [9] takes some development, but offers an interest-
ing insight into the above-mentioned methods. Recall that charting first solves for a set
of local affine subspace axesS1 ∈ RD×d,S2, · · · at offsetsµ1 ∈ RD,µ2, · · · that best cover
the data and vary smoothly over the manifold. Each subspace offers a chart—a local pa-
rameterization of the data by projection onto the local axes. Charting then constructs a
weighted mixture of affine projections that merges the charts into a global parameteriza-
tion. If the data manifold is curved, each projection will assign a point a slightly different
embedding, so the error is measured as the variance of these proposed embeddings about
their mean. This maximizes consistency and tends to produce isometric embeddings; [9]
discussesways to explicitly optimize the isometry of the embedding.

Under the assumption of isometry, the charting error is equivalent to the sum-
squared displacements of an embedded point relative to its immediate neighbors
(summed over all neighborhoods). To construct the same error criteria in the min-
imax setting, letxi−k, · · · ,xi , · · · ,xi+k denote points in theith neighborhood and let
the columns ofV i ∈ R(2k+1)×d be an orthonormal basis of rows of the local pa-
rameterizationS>i [xi−k, · · · ,xi , · · · ,xi+k]. Then a nonzero reparameterization will satisfy
[yi−k, · · · ,yi , · · · ,yi+k]V iV>i = [yi−k, · · · ,yi , · · · ,yi+k] if and only if it preserves the relative
position of the points in the local parameterization. Conversely, any relative displacements
of the points are isolated by the formula[yi−k, · · · ,yi , · · · ,yi+k](I −V iV>i ). Minimizing
the Frobenius norm of this expression is thus equivalent to minimizing the local error in
charting. We sum these constraints over all neighborhoods to obtain the constraint matrix
M = I −∑i Fi(I −V iV>i )F>i , where(Fi)k j = 1 iff the j th point of theith neighborhood is
thekth point of the dataset.BecauseV iV>i and (I −V iV>i ) are complementary, it follows
that the error criterion of any localNLDR method (e.g.,LLE, Laplacian eigenmaps, etc.)
must measure the projection of the embedding onto somesubspaceof (I −V iV>i ).
To construct a continuous map, charting uses an overcomplete radial basis function (RBF)
representationZ = [z(x1),z(x2), · · ·z(xN)], wherez(x) is a vector that stacksz1(x), z2(x),
etc., and

zm(x) .=
[

K>m(x−µm)
1

]
pm(x)

∑m pm(x)
, (3)

pm(x) .= N (x|µm,Σm) ∝ e−(x−µm)>Σ−1
m (x−µm)/2 (4)

andKm is any local linear dimensionality reducer, typicallySm itself. Each column ofZ
contains many “views” of the same point that are combined to give its low-dimensional
embedding.

Finally, we setC = 1, which forces the embedding of the full data to be centered.

Applying the minimax solution to these constraints yields theRBF network mixing ma-
trix, f (x) .= U>1:dB−>Q>z(x). Theorem1 guarantees that the resulting embedding is least-
squaresoptimal w.r.t.Z, M, C,A at the datapointsf (xi), and becausef (·) is an affine trans-
form of z(·) it smoothly interpolates the embedding between points.

There are some interesting variants:



Kernel embeddings of the twisted swiss roll

generalized EVD
minimax SVD

LL corner detail

UR corner detail

Fig. 1. Minimax and generalizedEVD solution for kernel eigenmap of a non-developable
swiss roll. Points are connected into a grid which ideally should be regular. TheEVD so-
lution shows substantial degradation. Insets detail corners where theEVD solution crosses
itself repeatedly. The border compression is characteristic of Laplacian constraints.

One-shot charting: If we set the local dimensionality reducers to the identity matrix (all
Km = I), then the minimax method jointly optimizes the local dimensionality reduction to
charts and the global coordination of the charts (under any choice ofM). This requires that
rows(Z) ≤ N for a fully determined solution.

Discrete isometric charting: If Z = I then we directly obtain a discrete isometric embed-
ding of the data, rather than a continuous map, making this a local equivalent of IsoMap.

Reduced basis charting:Let Z be constructed using just a small number of kernels ran-
domly placed on the data manifold, such that rows(Z) � N. Then the size of theSVD
problem is substantially reduced.

4 Numerical advantage of minimax method

Note that the minimax method projects the constraint matrixM into a subspace derived
from C and Z and decomposes it there. This suppresses unwanted degrees of freedom
(DOFs) admitted by the problem constraints, for example the trivialR0 embedding where
all points are mapped to a single pointyi = N−1/2. TheR0 embedding serves as a trans-
lational DOF in the solution.LLE- and eigenmap-based methods constructM to have a
constant null-space so that the translationalDOF will be isolated in theEVD as null eigen-
value paired to a constant eigenvector, which is then discarded. However, section4.1shows
thatthis construction makes theEVD increasingly unstable as problem size grows and/or the
data becomes increasing amenable to low-residual embeddings, ultimately causing solution
collapse. As the next paragraph demonstrates, the problem is exacerbated when embedding
w.r.t. a basisZ (via the equivalent generalized eigenproblem), partly because the eigenvec-
tor associated with the unwantedDOF can have arbitrary structure. In all cases the problem
can be averted by using the minimax formulation withC = 1 to suppress theDOF.

A 2D plane was embedded in 3D with a curl, a twist, and 2.5% Gaussian noise, then regu-
larly sampled at 900 points. We computed a kernelized Laplacian eigenmap using 70 ran-
dom points asRBF centers, i.e., a continous map usingM derived from the graph Laplacian
andZ constructed as above. The map was computed both via the minimax (SVD) method
and via the equivalent generalized eigenproblem, where the translational degree of freedom
must be removed by discarding an eigenvector from the solution. The two solutions are al-
gebraically equivalent in every other regard. A variety of eigensolvers were tried; we took
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Fig. 2.Excessenergy in the eigenspectrum indicates that the translationalDOF has contam-
inated many eigenvectors. If theEVD had successfully isolated the unwantedDOF, then its
remaining eigenvalues should be identical to those derived from the minimax solution. The
graph at left shows the difference in the eigenspectra. The graph at right shows theEVD

solution’s deviation from the translational vectory0 = 1 ·N−1/2 ≈ .03333. If the numer-
ics were perfect the line would be flat, but in practice the deviation is significant enough
(roughly 1% of the diameter of the embedding) to noticably perturb points in figure1.

the best result. Figure1 shows that theEVD solution exhibits many defects, particularly a
folding-over of the manifold at the top and bottom edges and at the corners. Figure2 shows
thatthe noisiness of theEVD solution is due largely to mutual contamination of numerically
unstable eigenvectors.

4.1 Numerical instability of eigen-methods

The following theorem uses tools of matrix perturbation theory to show that as the prob-
lem size increases, the desired and unwanted eigenvectors become increasingly wobbly
and gradually contaminate each other, leading to degraded solutions. More precisely, the
low-order eigenvalues are ill-conditioned and exhibit multiplicities that may be true (due
to noiseless samples from low-curvature manifolds) or false (due to numerical noise). Al-
though in many cases some post-hoc algebra can “filter” the unwanted components out
of the contaminated eigensolution, it is not hard to construct cases where the eigenvectors
cannot be cleanly separated. The minimax formulation is immune to this problem because
it explicitly suppresses the gratuitous component(s)beforematrix decomposition.

Theorem 2. For any finite numerical precision, as the number of points N increases, the
Frobenius norm of numerical noise in the null eigenvectorv0 can grow as O(N3/2), and
the eigenvalue problem can approach a false multiplicity at a rate as fast as O(N3/2),
at which point the eigenvectors of interest—embedding and translational—are mutually
contaminated and/or have an indeterminate eigenvalue ordering.

Please see appendixB for the proof. This theorem essentially lower-bounds an upper-
boundon error; examples can be constructed in which the problem is worse. For exam-
ple, it can be shown analytically that when embedding points drawn from the simple curve
xi = [a,cosπa]>, a ∈ [0,1] with K = 2 neighbors, instabilities cannot be bounded better
than O(N5/2); empirically we see eigenvector mixing withN < 100 points and we see
it grow at the rate≈ O(N4)—in many different eigensolvers. At very large scales, more
pernicious instabilities set in. E.g., byN = 20000 points, the solution begins to fold over.
Although algebraic multiplicity and instability of the eigenproblem is conceptually a minor
oversight in the algorithmic realizations of eigenfunction embeddings, as theorem2 shows,
theconsequences are eventually fatal.

5 Summary

One of the most appealing aspects of the spectralNLDR literature is that algorithms are
usually motivated from analyses of linear operators on smooth differentiable manifolds,
e.g., [7]. Understandably, these analysis rely on assumptions (e.g., smoothness or isometry



or noiseless sampling) that make it difficult to predict what algorithmic realizations will do
whenreal, noisy data violates these assumptions. The minimax embedding theorem pro-
vides a complete algebraic characterization of thisdiscreteNLDR problem, and provides
a solution that recovers numerically robustified versions of almost all known algorithms.
It offers a principled way of constructing new algorithms with clear optimality properties
and good numerical conditioning—notably the construction of a continuousNLDR map (an
RBF network) in a one-shot optimization (SVD). We have also shown how to cast several
local NLDR principles in this framework, and upgrade these methods to give continuous
maps. Working in the opposite direction, we sketched the minimax formulation of isomet-
ric charting and showed that its constraint matrix contains a superset of all the algebraic
constraints used in localNLDR techniques.
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A Proof of minimax embedding theorem (1)
Theburden of this proof is carried by supporting lemmas, below. To emphasize the proof
strategy, we give the proof first; supporting lemmas follow.

Proof. Settingyi = l>i Z, we will solve forl i ∈ columns(L) . Writing the error in terms ofl i ,

EM (l i) = max
K∈RM×N

‖l>i Z(I −M −CK)A‖
‖l>i ZA‖

= max
K∈RM×N

‖l>i Z(I −M)A− l>i ZCKA‖
‖l>i ZA‖

. (5)

The term l>i ZCKA produces infinite error unlessl>i ZC = 0, so we accept this as a con-
straint and seek

min
l>i ZC=0

‖l>i Z(I −M)A‖
‖l>i ZA‖

. (6)

By lemma1, that orthogonality is satisfied by solving the problem in the space orthogonal
to ZC; the basis for this space is given by columns ofQ .= null((ZC)>).
By lemma2, the denominator of the error specifies the metric in solution space to be
ZAA>Z>; when the problem is projected into the space orthogonal toZC it becomes
Q>(ZAA>Z>)Q. Nesting the “orthogonally-constrained-SVD” construction of lemma1



inside the “SVD-under-a-metric” lemma2, we obtain a solution that uses the correct metric
in the orthogonal space:

B>B = Q>ZAA>Z>Q (7)

Udiag(s)V> = B−>{Q(Z(I −M)A)} (8)

L = QB−1U (9)

where braces indicate the nesting of lemmas. By the “best-projection” lemma (#3), if we
orderthe singular values by ascending magnitude,

L1:d = arg min
J∈RN×d

√
∑j i∈cols(J)(‖j>Z(I −M)A‖/‖j‖ ZΣZ>)2 (10)

The proof is completed by making the substitutionsL>Z → Y> and‖x>A‖ → ‖x‖Σ (for
Σ = AA>), and leaving off the final square root operation to obtain

(Y>)1:d = arg min
J∈RN×d

∑j i∈cols(J)

(
‖j>(I −M)‖Σ/‖j‖Σ

)2
. (11)

Lemma 1. Orthogonally constrainedSVD: The left singular vectorsL of matrixM under

the constraintU>C = 0 are calculated asQ .= null(C>), Udiag(s)V> SVD← Q>M, L = QU.

Proof. First observe thatL is orthogonal toC: By definition, the null-space basis satisfies
Q>C = 0, thusL>C = U>Q>C = 0. Let J be an orthonormal basis forC, with J>J = I
andQ>J = 0. ThenLdiag(s)V> = QQ>M = (I − JJ>)M, the orthogonal projector ofC
applied toM, proving that theSVD captures the component ofM that is orthogonal toC.

Lemma 2. SVD with respect to a metric:The vectorsl i ∈ L, vi ∈V that diagonalize matrix
M with respect to positive definite column-space metricΣ are calculated asB>B← Σ,

Udiag(s)V> SVD← B−>M, L .= B−1U satisfy‖l>i M‖/‖l i‖Σ = si and extremize this form for
the extremal singular values smin,smax.

Proof. By construction,L andV diagonalizeM:

L>MV = (B−1U)>MV = U>(B−>M)V = diag(s) (12)

and diag(s)V> = B−>M. Forming the gram matrices of both sides of the last line, we
obtain the identityVdiag(s)2V> = M>B−1B−>M = M>Σ−1M, which demonstrates that
si ∈ s are the singular values ofM w.r.t. column-space metricΣ. Finally, L is orthonormal
w.r.t. the metricΣ, because‖L‖2

Σ = L>ΣL = U>B−>B>BB−1U = I. Consequently,

‖l>M‖/‖l‖ Σ = ‖l>M‖/1 = ‖siv>i ‖= si . (13)

and by the Courant-Hilbert theorem,

smax = max
l
‖l>M‖/‖l‖ Σ; smin = min

l
‖l>M‖/‖l‖ Σ. (14)

Lemma 3. Best projection:TakingL ands from lemma2, let the columns ofL andele-
ments ofs be sorted so that s1≥ s2≥ ·· · ≥ sN. Then for any dimensionality1≤ d≤ N,

L1:d
.= [l1, · · · , ld] = arg max

J∈RN×d
‖J>M‖ (J>ΣJ)−1 (15)

= arg max
J∈RN×d|J>ΣJ=I

‖J>M‖F (16)

= arg max
J∈RN×d

√
∑j i∈cols(J)(‖j>M‖/‖j‖ Σ)2 (17)

with the optimum value of all right hand sides being(∑d
i=1s2

i )
1/2. If the sort order is re-

versed, the minimum of this form is obtained.



Proof. By the Eckart-Young-Mirsky theorem, ifU>MV = diag(s) with singular values
sorted in descending order, thenU1:d

.= [u1, · · · ,ud] = argmaxU∈SN×d ‖U>M‖F . We first
extend this to a non-orthonogonal basisJ under a Mahalonobis norm:

maxJ∈RN×d‖J>M‖ (J>J)−1 = maxU∈SN×d‖U>M‖F (18)

because ‖J>M‖2
(J>J)−1 = trace(M>J(J>J)−1J>M) = trace(M>JJ+(JJ+)>M) =

‖(JJ+)M‖2
F = ‖UU>M‖2

F = ‖U>M‖2
F since JJ+ is a (symmetric) orthogonal pro-

jector having binary eigenvaluesλ ∈ {0,1} and therefore it is the gram of an thin
orthogonal matrix. We then impose a metricΣ on the column-space ofJ to obtain
the first criterion (equation15), which asks what maximizes variance inJ>M while
minimizing the norm ofJ w.r.t. metric Σ. Here it suffices to substitute in the leading
(resp., trailing) columns ofL and verify that the norm is maximized (resp., mini-
mized). Expanding,‖L>1:dM‖2

(L>1:dΣL1:d)−1 = trace((L>1:dM)>(L>1:dΣL1:d)−1(L>1:dM)) =

trace((L>1:dM)>I(L>1:dM)) = trace((diag(s1:d)V>1:d)
>(diag(s1:d)V>1:d)) = ‖s1:d‖2. Again,

by the Eckart-Young-Mirsky theorem, these are the maximal variance-preserving pro-
jections, so the first criterion is indeed maximized by settingJ to the columns inL
corresponding to the largest values ins.

Criterion #2 restates the first criterion with the set of candidates forJ restricted to (the hy-
perelliptical manifold of) matrices that reduce the metric on the norm to the identity matrix
(thereby recovering the Frobenius norm). Criterion #3 criterion merely expands the above
trace by individual singular values. Note that the numerator and denominator can have dif-
ferent metrics because they are norms in different spaces, possibly of different dimension.
Finally, that the trailingd eigenvectorsminimizethese criteria follows directly from the fact
that leadingN−d singular values account for the maximal part of the variance.

B Proof of instability theorem (2)
Proof. When generated from a sparse graph with average degreeK, weighted connectivity
matrixW is sparse and hasO(NK) entries. Since the graph vertices represent samples from
a smooth manifold, increasing the sampling densityN does not change the distribution of
magnitudes inW. Consider a perturbation of the nonzero values inW, e.g.,W →W + E
due to numerical noiseE created by finite machine precision. By the weak law of large
numbers, the Frobenius norm of the sparse perturbation grows as‖E‖F ∼ O(

√
N). How-

ever thet th-smallest nonzero eigenvalueλt(W) grows asλt(W) = v>t Wvt ∼ O(N−1), be-
cause elements of corresponding eigenvectorvt grow asO(N−1/2) and onlyK of those
elements are multiplied by nonzero values to form each element ofWvt . In sum, the per-
turbation‖E‖F grows while the eigenvalueλt(W) shrinks. In linear embedding algorithms,
the eigengap of interest isλgap

.= λ1−λ0. The tail eigenvalueλ0 = 0 by construction but
it is possible thatλ0 > 0 with numerical error, thusλgap≤ λ1. Combining these facts,
the ratio between the perturbation and the eigengap grows as‖E‖F/λgap∼ O(N3/2) or
faster. Now consider the shifted eigenproblemI −W with leading (maximal) eigenval-
ues 1− λ0 ≥ 1− λ1 ≥ ·· · and unchanged eigenvectors. From matrix perturbation the-
ory [10, thm. V.2.8], whenW is perturbed toW′ .= W + E, the change in the lead-
ing eigenvalue from 1− λ0 to 1− λ′0 is bounded as|λ′0− λ0| ≤

√
2‖E‖F and similarly

1− λ′1 ≤ 1− λ1 +
√

2‖E‖F . Thusλ′gap≥ λgap−
√

2‖E‖F . Since‖E‖F/λgap∼ O(N3/2),
the right hand side of the gap bound goes negative at a supralinear rate, implying that the
eigenvalue ordering eventually becomes unstable with the possibility of the first and second
eigenvalue/vector pairs being swapped. Mutual contamination of the eigenvectors happens
well before: Under general (dense) conditions, the change in the eigenvectorv0 is bounded
as‖v′0−v0‖ ≤ 4‖E‖F

|λ0−λ1|−
√

2‖E‖F
[10, thm. V.2.8]. (This bound is often tight enough to serve

asa good approximation.) Specializing this to the sparse embedding matrix, we find that

the bound weakens to‖v′0−1·N−1/2‖ ∼ O(
√

N)
O(N−1)−O(

√
N)

> O(
√

N)
O(N−1) = O(N3/2).


